Classifying the CP properties of the Higgs–gluon interaction

and the quest for interpretable ML

Henning Bahl

based on 2309.03146

in collaboration with E. Fuchs, M. Hannig, and M. Menen

ML4Jets, DESY Hamburg, 8.11.23

CP violation in the Higgs sector

- New sources of CP violation are necessary to explain the baryon asymmetry of the Universe.
- One possibility: CP violation in the Higgs sector.

- Why use ggF2j production for CP tests? [Hankele, Klamke, Zeppenfeld `06,`07, ...]
 - Gluon fusion is the largest Higgs production channel \rightarrow wealth of data.
 - Two additional jets in the final state allow to construct CP-odd observables.
 - \rightarrow CP sensitivity beyond total rate information.

• Effective Lagrangian (after integrating out the top quark, SM: $c_g = 1$, $\tilde{c}_g = 0$):

$$\mathcal{L}_{Hgg} = -\frac{1}{4\nu} H \left(-\frac{\alpha_s}{3\pi} c_g G^a_{\mu\nu} G^{a,\mu\nu} + \frac{\alpha_s}{2\pi} \tilde{c}_g G^a_{\mu\nu} \tilde{G}^{a,\mu\nu} \right) \qquad \text{(heavy top limit enforced by } p_T \text{ cut)}$$

• Amplitude splits up into three pieces:

$$\left|\mathcal{M}_{\rm ggF2j}\right|^{2} = c_{g}^{2}|\mathcal{M}_{\rm even}|^{2} + 2c_{g}\tilde{c}_{g}Re[\mathcal{M}_{\rm even}\mathcal{M}_{\rm odd}^{*}] + \tilde{c}_{g}^{2}|\mathcal{M}_{\rm odd}|^{2}$$

interference

• Effective Lagrangian (after integrating out the top quark, SM: $c_g = 1$, $\tilde{c}_g = 0$):

$$\mathcal{L}_{Hgg} = -\frac{1}{4\nu} H \left(-\frac{\alpha_s}{3\pi} c_g G^a_{\mu\nu} G^{a,\mu\nu} + \frac{\alpha_s}{2\pi} \tilde{c}_g G^a_{\mu\nu} \tilde{G}^{a,\mu\nu} \right) \qquad \text{(heavy top limit enforced by } p_T \text{ cut)}$$

• Amplitude splits up into three pieces:

$$\left|\mathcal{M}_{\rm ggF2j}\right|^{2} = c_{g}^{2}|\mathcal{M}_{\rm even}|^{2} + 2c_{g}\tilde{c}_{g}Re[\mathcal{M}_{\rm even}\mathcal{M}_{\rm odd}^{*}] + \tilde{c}_{g}^{2}|\mathcal{M}_{\rm odd}|^{2}$$

interference

Assumption in the literature: [e.g., CMS `21, `22; ATLAS `21, `22]

- CP sensitivity highest for vector-boson-fusion (VBF) like kinematics, or
- azimuthal angle between the two jets $\Delta \phi_{ii}$ is the optimal observable.

• Effective Lagrangian (after integrating out the top quark, SM: $c_g = 1$, $\tilde{c}_g = 0$):

$$\mathcal{L}_{Hgg} = -\frac{1}{4\nu} H \left(-\frac{\alpha_s}{3\pi} c_g G^a_{\mu\nu} G^{a,\mu\nu} + \frac{\alpha_s}{2\pi} \tilde{c}_g G^a_{\mu\nu} \tilde{G}^{a,\mu\nu} \right) \qquad \text{(heavy top limit enforced by } p_T \text{ cut)}$$

• Amplitude splits up into three pieces:

$$\left|\mathcal{M}_{\rm ggF2j}\right|^{2} = c_{g}^{2}|\mathcal{M}_{\rm even}|^{2} + 2c_{g}\tilde{c}_{g}Re[\mathcal{M}_{\rm even}\mathcal{M}_{\rm odd}^{*}] + \tilde{c}_{g}^{2}|\mathcal{M}_{\rm odd}|^{2}$$

interference

Assumption in the literature: [e.g., CMS `21, `22; ATLAS `21, `22]

Can we do better?

- CP sensitivity highest for vector-boson-fusion (VBF) like kinematics, or
- azimuthal angle between the two jets $\Delta \phi_{jj}$ is the optimal observable.

Analysis flow

- Focus on $H \rightarrow \gamma \gamma$ decay channel.
- Two signal regions: ggF2j-SR, VBF-SR
- For each signal region: train signal-background classifier.
- Then, train two classifiers to distinguish $|\mathcal{M}_{even}|^2$ vs. $|\mathcal{M}_{odd}|^2$ and (positive intf.) vs (negative intf).
- Build two observables: CP-even $P(c_g^2)$ and CP-odd $P_+ P_-$.

ggF2j signal region

- ggF2j signal region outperforms VBF signal region (not shown),
- $\Delta \phi_{jj}$ limit is significantly worse.

Which observables drive these constraints? \rightarrow interpretable ML?!

Who is the highest-value player in a cooperative game?

Who is the highest-value player in a cooperative game?

Example 1: Leibniz and Newton independently invented calculus which has the value of 100.
val({Leibniz}) = 100,
val({Newton}) = 100,
val({Leibniz, Newton}) = 100

Who is the highest-value player in a cooperative game?

• Example 1: Leibniz and Newton independently invented calculus which has the value of 100.

val({Leibniz}) = 100, val({Newton}) = 100, val({Leibniz, Newton}) = 100

- Leibniz and Newton have same value: $\phi_{\text{Leibniz}} = \phi_{\text{Newton}} = 50$

Who is the highest-value player in a cooperative game?

- Example 1: Leibniz and Newton independently invented calculus which has the value of 100. $val(\{\text{Leibniz}\}) = 100,$ $val(\{\text{Newton}\}) = 100,$ $val(\{\text{Leibniz}, \text{Newton}\}) = 100$ Leibniz and Newton have same value: $\phi_{\text{Leibniz}} = \phi_{\text{Newton}} = 50$
- Example 2: Netwon invented calculus. Leibniz, mad with envy, pretends that he also invented calculus.

val({Leibniz}) = 0, val({Newton}) = 100, val({Leibniz, Newton}) = 100

Who is the highest-value player in a cooperative game?

- Example 1: Leibniz and Newton independently invented calculus which has the value of 100. $val(\{\text{Leibniz}\}) = 100,$ $val(\{\text{Newton}\}) = 100,$ $val(\{\text{Leibniz}, \text{Newton}\}) = 100$ Leibniz and Newton have same value: $\phi_{\text{Leibniz}} = \phi_{\text{Newton}} = 50$
- Example 2: Netwon invented calculus. Leibniz, mad with envy, pretends that he also invented calculus. $val(\{\text{Leibniz}\}) = 0,$ $val(\{\text{Newton}\}) = 100,$ $val(\{\text{Leibniz}, \text{Newton}\}) = 100$ Leibniz has no value: $\phi_{\text{Leibniz}} = 0, \ \phi_{\text{Newton}} = 100$

Who is the highest-value player in a cooperative game?

- Example 1: Leibniz and Newton independently invented calculus which has the value of 100. $val(\{\text{Leibniz}\}) = 100,$ $val(\{\text{Newton}\}) = 100,$ $val(\{\text{Leibniz}, \text{Newton}\}) = 100$ Leibniz and Newton have same value: $\phi_{\text{Leibniz}} = \phi_{\text{Newton}} = 50$
- Example 2: Netwon invented calculus. Leibniz, mad with envy, pretends that he also invented calculus. $val(\{\text{Leibniz}\}) = 0,$ $val(\{\text{Newton}\}) = 100,$ $val(\{\text{Leibniz}, \text{Newton}\}) = 100$ Leibniz has no value: $\phi_{\text{Leibniz}} = 0, \ \phi_{\text{Newton}} = 100$

[shapleyvalue.com]

 \Rightarrow Can we formalize this for more complex situations?

 $\phi_j(val) = \sum_{S \subseteq \{1, \dots, p\} \setminus \{j\}} \frac{|S|! (p - |S| - 1)!}{p!} (val(S \cup \{j\}) - val(S))$

NE

[Shapley, `51]

NE

[Shapley, `51]

NE

[Shapley, `51]

Defining properties:

Defining properties:

• Efficiency: $\sum_{j=1}^{p} \phi_j = val(\text{all players})$

Defining properties:

- Efficiency: $\sum_{j=1}^{p} \phi_j = val(\text{all players})$
- Symmetry: $val(S \cup \{j\}) = val(S \cup \{k\})$ for all $S \subseteq \{1, ..., p\} \setminus \{j, k\} \Rightarrow \phi_j = \phi_k$

$\phi_{j}(val) = \sum_{S \subseteq \{1, \dots, p\} \setminus \{j\}} \frac{|S|! (p - |S| - 1)!}{p!} (val(S \cup \{j\}) - val(S))$ Sum over all sets vithout player j Combinatorial factor Value of player j for given set

Defining properties:

• Efficiency: $\sum_{j=1}^{p} \phi_j = val(\text{all players})$

Shapley values

- Symmetry: $val(S \cup \{j\}) = val(S \cup \{k\})$ for all $S \subseteq \{1, ..., p\} \setminus \{j, k\} \Rightarrow \phi_j = \phi_k$
- Additivity: Shapley values for two games add up $\phi_j = \phi_j^{(1)} + \phi_j^{(2)}$

[Shapley, `51

$\phi_{j}(val) = \sum_{S \subseteq \{1, \dots, p\} \setminus \{j\}} \frac{|S|! (p - |S| - 1)!}{p!} (val(S \cup \{j\}) - val(S))$ Sum over all sets without player j Combinatorial factor Value of player j for given set

Defining properties:

• Efficiency: $\sum_{j=1}^{p} \phi_j = val(\text{all players})$

Shapley values

- Symmetry: $val(S \cup \{j\}) = val(S \cup \{k\})$ for all $S \subseteq \{1, ..., p\} \setminus \{j, k\} \Rightarrow \phi_j = \phi_k$
- Additivity: Shapley values for two games add up $\phi_j = \phi_j^{(1)} + \phi_j^{(2)}$
- Dummy player: $val(S \cup \{j\}) = val(S)$ for all $S \subseteq \{1, ..., p\} \setminus \{j\} \Rightarrow \phi_j = 0$

[Shapley, `51

Spelling out the analogy:

Spelling out the analogy:

• players ↔ physics observables

Spelling out the analogy:

- players ↔ physics observables
- value of player set ↔ separation achieved by classifier

Spelling out the analogy:

- players ↔ physics observables
- value of player set ↔ separation achieved by classifier

How do we compute the classifier score if certain observables are absent?

Spelling out the analogy:

- players ↔ physics observables
- value of player set ↔ separation achieved by classifier

How do we compute the classifier score if certain observables are absent?

• Retraining the classifier for every set is too expensive.

Spelling out the analogy:

- players ↔ physics observables
- value of player set ↔ separation achieved by classifier

How do we compute the classifier score if certain observables are absent?

- Retraining the classifier for every set is too expensive.
- Use SHAP (SHapley Additive exPlanations) method instead: [Lundberg et al., 2020, github.com/shap]
 - calculate "local" event by event Shapley values,
 - "feature value is absent" ↔ "feature value is replaced by random feature value from data",
 - sample dataset with larger weights for observables sets with almost no or almost all observables.

Spelling out the analogy:

- players ↔ physics observables
- value of player set ↔ separation achieved by classifier

How do we compute the classifier score if certain observables are absent?

- Retraining the classifier for every set is too expensive.
- Use SHAP (SHapley Additive exPlanations) method instead: [Lundberg et al., 2020, github.com/shap]
 - calculate "local" event by event Shapley values,
 - "feature value is absent" ↔ "feature value is replaced by random feature value from data",
 - sample dataset with larger weights for observables sets with almost no or almost all observables.

Importance of observable $(\sim \sum_{\text{events}} |\phi_j|)$ pos. interf. vs. neg. interf. (ggF2j-like) High $\Delta \phi_{jj}$ p_T^H $\Delta \eta_{jj}$ $p_T^{j_1}$ η^{j_2} η^{j_1} ϕ^H ϕ^{j_1} b^{j_2} Other Low -20 2 6 8 -6-44 -8SHAP value (impact on model output)

Feature value

Importance of observable $(\sim \sum_{\text{events}} |\phi_j|)$ pos. interf. vs. neg. interf. (ggF2j-like) High $\Delta \phi_{jj}$ p_T^H $\Delta \eta_{jj}$ $p_T^{j_1}$ Feature value η^{j_2} η^{j_1} ϕ^H ϕ^{j_1} ϕ^{j_2} Other Low -20 2 6 8 -6-44 -8SHAP value (impact on model output) Shapley value for each event (shown as dot)

Importance of observable $(\sim \sum_{\text{events}} |\phi_j|)$ Value of observable pos. interf. vs. neg. interf. (ggF2j-like) High $\Delta \phi_{jj}$ p_T^H $\Delta \eta_{jj}$ $p_T^{j_1}$ Feature value η^{j_2} η^{j_1} ϕ^H ϕ^{j_1} ϕ^{j_2} Other Low -22 -60 6 8 -8 -44 SHAP value (impact on model output) Shapley value for each event (shown as dot)

For the interference classifiers, as expected, the CP-odd $\Delta \phi_{jj}$ is most important.

Results for squared term classifiers

- p_T of jets/Higgs most important, $\Delta \phi_{jj}$ plays only subleading role.
- disadvantage: interplay between observables hard to judge.

[work in progress, HB, Menen, Fuchs, Plehn]

[work in progress, HB, Menen, Fuchs, Plehn]

Can we find an explicit analytic expression showing the interplay between the different features?

[work in progress, HB, Menen, Fuchs, Plehn]

Can we find an explicit analytic expression showing the interplay between the different features?

→ Use symbolic regression! [Schmidt&Lipson `09, Udrescu&Tegmark `19, Cranmer et al. `19, `20, `23]

[work in progress, HB, Menen, Fuchs, Plehn]

Can we find an explicit analytic expression showing the interplay between the different features?

→ Use symbolic regression! [Schmidt&Lipson `09, Udrescu&Tegmark `19, Cranmer et al. `19, `20, `23]

- Symbolic regression aims at fitting data using analytic equations.
- Analytic equations are implemented in terms of a tree-like structure.
- Uses multi-population evolutionary algorithm for optimization.
- Interplay between goodness-of-fit and complexity of equation.

[work in progress, HB, Menen, Fuchs, Plehn]

Can we find an explicit analytic expression showing the interplay between the different features?

→ Use symbolic regression! [Schmidt&Lipson `09, Udrescu&Tegmark `19, Cranmer et al. `19, `20, `23]

- Symbolic regression aims at fitting data using analytic equations.
- Analytic equations are implemented in terms of a tree-like structure.
- Uses multi-population evolutionary algorithm for optimization.
- Interplay between goodness-of-fit and complexity of equation.

Preliminary example: background discrimination VBF vs. ggF2j

[work in progress, HB, Menen, Fuchs, Plehn]

Can we find an explicit analytic expression showing the interplay between the different features?

→ Use symbolic regression! [Schmidt&Lipson `09, Udrescu&Tegmark `19, Cranmer et al. `19, `20, `23]

- Symbolic regression aims at fitting data using analytic equations.
- Analytic equations are implemented in terms of a tree-like structure.
- Uses multi-population evolutionary algorithm for optimization.
- Interplay between goodness-of-fit and complexity of equation.

Preliminary example: background discrimination VBF vs. ggF2j

 \Rightarrow symbolic regression $\rightarrow P(ggF2j) \sim \text{Sigmoid}(p_{T,j_1}\log(|\Delta \eta_{jj}|))$

Summary:

- ggF2j production is a key process to probe the Higgs CP character nature.
- Existing analysis focus on VBF-like phase-space region and/or $\Delta \phi_{ii}$.
- Including full phase space information \rightarrow significantly improved limits.
- Shapley values offer a mathematically well-defined way to understand feature importance.
- Shapley analysis shows that the traditional $\Delta \phi_{jj}$ observables is very sensitive to the interference term but not for distinguishing the squared terms.

Summary:

- ggF2j production is a key process to probe the Higgs CP character nature.
- Existing analysis focus on VBF-like phase-space region and/or $\Delta \phi_{ii}$.
- Including full phase space information \rightarrow significantly improved limits.
- Shapley values offer a mathematically well-defined way to understand feature importance.
- Shapley analysis shows that the traditional $\Delta \phi_{jj}$ observables is very sensitive to the interference term but not for distinguishing the squared terms.

Outlook:

- Further optimize analysis using simulation-based inference,
- find analytic form of optimal observables using symbolic regression.

Summary:

- ggF2j production is a key process to probe the Higgs CP character nature.
- Existing analysis focus on VBF-like phase-space region and/or $\Delta \phi_{ii}$.
- Including full phase space information \rightarrow significantly improved limits.
- Shapley values offer a mathematically well-defined way to understand feature importance.
- Shapley analysis shows that the traditional $\Delta \phi_{jj}$ observables is very sensitive to the interference term but not for distinguishing the squared terms.

Outlook:

- Further optimize analysis using simulation-based inference,
- find analytic form of optimal observables using symbolic regression.

Thanks for your attention!

Appendix

Background processes

Classifier scores

16

VBF signal region

VBF signal region

 $\rightarrow \Delta \phi_{ii}$ limit only slightly worse than limit based on classifiers.

Importance of observable

 $(\sim \sum_{\text{events}} |\phi_j|)$

Importance of observable

 $(\sim \sum_{\text{events}} |\phi_j|)$

Importance of observable

Importance of observable

Importance of observable

Shapley value for each event (shown as dot)

 \Rightarrow For the interference classifiers, as expected, the CP-odd $\Delta \phi_{ii}$ is most important.

Results for squared term classifiers

 $\Rightarrow p_T$ of jets/Higgs most important, $\Delta \phi_{jj}$ plays only subleading role. Disadvantage: interplay between observables hard to judge.