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DM as a strongly coupled dark sector

o Hidden Valley [arXiv:hep-ph/0604261] with new particles and forces form the dark sector

e Strongly coupled dark sector

- New confining SU(N) force, dark QCD, and dark quarks

e Portal between the SM and dark sectors via a heavy mediator

o Considering non-resonant production of dark quarks via t-channel mediator
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https://arxiv.org/abs/hep-ph/0604261

Production of semivisible jets

e Dark quarks hadronize in the dark sector

o A fraction of dark hadrons promptly decays to SM quarks which hadronize in the SM
sector

o Remaining dark hadrons are stable and invisible = DM candidates
- Production of semivisible jets (SVJ) [arXiv:1503.00009, arXiv:1707.05326]

- Different jet substructure due to double hadronization

SM hadrons

Stable dark hadrons
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Unsupervised ML to search for SVJs

The details of the shower in the dark sector depend on many unknown
parameters, e.g.:

@ Masses of the dark hadrons
e Dark QCD hadronization scale

@ Number of colors and flavors in the dark sector (7

=> Simulation of SVJs very
model-dependent

- Use unsupervised ML to tag
SVJs
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Autoencoders (AE)

AEs are trained to minimize the
reconstruction error (e.g. MSE) between
input and output:

L(z) = [lg(f () — =[]

Aim: that examples out of the training
distribution, i.e. anomalies, have a higher
reconstruction error

Trained on SM data, AEs can perform
signal-agnostic searches for new physics
[arXiv:1808.08979, arXiv:1808.08992]

Will use interchangeably:
o “training” and “background”

e “anomaly” and “signal”
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o Input features to the AE are 8 jet substructure variables (CMS simulation)
o Normalized using quantile transformation to a normal distribution
o AE architecture: fully connected NN with 10, 10, 6, 10, 10 neurons
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Shortcoming of standard autoencoder

e Training standard AE on background ¢ jets minimizing the MSE between input and
reconstructed features

- When the background MSE is minimal, the AE reconstructs background and
signal jets equally well!

- The reconstruction error is not a good metric!

- Cannot optimize on AUC without introducing signal model dependence!

CMS Simulation Preliminary CMS simulation Preliminary

— Background ---- Signal

1.4

1.2

0.8 0.492 0.486 0.506

o
(=]
m,, [GeV]

o
~

Reconstruction error / N, res

I
N

TR N B
400 600 800 1000 1200 1400 0.1 0.3
Epoch

ST

Average AUCs for 10 independent AE train-

Background (tf) and signal (SVJ) MSE. ings, evaluated at minimal background MSE.




The problem of out-of-distribution (OOD) reconstruction

o Standard AEs are trained to minimize reco error in the background phase-space

o but AEs are free to minimize reco error outside the background phase-space!
including the unknown signal phase-space...

=> This is the problem of OOD reconstruction:

Full phase-space

Training / background
phase-space

Anomaly / signal
phase-space

e Normalized AE (NAE) features a mechanism to suppress OOD reconstruction

o First introduced in arXiv:2105.05735 and used in HEP in arXiv:2206.14225
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Working principle of the Normalized Autoencoder (NAE)

o Ensure that low reconstruction error

.. Full phase-:
phase-space matches that of training data | phase-space

Training / background data
- Need a way to sample from the low reco error I Anomalous /

phase-space, independent from the training dataset ~,_signal data

@ The low reco error distribution pgy is constructed
from the reco error Ey via the Boltzmann
distribution®:

po(x) = Qie exp (— Eo(z))

o The loss is designed to learn py = pgata:

Ez~paata [LQ(x)] =Ez~pgata [Eo(z)] — E:v’~rm [EH <T/)}

positive energy E4 negative energy E_
o The positive energy E is the reconstruction error of the training examples

e Markov Chain Monte Carlo (MCMC)? employed to sample examples from the low reco
phase-space (“negative samples”) z’ and compute their reconstruction error E_

I More on Energy Based Models in backup slide 4
2More on MCMC in backup slide 5
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Modified loss function and training dynamics

Modified default loss function, compared to arXiv:2105.05735, to:

e prevent the divergence of negative energy

e minimize the positive energy while the energy difference is close to 0:

=log(cosh (E+ — E_)) + aE4+ a > 0, hyper-parameter
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- Signal SVJ reconstruction is efficiently suppressed!

- How to define stopping condition in a fully signal-agnostic way?



https://arxiv.org/abs/2105.05735

Training s ing condition for optimal performance
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o The Energy Mover’s Distance
(EMD) between the positive and
negative samples is a measure of the
distance between the background
and NAE low reco error phase-
spaces directly in the input features
space
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EMD versus energy difference: illustration of the collapse
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Results: AE versus NAE

o The NAE achieves sensible improvement in performance compared to the standard AE
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Histograms of negative and positive samples

o Can visualize negative samples for individual input features
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Conclusions

e Standard AEs suffer from out-of-distribution reconstruction, as they are free to minimize
the reconstruction error outside the training phase-space

o NAEs propose a mechanism to ensure that the low reco error phase-space matches that
of the training data, by minimizing the difference in reco error between these
phase-spaces

o This can fail as different phase-space regions may have same reco error

o The Energy Mover’s Distance between training examples and low reco error examples in
the input features space lifts this degeneracy and provides a robust distance measure

between training and low reco error phase-spaces

o This work provides techniques to gain insight in the NAE dynamics and a fully
model-independent optimization to reach optimal performance

o We believe the method proposed in this talk is general and not limited to the SVJ search
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SVJ model parameters

Model parameters:

@ mg: Mass of the mediator @ Tiny: Jet invisible fraction
o Effective parameter in the simulation
e mp: Mass of the dark hadrons (7p, pp) Branching ratio DM — qg

o Same for all dark hadrons

e yp: Yukawa coupling between SM and

Number of stable dark hadrons
Tinv =
dark quarks

Number of dark hadrons

Tiny = 0 0<ripy <1 Tiny = 1

|

Er

Dijet search SVJ search WIMP search
SM hadrons

Stable dark hadrons
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Backgrounds

QCD multijet
o Artificial missing transverse energy Fr aligned with jet
from jet energy mismeasurement

o Large cross-section

tt
o Large jet from boosted ¢

@ Semi-leptonic channel W (— lv) with lost lepton,
genuine 1 from neutrino

o Jet aligned with Fp

Z + jets

e Genuine fr from Z — vv

W + jets

o W — lv with lost/not reconstructed lepton or hadronic
decay of T

o Genuine £ from neutrino

Florian Eble



Energy-based models

Energy-based models (EMBs)

o EBMs are models where the probability is defined through the Boltzmann distribution

o Let 6 denote the model parameters

o The model probability pgy is defined from the energy Fjy

po(z) = Qie exp (= Ey(z)/T)

where the normalization constant €y is

Qp = / exp (~Eg(x)/T) da
o The EBM loss for a training example z is the negative log-likelihood:
Lo(x) = —logpg(z) = Eg(x)/T + log Qo
o The gradient of the EBM loss is thus:

VoLg(x) = VoEg(x) —E [VoEo(z")]

x/~pg

o The expectation value over the training dataset, with probability pqata is:

Ez~pata [VoLo(z)] = Ez~pata [VoEg(x)] — Ex’~p9 [VgEg(l'/)]

Florian Eble NAE for SVJ *h in CMS 09/11/2023




Principle of MCMC (Langevin Monte Carlo)

Let p be a probability distribution on R¢

o Consider x¢ a random initial set of n points in R%

‘With the update rule:
i1 =2t + AViog (p(x)) + V2 - X - e

where ¢; is a sample of n points drawn from a multivariate normal distribution on R%

Let p: denote the probability distribution of x;

o In the limit ¢ — oo, p: approaches a stationary distribution peo, and poc = p

Initial distribution Gradient + noise Step 1 Step N
.. .O L] L) { ]
‘o9 ) @ o ° ’
[ ] (] °
[ J [
[ ] 2 "
° o |0 ° P ) L °
° . ° ¢ L e ° o°
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MCMC in Normalized Autoencoder (NAE)

Loss
EJ?N:Ddata [L9 (13)} = EwNPdata [EG (Lr)} - Ew'NP(} [EG ("I/)}

positive energy E negative energy F_

Positive energy
e Simply the reconstruction error over the training dataset

o Take SM jets and compute the reconstruction error!

Negative energy
@ Reconstruction error of the “negative samples” z’ from the probability distribution pg
o Need to sample from the model to get the “negative samples”
- Monte Carlo Markov Chain (MCMC) employed

MCMC
o Start from an initial point x,
e Run n Langevin MCMC steps:
wiy =a; — A VaEg(x)) + oe e~N(0,I)
drift diffusion

/( ()

o Repeat with several points xoj), the negative samples are the z

an Eble . g *h in CMS



Training samples and hyper-parameters

Input features Hyper-parameters
Using AdKS Jsts b.e:icause SVJ are Hy per-parameter Value
expected to be wide Batch size 256
. Axis major Reconstruction loss MSE
Jet width . L
et w axis minor Activation ReLU
. T2, T3 Output encoder/ .
N-pronginess Cf :0'5, Dg =05 decoder activation Linear
pP EFP1 Optimizer Adam
Other T L : t 1e-5
log(softdrop mass) earning rate €
Dropout 0.
Architecture MCMQ PCD
Fully connected neural net Sampling phase-space | [-3, 3] hypercube
Hidden layers: 10, 10,6, 10, 10
Number of events
mg [GeV] 1000 | 1500 2000 3000 | 4000 -
Tine 03 | 03 [ 01050307 03 [ o3| 2P|
Number of events | 23k | 25k | 23k | 18k | 16k | 11k | 14k | 14k || 83k | 23k

Number of AKS8 jets

Background jets | Leading 2 jets
Signal jets Only SVJ in leading 2 jets

Train/validation/test splitting
0.7/0.15/0.15

Florian Eble . f *h in CMS



Understanding the MCMC hyper-parameters

@ Recall the MCMC equation:

T =a; — AVzEy(z]) + o€ e~N(0,1I)

o A theoretically motivated choicel for the MCMC hyper-parameters is:

2.\ =02

e The MCMC is run on every batch: in practice, for training in a reasonable amount of
time, the MCMC is rather short

@ To speed up the convergence of the MCMC, the temperature T is introduced:
/ ! >\ /
wi+1:xi—szE9(a:i)+Ue e~N(0,1I)

o Tweaking the gradient step size can be seen as adjusting the temperature 7"
the strength of the gradient term is increased for 7' < 1

o The parameter space where o and T are set independently, with T < 1 and A = 02/2 is
in theory a good region

1For an infinitely long chain, see backup slide 5

an Eble . g *h in CMS



MCMC initialization

MCMC initialization:
e In theory, MCMC convergence independent on the initial point

e However, in practice with short chain, initialization is crucial

Several commonly used initialization algorithms of the MCMC:
o Contrastive Divergence! (CD)
e Persistent CD? (PCD)

CcD?
o Initial distribution from training data

o Re-initialization after each parameter update (i.e. epoch)

PCD*
e Random initial distribution for first MCMC
o The model changes only slightly during parameter update

o Thus, for subsequent chains, initialize chain at the state in which it ended for the
previous model

o Possibility to randomly re-initialize a small fraction of the samples

INeural Comput 2002; 14 (8) 3lllustration in backup slide 10
2pCcD paper 4llustration in backup slide 11
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Principle of CD

Example of a failure mode of CD: High Training d .
probability mode far from training data di alr}]l)ng- a?a
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Principle of PCD

Initial distribution Step 1 Step 2 Step N
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On-Manifold Initialization

Tailored MCMC initialization algorithm for AEs:
o CD and PCD have failure modes

o CD failure mode: spurious low reconstruction error phase-space far from the training
dataset

e PCD failure mode: MCMC chains very correlated, spurious low reconstruction error
phase-space can be missed

- Tailored algorithm for AE: On-Manifold Initialization (OMI) [arXiv:2105.05735]
e Run a first MCMC in the latent space to generate samples lying near the decoder
manifold
o Use them as initial points for the usual MCMC

Initial point of
the latent chain

N L
Latent space Z

—0
Decoder Manifold | f2(@) | [On-manifci!d Initializatio:l | _ -4 Langevin MC
Features space X/ . + «,
ad TTe-al L Negative sample
JPtas =~ to compute
Initial point of L-7 negative energy

the langevin MC



https://arxiv.org/abs/2105.05735

Training samples and hyper-parameters

Input features

Using AKS8 jets because SVJ are

expected to be

wide

Axis major

Jet width axis minor
N-pronginess 2523.57 D§=0~5
D
Other fog(slii‘grop mass)
Architecture

Fully connected neural net

Hidden layers: 10,

10, 6,10, 10

Number of events

Hyper-parameters

Hyper-parameter Value
Batch size 256
Reconstruction loss MSE
Activation ReLU
Output encoder .
decorzier activatién Linear
Optimizer Adam
Learning rate le-5
Dropout 0.
MCMC PCD

Sampling phase-space

[-3, 3] hypercube

me [GeV] 1000 | 1500 2000 3000 174000 [ n T 7
Timv 03 | 03 [ 0105 03] 07| 03 | 03
Number of events | 23k | 25k | 23k | 18k | 16k | 11k | 14k | 14k || 83k | 23k

Number of AKS8 jets

Background jets

Leading 2 jets

Signal jets

Only SVJ in leading 2 jets

Florian Eble

Train/validation/test splitting

0.7/0.15/0.15
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Differences with previous applications

o Existing classification tasks!:2 are quite different from this one:

: T 2
Classification task S(l)\;lnl\}l)lust;rtsacslle{znce paper I;I]E;kpaper SVJ search
Data MNIST images Jet images 1D array of JSS features
Data representation 32 x32in [0, 1] 40 x 40 in [0, 1] | 8 features, not all bounded
Number of dimensions | 1024 1600 8
Network architecture 2D CNN 2D CNN DNN

1 MNIST class as OOD QCD vs tt tt vs SVJ
Classification tt vs QCD
QCD vs SVJ

LarXiv:2105.05735
2arXiv:2206.14225
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