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The rise of machine learning

Predicting the Future of AI with AI: High-quality link prediction in an exponentially growing 
knowledge network, Krenn et al, arXiv:2210.00881 [cs.AI]
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Figure 1. Number of papers published per months
in the arXiv categories of AI grow exponentially.
The doubling rate of papers per months is roughly 23
months, which might lead to problems for publishing in
these fields, at some point. The categories are cs.AI,
cs.LG, cs.NE, and stat.ML.

use hand-crafted network-theoretical features, and
those that automatically learn features. We found
that models using carefully hand-crafted features
outperform methods that attempt to learn features
autonomously. This (somewhat surprising) finding
indicates a great potential for improvements of mod-
els free of human priors.

Our manuscript has several purposes. First, we
introduce a new meaningful benchmark for AI on
real-world graphs. Second, we provide nearly 10 di-
verse methods that solve this benchmark. Third, we
explain how solving this task could become an es-
sential ingredient for the big picture goal of having
a tool that could suggest meaningful research direc-
tions for scientists in AI or in other disciplines.1

The manuscript is structured in the following way.
We first introduce more background into semantic
networks and how they can help to suggest new
ideas. Then we explain how we generate the dataset
and some of its network-theoretical properties. Then
we briefly explain the 10 methods that we have inves-
tigated to solve the task. We conclude with a num-
ber of important open questions that could bring us
further toward the goal of AI-based suggestions for
research directions.

II. SEMANTIC NETWORKS

The goal here is to extract knowledge from the sci-
entific literature that can subsequently be processed
by computer algorithms. At first glance, a natural

1
github.com/artificial-scientist-lab/FutureOfAIviaAI

first step would be to use the features of a large lan-
guage model (such as GPT3 [4], Gopher [5], Mega-
Tron [6] or PaLM [7]) from the text of each article
to extract concepts automatically. However, those
methods still struggle in reasoning capabilities [8, 9],
thus it is not yet directly clear how these models can
be used for identifying and suggesting new ideas and
concept combinations.

An alternative approach has been pioneered by
Rzhetsky and colleagues [10]. They have shown
how knowledge networks (or semantic networks) in
biochemistry can be created from co-occurring con-
cepts in scientific papers. The nodes in their net-
work correspond to scientific concepts—concretely,
the names of individual biomolecules. The nodes
are linked when a paper mentions both of the corre-
sponding biomolecules in its title or abstract. Taking
millions of papers into account leads to an evolv-
ing semantic network that captures the history of
the field. Using supercomputer simulations, non-
trivial statements about the collective behaviour of
scientists can be extracted, which allows for the sug-
gestions of alternative and more e�cient research
behaviour [11]. Of course, by creating a semantic
network from concept co-occurrences, only a tiny
amount of knowledge is extracted from each pa-
per. However, if this process is repeated for a large
dataset of papers, the resulting network captures
nontrivial and actionable content.

The idea to build up a semantic network of a sci-
entific discipline was then applied and extended in
the field of quantum physics [12]. There, the au-
thors (including one of us) built a network of more
than 6,000 quantum physics concepts. The authors
formulate the task of predicting new research trends
and connections for the first time as an ML task.
The task was to identify which concept pairs, which
have never been discussed jointly in the scientific lit-
erature, have a high probability to be investigated in
the near future. This prediction task was phrased as
one component for personalized suggestions of new
research ideas.

A. Link Prediction in Semantic Networks

Here we formulate the predictions of future re-
search topics as a link prediction task in an expo-
nentially growing semantic network in the field of
AI. Two nodes that do not share an edge have not
been mentioned together in the title or abstract of an
existing scientific paper. Here, the goal is to predict
which unconnected nodes will be connected in the
future—that is, determine which scientific concepts
that have not been researched yet will be jointly re-
searched in the future.

https://arxiv.org/abs/2210.00881
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• The Standard Model has been confirmed with high accuracy up to several TeV. 


• A standard model-like Higgs boson has been discovered.


• No conclusive sign of physics beyond the Standard Model has been found.  

→ New physics is heavy, with new particles at a large mass scale Λ ≫ ELHC


→ New physics is subtle (small cross sections, novel signatures,…)

Particle physics in 2023
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To explore physics beyond the Standard Model, we need 

• precision and 

• model-independence. 
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What drives scientific progress? 

Paradigm shifts are triggered by 
new ideas and concepts.

Thomas Kuhn
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What drives scientific progress? 

Paradigm shifts are triggered by 
new ideas and concepts.

Thomas Kuhn

Peter Galison

Progress in science is driven 
by new technologies and tools.



9

What drives scientific progress? 

“New directions in science are 
launched by new tools much more 
often than by new concepts. The 
effect of a concept-driven revolution is 
to explain old things in new ways. The 
effect of a tool-driven revolution is to 
discover new things that have to be 
explained.” 
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The scientific method

Model-driven 

fit 
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• What type of machine learning architectures are best suited for finding 
new and subtle phenomena in large amounts of complex data?


• How can data-driven approaches be used to identify novel physics 
principles (theories, models)? 

Machine learning in physics 
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ARTICLE

Unmasking Clever Hans predictors and assessing
what machines really learn
Sebastian Lapuschkin1, Stephan Wäldchen2, Alexander Binder3, Grégoire Montavon2, Wojciech Samek1 &
Klaus-Robert Müller2,4,5

Current learning machines have successfully solved hard application problems, reaching high

accuracy and displaying seemingly intelligent behavior. Here we apply recent techniques for

explaining decisions of state-of-the-art learning machines and analyze various tasks from

computer vision and arcade games. This showcases a spectrum of problem-solving behaviors

ranging from naive and short-sighted, to well-informed and strategic. We observe that

standard performance evaluation metrics can be oblivious to distinguishing these diverse

problem solving behaviors. Furthermore, we propose our semi-automated Spectral Relevance

Analysis that provides a practically effective way of characterizing and validating the behavior

of nonlinear learning machines. This helps to assess whether a learned model indeed delivers

reliably for the problem that it was conceived for. Furthermore, our work intends to add a

voice of caution to the ongoing excitement about machine intelligence and pledges to

evaluate and judge some of these recent successes in a more nuanced manner.

https://doi.org/10.1038/s41467-019-08987-4 OPEN

1 Department of Video Coding & Analytics, Fraunhofer Heinrich Hertz Institute, Einsteinufer 37, 10587 Berlin, Germany. 2 Department of Electrical Engineering
and Computer Science, Technische Universität Berlin, Marchstr. 23, 10587 Berlin, Germany. 3 ISTD Pillar, Singapore University of Technology and Design, 8
Somapah Rd, Singapore 487372, Singapore. 4 Department of Brain and Cognitive Engineering, Korea University, Anam-dong, Seongbuk-ku Seoul 136-713,
Republic of Korea. 5Max Planck Institut für Informatik, Campus E1 4, Stuhlsatzenhausweg, 66123 Saarbrücken, Germany. Correspondence and requests for
materials should be addressed to W.S. (email: wojciech.samek@hhi.fraunhofer.de) or to K.-R.Mül. (email: klaus-robert.mueller@tu-berlin.de)
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Figure 1: Schematic illustration of a dark shower from the decay of a Z
0 produced in associ-

ation with a gluon. Figure taken from ref. [10].

that in this set-up all dark pions are stable on cosmological scales and therefore constitute a
potential DM candidate.

The interactions of the dark sector with the SM are mediated by the massive U(1)0 gauge
boson Z

0 with vector couplings to both dark and SM quarks, denoted ed and gq, respectively.
Couplings to leptons, as well as mixing between the Z 0 and SM gauge bosons, are assumed to
be suppressed. In analogy to �-⇢0 mixing in the SM, the Z 0 mixes with the ⇢0d, which induces
small couplings between the ⇢0d and SM quarks and renders the ⇢0d unstable. For m⇢d < 2m⇡d

the ⇢
±
d mesons can only decay into three-body final states via an o↵-shell Z 0, which makes

them stable with respect to collider phenomenology. We assume that each mesonic degree of
freedom is produced with the same probability during the dark hadronisation process while
the production of dark baryons in the shower is negligible, and that the ⇢

0
d mesons decay

promptly.2 The invisible energy fraction in a dark shower is then given by rinv = 0.75, which
we will use as the benchmark value in the following. Furthermore, the relevant mass for
characterising the dark shower is the mass of the dark vector mesons: mmeson = m⇢d .

We note in passing that the assumption m⇢d < 2m⇡d can be motivated from cosmology,
because the relic density of dark pions is determined by the rate of the annihilation process
⇡d⇡d ! ⇢d⇢d, which becomes Boltzmann suppressed at low temperatures. Provided m⇡d

and m⇢d are su�ciently close, the observed relic abundance can be reproduced even for weak
portal interactions and/or heavy Z

0 bosons, which makes it possible to satisfy constraints
from direct detection experiments. For example, for m⇡d = 4GeV and gd = 1 one requires
m⇢d ⇡ 5 GeV, while the Z

0 mediator can be in the TeV range [10].
LHC phenomenology for this model is then dominated by the on-shell production of the Z 0

(possibly in association with SM particles) and its subsequent decays into either SM or dark
quarks. While the former case leads to di-jet resonances that can be easily reconstructed,

2We note that for small Z0 couplings the ⇢0d can be long-lived and lead to displaced vertices at the LHC. The
corresponding production cross sections can nevertheless be su�ciently large that thousands of such events have
already gone unnoticed at ATLAS and CMS. Ongoing detector upgrades as well as new analysis strategies make
these signatures a promising target for future LHC runs. Exploring the sensitivity of searches for displaced
vertices for dark sector models is subject of separate work in progress.

4

Bernreuther, Kahlhoefer, MK, Tunney, Strongly interacting dark sectors in the early Universe and at the 
LHC through a simplified portal, JHEP 01 (2020) 162
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Dynamic Graph CNN for Learning on Point Clouds

YUE WANG and YONGBIN SUN, Massachuse!s Institute of Technology
ZIWEI LIU, UC Berkeley/ICSI
SANJAY E. SARMA, Massachuse!s Institute of Technology
MICHAEL M. BRONSTEIN, Imperial College London/USI Lugano
JUSTIN M. SOLOMON, Massachuse!s Institute of Technology

Fig. 1. Point cloud segmentation using the proposed neural network. Bo!om: schematic neural network architecture. Top: Structure of the feature spaces
produced at di"erent layers of the network, visualized as the distance from the red point to all the rest of the points (shown le#-to-right are the input
and layers 1–3; rightmost figure shows the resulting segmentation). Observe how the feature space structure in deeper layers captures semantically similar
structures such as wings, fuselage, or turbines, despite a large distance between them in the original input space.

Point clouds provide a !exible geometric representation suitable for count-
less applications in computer graphics; they also comprise the raw output

The authors acknowledge the generous support of Army Research O"ce Grant No.
W911NF-12-R-0011, of Air Force O"ce of Scienti#c Research Award No. FA9550-19-
1-0319, of National Science Foundation Grant No. IIS-1838071, of ERC Consolida-
tor Grant No. 724228 (LEMAN), from an Amazon Research Award, from the MIT-
IBM Watson AI Laboratory, from the Toyota-CSAIL Joint Research Center, from the
Skoltech-MIT Next Generation Program, and from Google Faculty Research Award.
Any opinions, #ndings, and conclusions or recommendations expressed in this ma-
terial are those of the authors and do not necessarily re!ect the views of these
organizations.
Authors’ addresses: Y. Wang, Y. Sun, S. E. Sarma, and J. M. Solomon, Massachusetts In-
stitute of Technology; emails: yuewang@csail.mit.edu, {yb_sun, sesarma, jsolomon}@
mit.edu; Z. Liu, The Chinese University of Hong Kong; email: zwliu.hust@gmail.com;
M. M. Bronstein, Imperial College London / USI Lugano; email: m.bronstein@
imperial.ac.uk.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro#t or commercial advantage and that copies bear this notice and the full cita-
tion on the #rst page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior speci#c
permission and/or a fee. Request permissions from permissions@acm.org.
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2019/10-ART146 $15.00
https://doi.org/10.1145/3326362

of most 3D data acquisition devices. While hand-designed features
on point clouds have long been proposed in graphics and vision, however,
the recent overwhelming success of convolutional neural networks
(CNNs) for image analysis suggests the value of adapting insight from
CNN to the point cloud world. Point clouds inherently lack topological
information, so designing a model to recover topology can enrich the
representation power of point clouds. To this end, we propose a new
neural network module dubbed EdgeConv suitable for CNN-based high-
level tasks on point clouds, including classi#cation and segmentation.
EdgeConv acts on graphs dynamically computed in each layer of the
network. It is di$erentiable and can be plugged into existing architectures.
Compared to existing modules operating in extrinsic space or treating
each point independently, EdgeConv has several appealing properties: It
incorporates local neighborhood information; it can be stacked applied to
learn global shape properties; and in multi-layer systems a"nity in feature
space captures semantic characteristics over potentially long distances
in the original embedding. We show the performance of our model on
standard benchmarks, including ModelNet40, ShapeNetPart, and S3DIS.

CCS Concepts: • Computing methodologies → Neural networks;
Point-based models; Shape analysis;

Additional Key Words and Phrases: Point cloud, classi#cation, segmenta-
tion

ACM Transactions on Graphics, Vol. 38, No. 5, Article 146. Publication date: October 2019.

See also “ParticleNet: Jet Tagging via Particle Clouds”, Qu, Gouskos, PRD 101, 056019 (2020)
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SciPost Phys. 10, 046 (2021)

Figure 3: Comparison of the ROC curves in background rejection 1/✏B and signal
efficiency ✏S for semi-visible jet identification (left panel) and for boosted top jet
identification (right panel) as obtained by the CNN, LoLa and DGCNN architectures,
respectively. The error bands correspond to the spread obtained from five indepen-
dent initialisations of the network.

CNN.

3.2 Model dependence of semi-visible jet classification

In this section we explore the model dependence of the semi-visible jet classification with the
DGCNN, i.e. we study how the performance changes as we vary the parameters of the strongly
interacting dark sector. This not only sheds light on how much a specific network generalises
to other dark shower scenarios, but it also provides some indication of which signal features
the network may learn.

As a crucial parameter, the invisible fraction rinv represents the average percentage of miss-
ing energy and characterises the composition of the dark showers. The model described in
section 2 predicts rinv = 0.75. However, for the purpose of this section we treat rinv as a phe-
nomenological parameter which can assume any value between zero and one. To this end,
we decay all the dark mesons in PYTHIA with branching ratio rinv into invisible particles and
branching ratio 1 � rinv into Standard Model quarks, respectively. Training and testing the
DGCNN classifier architecture on dark shower samples with different values of rinv we obtain
the ROC curves shown in the left panel of figure 4. We find that dark showers with larger rinv
are in general easier to distinguish from QCD. For 0.1 < ✏S < 0.3, which is the most inter-
esting range for improving an analysis with the jet tagger, the background suppression varies
by roughly an order of magnitude. Note that for very small rinv the classification performance
increases again as almost all the energy from the Z 0 resonance ends up in visible jets leading
to a harder jet pT distribution which is more different from QCD.

As another dark sector parameter we vary the dark meson mass mmeson = m⇡d
= m⇢d

,
together with the dark confinement scale ⇤d = mmeson. Note that the small mass splitting
between the ⇡d and ⇢d motivated by cosmology has no impact on the LHC phenomenology.
Larger values of ⇤d lead to a stronger running of the dark sector coupling ↵d at the energy
scale of the semi-visible jet. Among other effects, the running of ↵d changes jet substructure
observables such as the distribution of the two-point energy correlation function discussed in
ref. [11]. Moreover, as the jet constituents arise from dark meson decays they encode the dark
meson mass scale mmeson. As shown in the right panel of figure 4, changing the confinement
and meson mass scale between 5 GeV and 20 GeV has no significant effect on the classification
performance.

7

“For a cloud of particles representing a 
jet, it appears natural that the correlation 
of particles which are not close in the 
initial features, can be important for the 
classification of the jet. The dynamic 
update enables the network to link those 
initially distant particles.” 

Bernreuther, Finke, Kahlhoefer, MK, Mück, arXiv:2006.08639 [hep-ph]
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• What type of machine learning architectures are best suited for finding 
new and subtle phenomena in large amounts of complex data?


• How can data-driven approaches be used to identify novel physics 
principles (theories, models)? 

Machine learning in physics 



20

Connections: AI for physics and physics for AI 
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xi(t) = �xi(t) +
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Wij�(xj(t)) + ⇠i(t)

Sompolinsky, Crisanti, Sommers (1988)

Field theory for neural networks
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p[x(t)] =

Z
Dx̃ eS(x,x̃)

with an action of the form 

Probability for the time evaluation x(t): 

Sompolinsky, Crisanti, Sommers (1988)

Martin, Siggia, Rose (1973), De Dominicis (1976), Janssen (1976) 

Field theory for neural networks
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Lindner, Dahmen, MK, Helias, arXiv:2307.16695 [cond-mat.dis-nn]
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• What type of machine learning architectures are best suited for finding 
new and subtle phenomena in large amounts of complex data?


• How can data-driven approaches be used to identify novel physics 
principles (theories, models)? 

Machine learning in physics 
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Artificial intelligence (AI) has been called 
a revolutionary tool for science1,2 and 
it has been predicted to play a creative 
role in research in the future3. In the 
context of theoretical chemistry, for 
example, it is believed that AI can help 
solve problems “in a way such that the 
human cannot distinguish between this 
[AI] and communicating with a human 
expert”4. However, this excitement has not 
been shared by all scientists. Some have 
questioned whether advanced computational 
approaches can go beyond ‘numerics’5–9 and 
contribute on a fundamental level to gaining 
of new scientific understanding10–12.

In this Perspective, we discuss how 
advanced computational systems, and AI 
in particular, can contribute to scientific 
understanding: we overview what is 
currently possible and what might lie ahead. 
In addition to the review of the literature, 
we surveyed dozens of scientists working at 
the interface of biology, chemistry or physics 
on the one hand, and AI and advanced 

understood and generalized by human 
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related to the idea of agent of understanding, 

computational methods on the other. These 
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fundamental dimensions for AI contributing 
to new scientific understanding (FIG. 1). 
(We encapsulate all advanced artificial 
computational systems under the term AI, 
independent of their working principles. In 
this way, we are focusing on the operational 
objective rather than the methodology.) 
First, AI can act as an instrument revealing 
properties of a physical system that are 
otherwise difficult or even impossible to 
probe. Humans then lift these insights 
to scientific understanding. Second, AI 
can act as a source of inspiration for new 
concepts and ideas that are subsequently 
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Figure 1. How can Androids contribute to new scientific understanding? In addition to scientific literature,
we take inspiration from the philosophy of science and from dozens of stories provided by active computational natural
scientists. Thereby we identify three fundamental dimensions of computer-assisted scientific understanding. From there,
we look into the future and develop a roadmap on how to develop Androids that can contribute to understanding – the
essential aim of science.

cal theory of Scientific Understanding recently devel-
oped by Dennis Dieks and Henk de Regt [12, 13], who
was awarded the Lakatos Award in 2019 for the de-
velopment of this theory. We thereby introduce three
fundamental dimensions for scientific androids1 con-
tribution towards new scientific understanding:

I) Androids acting as a microscope in the re-
sponses, i.e., akin to an instrument revealing
properties of a physical system that are other-
wise di�cult or even impossible to probe. Hu-
mans then lift these insights to scientific under-
standing.

II) Androids acting as muses, i.e., sources of inspi-
ration for new concepts and ideas that are sub-
sequently understood and generalized by human
scientists.

1
We encapsulate all advanced artificial computational systems

under androids, independent of their working principles. In

this way, we are focusing on the operational objective rather

than the methodology.

III) Lastly, in an ultimate dimension of android-
assisted scientific understanding, computers are
the agents of understanding. While we have not
found any evidence of computers acting as true
agents of understanding in science yet, we out-
line important characteristics of such an artifi-
cial system of the future and potential ways to
achieve it.

In the first two dimensions, the android enables hu-
mans to gain new scientific understanding while in the
last one the machine gains understanding itself. These
classes enable us to layout a vibrant and mostly unex-
plored field of research, which will hopefully manifest
itself as a guiding star for future developments of ar-
tificial intelligence in the natural sciences.

The goal of this perspective is to put Scientific
Understanding back to the limelight – where we are
convinced it belongs. We hope to inspire physicists,
chemists and biologists and A.I. researchers to go be-
yond the status quo, focus on these central aims of
science, and revolutionize computer-assisted scientific
understanding. In that way, we believe that androids
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Figure 1. Learning physical representations. (a) Human learning. A physicist compresses experimental observations
into a simple representation (encoding). When later asked any question about the physical setting, the physicist should be able
to produce a correct answer using only the representation and not the original data. We call the process of producing the answer
from the representation decoding. For example, the observations may be the first few seconds of the trajectory of a particle
moving with constant speed; the representation could be the parameters “speed v” and “initial position x0” and the question
could be “where will the particle be at a later time t

0?” (b) Neural network structure for SciNet. Observations are
encoded as real parameters fed to an encoder (a feed-forward neural network, see Appendix D), which compresses the data into
a representation (latent representation). The question is also encoded in a number of real parameters, which, together with the
representation, are fed to the decoder network to produce an answer. (The number of neurons depicted is not representative.)

cists’ interactions with the physical world take the
form of experimental observations (e.g. a time series
(ti, x(ti))i2{1,...,N} describing the motion of a particle at
constant speed). The models physicists build do not deal
with these observations directly, but rather with a rep-
resentation of the underlying physical state of the ob-
served system (e.g. the two parameters initial position

and speed, (x0, v)). Which parameters are used is an im-
portant part of the model, and we will give suggestions
about what makes a good representation below. Finally,
the model specifies how to make predictions (i.e., answer
questions) based on the knowledge of the physical state
of the system (e.g. “where is the particle at time t0?”).
More formally, this physical modelling process can be re-
garded as an “encoder” E : O ! R mapping the set
of possible observations O to representations R, followed
by a “decoder” D : R ⇥Q ! A mapping the sets of all
possible representations R and questions Q to answers
A.

Network structure. This modelling process can be
translated directly into a neural network architecture,
which we refer to as SciNet in the following (Figure 1b).
The encoder and decoder are both implemented as feed-
forward neural networks. The resulting architecture, ex-
cept for the question input, resembles an autoencoder
in representation learning [30, 31], and more specifically
the architecture in [33]. During the training, we provide
triples of the form (o, q, acorr(o, q)) to the network, where
acorr(o, q) 2 A is the correct reply to question q 2 Q

given the observation o 2 O. The learned parameteriza-
tion is typically called latent representation [30, 31]. To
feed the questions into the neural network, they are en-
coded into a sequence of real parameters. Thereby, the
actual representation of a single question is irrelevant as
long as it allows the network to distinguish questions that
require di↵erent answers.

It is crucial that the encoder is completely free to

choose a latent representation itself, instead of us im-
posing a specific one. Because neural networks with at
least one hidden layer composed of su�ciently many neu-
rons can approximate any continuous function arbitrarily
well [34], the fact that the functions E and D are imple-
mented as neural networks does not significantly restrict
their generality. However, unlike in an autoencoder, the
latent representation need not describe the observations
completely; instead, it only needs to contain the infor-
mation necessary to answer the questions posed.

This architecture allows us to extract knowledge from
the neural network: all of the useful information is stored
in the representation, and the size of this representation
is small compared to the total number of degrees of free-
dom of the network. This allows us to interpret the learnt
representation. Specifically, we can compare SciNet’s la-
tent representation to a hypothesized parameterization
to obtain a simple map from one to the other. If we do
not even have any hypotheses about the system at hand,
we may still gain some insights solely from the number
of required parameters or from studying the change in
the representation when manually changing the input,
and the change in output when manually changing the
representation (as in e.g. [32]).

Desired properties for a representation. For
SciNet to produce physically useful representations, we
need to formalize what makes a good parameterization
of a physical system, i.e., a good latent representation.
We stress that this is not a property of a physical system,
but a choice we have to make. We will give two possible
choices below.

Generally, the latent representation should only store
the minimal amount of information that is su�cient to
correctly answer all questions in Q. For minimal suf-

ficient uncorrelated representations, we additionally re-
quire that the latent neurons be statistically independent
from each other for an input sampled at random from

Agent of understanding?
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from the representation decoding. For example, the observations may be the first few seconds of the trajectory of a particle
moving with constant speed; the representation could be the parameters “speed v” and “initial position x0” and the question
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0?” (b) Neural network structure for SciNet. Observations are
encoded as real parameters fed to an encoder (a feed-forward neural network, see Appendix D), which compresses the data into
a representation (latent representation). The question is also encoded in a number of real parameters, which, together with the
representation, are fed to the decoder network to produce an answer. (The number of neurons depicted is not representative.)

cists’ interactions with the physical world take the
form of experimental observations (e.g. a time series
(ti, x(ti))i2{1,...,N} describing the motion of a particle at
constant speed). The models physicists build do not deal
with these observations directly, but rather with a rep-
resentation of the underlying physical state of the ob-
served system (e.g. the two parameters initial position

and speed, (x0, v)). Which parameters are used is an im-
portant part of the model, and we will give suggestions
about what makes a good representation below. Finally,
the model specifies how to make predictions (i.e., answer
questions) based on the knowledge of the physical state
of the system (e.g. “where is the particle at time t0?”).
More formally, this physical modelling process can be re-
garded as an “encoder” E : O ! R mapping the set
of possible observations O to representations R, followed
by a “decoder” D : R ⇥Q ! A mapping the sets of all
possible representations R and questions Q to answers
A.

Network structure. This modelling process can be
translated directly into a neural network architecture,
which we refer to as SciNet in the following (Figure 1b).
The encoder and decoder are both implemented as feed-
forward neural networks. The resulting architecture, ex-
cept for the question input, resembles an autoencoder
in representation learning [30, 31], and more specifically
the architecture in [33]. During the training, we provide
triples of the form (o, q, acorr(o, q)) to the network, where
acorr(o, q) 2 A is the correct reply to question q 2 Q

given the observation o 2 O. The learned parameteriza-
tion is typically called latent representation [30, 31]. To
feed the questions into the neural network, they are en-
coded into a sequence of real parameters. Thereby, the
actual representation of a single question is irrelevant as
long as it allows the network to distinguish questions that
require di↵erent answers.

It is crucial that the encoder is completely free to

choose a latent representation itself, instead of us im-
posing a specific one. Because neural networks with at
least one hidden layer composed of su�ciently many neu-
rons can approximate any continuous function arbitrarily
well [34], the fact that the functions E and D are imple-
mented as neural networks does not significantly restrict
their generality. However, unlike in an autoencoder, the
latent representation need not describe the observations
completely; instead, it only needs to contain the infor-
mation necessary to answer the questions posed.

This architecture allows us to extract knowledge from
the neural network: all of the useful information is stored
in the representation, and the size of this representation
is small compared to the total number of degrees of free-
dom of the network. This allows us to interpret the learnt
representation. Specifically, we can compare SciNet’s la-
tent representation to a hypothesized parameterization
to obtain a simple map from one to the other. If we do
not even have any hypotheses about the system at hand,
we may still gain some insights solely from the number
of required parameters or from studying the change in
the representation when manually changing the input,
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from the representation decoding. For example, the observations may be the first few seconds of the trajectory of a particle
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encoded as real parameters fed to an encoder (a feed-forward neural network, see Appendix D), which compresses the data into
a representation (latent representation). The question is also encoded in a number of real parameters, which, together with the
representation, are fed to the decoder network to produce an answer. (The number of neurons depicted is not representative.)

cists’ interactions with the physical world take the
form of experimental observations (e.g. a time series
(ti, x(ti))i2{1,...,N} describing the motion of a particle at
constant speed). The models physicists build do not deal
with these observations directly, but rather with a rep-
resentation of the underlying physical state of the ob-
served system (e.g. the two parameters initial position

and speed, (x0, v)). Which parameters are used is an im-
portant part of the model, and we will give suggestions
about what makes a good representation below. Finally,
the model specifies how to make predictions (i.e., answer
questions) based on the knowledge of the physical state
of the system (e.g. “where is the particle at time t0?”).
More formally, this physical modelling process can be re-
garded as an “encoder” E : O ! R mapping the set
of possible observations O to representations R, followed
by a “decoder” D : R ⇥Q ! A mapping the sets of all
possible representations R and questions Q to answers
A.

Network structure. This modelling process can be
translated directly into a neural network architecture,
which we refer to as SciNet in the following (Figure 1b).
The encoder and decoder are both implemented as feed-
forward neural networks. The resulting architecture, ex-
cept for the question input, resembles an autoencoder
in representation learning [30, 31], and more specifically
the architecture in [33]. During the training, we provide
triples of the form (o, q, acorr(o, q)) to the network, where
acorr(o, q) 2 A is the correct reply to question q 2 Q

given the observation o 2 O. The learned parameteriza-
tion is typically called latent representation [30, 31]. To
feed the questions into the neural network, they are en-
coded into a sequence of real parameters. Thereby, the
actual representation of a single question is irrelevant as
long as it allows the network to distinguish questions that
require di↵erent answers.

It is crucial that the encoder is completely free to

choose a latent representation itself, instead of us im-
posing a specific one. Because neural networks with at
least one hidden layer composed of su�ciently many neu-
rons can approximate any continuous function arbitrarily
well [34], the fact that the functions E and D are imple-
mented as neural networks does not significantly restrict
their generality. However, unlike in an autoencoder, the
latent representation need not describe the observations
completely; instead, it only needs to contain the infor-
mation necessary to answer the questions posed.

This architecture allows us to extract knowledge from
the neural network: all of the useful information is stored
in the representation, and the size of this representation
is small compared to the total number of degrees of free-
dom of the network. This allows us to interpret the learnt
representation. Specifically, we can compare SciNet’s la-
tent representation to a hypothesized parameterization
to obtain a simple map from one to the other. If we do
not even have any hypotheses about the system at hand,
we may still gain some insights solely from the number
of required parameters or from studying the change in
the representation when manually changing the input,
and the change in output when manually changing the
representation (as in e.g. [32]).

Desired properties for a representation. For
SciNet to produce physically useful representations, we
need to formalize what makes a good parameterization
of a physical system, i.e., a good latent representation.
We stress that this is not a property of a physical system,
but a choice we have to make. We will give two possible
choices below.

Generally, the latent representation should only store
the minimal amount of information that is su�cient to
correctly answer all questions in Q. For minimal suf-

ficient uncorrelated representations, we additionally re-
quire that the latent neurons be statistically independent
from each other for an input sampled at random from
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Figure 3. Heliocentric model of the solar system. SciNet is given the angles of the Sun and Mars as seen from Earth at
an initial time t0 and has to predict these angles for later times. (a) Recurrent version of SciNet for time-dependent
variables. Observations are encoded into a simple representation r(t0) at time t0. Then, the representation is evolved in time
to r(t1) and a decoder is used to predict a(t1), and so on. In each (equally spaced) time step, the same time evolution network
and decoder network are applied. (b) Physical setting. The heliocentric angles �E and �M of the Earth and Mars are
observed from the Sun; the angles ✓S and ✓M of the Sun and Mars are observed from Earth. All angles are measured relative
to the fixed star background. (c) Representation learned by SciNet. The activations r1,2(t0) of the two latent neurons at
time t0 (see Figure 3a) are plotted as a function of the heliocentric angles �E and �M . The plots show that the network stores
and evolves parameters that are linear combinations of the heliocentric angles.

vector in a Hilbert space).
If the reference measurements are tomographically

complete, meaning that they are su�cient to reconstruct
a complete representation of the underlying quantum sys-
tem, the plots in Figure 2 show a drop in prediction er-
ror when the number of latent neurons is increased up
to two and six for the cases of one and two qubits, re-
spectively [37]. This is in accordance with the number
of degrees of freedom required to describe a one- or a
two-qubit state in our current theory of quantum me-
chanics. For the case where the set of measurements is
tomographically incomplete, it is not possible for SciNet
to predict the outcome of the final measurement perfectly
regardless of the number of latent neurons. This means
that purely from operational data, we can make a state-
ment about the tomographic completeness of measure-
ments and about the number of degrees of freedom of
the underlying unknown quantum system.

Enforcing a simple time evolution. As mentioned
above, if the physically relevant parameters can change,
we can enforce a representation that has a simple up-
date rule. For illustration, we will consider time evolu-
tion here, but more general update rules are possible. To
accomodate changing physical parameters, we need to
extend the latent representation as shown in Figure 3a.
Instead of a single latent represetation with a decoder
attached to it, we now have many latent representations
that are generated from the intial representation by a
time evolution network. Each representation has a de-
coder attached to it to produce an answer to a question.
Because we only want the parameters, but not the phys-
ical model, to change in time, all time evolution steps
and decoders are identical, i.e., they implement the same
function. The encoder, time evolution network, and de-
coder are trained simultaneously. To enforce parameters
with a simple time evolution, we restrict the time evolu-
tion network to implementing very simple functions, such
as addition of a constant [38].

Heliocentric solar system. In the 16th century,
Copernicus used observations of the positions of di↵er-
ent planets on the night sky (Figure 3b) to hypothesize
that the Sun, and not the Earth, is at the centre of our so-
lar system. This heliocentric view was confirmed by Ke-
pler at the start of the 17th century based on astronomic
data collected by Brahe, showing that the planets move
around the Sun in simple orbits. Here, we show that
SciNet similarly uses heliocentric angles when forced to
find a representation for which the time evolution of the
variables takes a very simple form, a typical requirement
for time-dependent variables in physics.
The observations given to SciNet are angles ✓M (t0) of

Mars and ✓S(t0) of the Sun as seen from Earth at a start-
ing time t0 (which is varied during training). The time
evolution network is restricted to addition of a constant
(the value of which is learned during training). At each
time step i, SciNet is asked to predict the angles as seen
from Earth at the time ti using only its representation
r(ti). Because this question is constant, we do not need
to feed it to the decoder explicitly.
We train SciNet with randomly chosen subsequences of

weekly (simulated) observations of the angles ✓M and ✓S
within Copernicus’ lifetime (3665 observations in total).
For our simulation, we assume circular orbits of Mars
and Earth around the Sun. Figure 3c shows the learned
representation and confirms that SciNet indeed stores
a linear combination of heliocentric angles. We stress
that the training data only contains angles observed from
Earth, but SciNet nonetheless switches to a heliocentric
representation.
Conclusion. In this work, we have shown that SciNet

can be used to recover physical variables from experi-
mental data in various physical toy settings. The learnt
representations turned out to be the ones commonly used
in physics textbooks, under the assumption of uncorre-
lated sampling. In future work we plan to extend our ap-
proach to data where the natural underlying parameters
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that the Sun, and not the Earth, is at the centre of our so-
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data collected by Brahe, showing that the planets move
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variables takes a very simple form, a typical requirement
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evolution network is restricted to addition of a constant
(the value of which is learned during training). At each
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and evolves parameters that are linear combinations of the heliocentric angles.

vector in a Hilbert space).
If the reference measurements are tomographically

complete, meaning that they are su�cient to reconstruct
a complete representation of the underlying quantum sys-
tem, the plots in Figure 2 show a drop in prediction er-
ror when the number of latent neurons is increased up
to two and six for the cases of one and two qubits, re-
spectively [37]. This is in accordance with the number
of degrees of freedom required to describe a one- or a
two-qubit state in our current theory of quantum me-
chanics. For the case where the set of measurements is
tomographically incomplete, it is not possible for SciNet
to predict the outcome of the final measurement perfectly
regardless of the number of latent neurons. This means
that purely from operational data, we can make a state-
ment about the tomographic completeness of measure-
ments and about the number of degrees of freedom of
the underlying unknown quantum system.

Enforcing a simple time evolution. As mentioned
above, if the physically relevant parameters can change,
we can enforce a representation that has a simple up-
date rule. For illustration, we will consider time evolu-
tion here, but more general update rules are possible. To
accomodate changing physical parameters, we need to
extend the latent representation as shown in Figure 3a.
Instead of a single latent represetation with a decoder
attached to it, we now have many latent representations
that are generated from the intial representation by a
time evolution network. Each representation has a de-
coder attached to it to produce an answer to a question.
Because we only want the parameters, but not the phys-
ical model, to change in time, all time evolution steps
and decoders are identical, i.e., they implement the same
function. The encoder, time evolution network, and de-
coder are trained simultaneously. To enforce parameters
with a simple time evolution, we restrict the time evolu-
tion network to implementing very simple functions, such
as addition of a constant [38].

Heliocentric solar system. In the 16th century,
Copernicus used observations of the positions of di↵er-
ent planets on the night sky (Figure 3b) to hypothesize
that the Sun, and not the Earth, is at the centre of our so-
lar system. This heliocentric view was confirmed by Ke-
pler at the start of the 17th century based on astronomic
data collected by Brahe, showing that the planets move
around the Sun in simple orbits. Here, we show that
SciNet similarly uses heliocentric angles when forced to
find a representation for which the time evolution of the
variables takes a very simple form, a typical requirement
for time-dependent variables in physics.
The observations given to SciNet are angles ✓M (t0) of

Mars and ✓S(t0) of the Sun as seen from Earth at a start-
ing time t0 (which is varied during training). The time
evolution network is restricted to addition of a constant
(the value of which is learned during training). At each
time step i, SciNet is asked to predict the angles as seen
from Earth at the time ti using only its representation
r(ti). Because this question is constant, we do not need
to feed it to the decoder explicitly.
We train SciNet with randomly chosen subsequences of

weekly (simulated) observations of the angles ✓M and ✓S
within Copernicus’ lifetime (3665 observations in total).
For our simulation, we assume circular orbits of Mars
and Earth around the Sun. Figure 3c shows the learned
representation and confirms that SciNet indeed stores
a linear combination of heliocentric angles. We stress
that the training data only contains angles observed from
Earth, but SciNet nonetheless switches to a heliocentric
representation.
Conclusion. In this work, we have shown that SciNet

can be used to recover physical variables from experi-
mental data in various physical toy settings. The learnt
representations turned out to be the ones commonly used
in physics textbooks, under the assumption of uncorre-
lated sampling. In future work we plan to extend our ap-
proach to data where the natural underlying parameters
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Figure 3. Heliocentric model of the solar system. SciNet is given the angles of the Sun and Mars as seen from Earth at
an initial time t0 and has to predict these angles for later times. (a) Recurrent version of SciNet for time-dependent
variables. Observations are encoded into a simple representation r(t0) at time t0. Then, the representation is evolved in time
to r(t1) and a decoder is used to predict a(t1), and so on. In each (equally spaced) time step, the same time evolution network
and decoder network are applied. (b) Physical setting. The heliocentric angles �E and �M of the Earth and Mars are
observed from the Sun; the angles ✓S and ✓M of the Sun and Mars are observed from Earth. All angles are measured relative
to the fixed star background. (c) Representation learned by SciNet. The activations r1,2(t0) of the two latent neurons at
time t0 (see Figure 3a) are plotted as a function of the heliocentric angles �E and �M . The plots show that the network stores
and evolves parameters that are linear combinations of the heliocentric angles.

vector in a Hilbert space).
If the reference measurements are tomographically

complete, meaning that they are su�cient to reconstruct
a complete representation of the underlying quantum sys-
tem, the plots in Figure 2 show a drop in prediction er-
ror when the number of latent neurons is increased up
to two and six for the cases of one and two qubits, re-
spectively [37]. This is in accordance with the number
of degrees of freedom required to describe a one- or a
two-qubit state in our current theory of quantum me-
chanics. For the case where the set of measurements is
tomographically incomplete, it is not possible for SciNet
to predict the outcome of the final measurement perfectly
regardless of the number of latent neurons. This means
that purely from operational data, we can make a state-
ment about the tomographic completeness of measure-
ments and about the number of degrees of freedom of
the underlying unknown quantum system.

Enforcing a simple time evolution. As mentioned
above, if the physically relevant parameters can change,
we can enforce a representation that has a simple up-
date rule. For illustration, we will consider time evolu-
tion here, but more general update rules are possible. To
accomodate changing physical parameters, we need to
extend the latent representation as shown in Figure 3a.
Instead of a single latent represetation with a decoder
attached to it, we now have many latent representations
that are generated from the intial representation by a
time evolution network. Each representation has a de-
coder attached to it to produce an answer to a question.
Because we only want the parameters, but not the phys-
ical model, to change in time, all time evolution steps
and decoders are identical, i.e., they implement the same
function. The encoder, time evolution network, and de-
coder are trained simultaneously. To enforce parameters
with a simple time evolution, we restrict the time evolu-
tion network to implementing very simple functions, such
as addition of a constant [38].

Heliocentric solar system. In the 16th century,
Copernicus used observations of the positions of di↵er-
ent planets on the night sky (Figure 3b) to hypothesize
that the Sun, and not the Earth, is at the centre of our so-
lar system. This heliocentric view was confirmed by Ke-
pler at the start of the 17th century based on astronomic
data collected by Brahe, showing that the planets move
around the Sun in simple orbits. Here, we show that
SciNet similarly uses heliocentric angles when forced to
find a representation for which the time evolution of the
variables takes a very simple form, a typical requirement
for time-dependent variables in physics.
The observations given to SciNet are angles ✓M (t0) of

Mars and ✓S(t0) of the Sun as seen from Earth at a start-
ing time t0 (which is varied during training). The time
evolution network is restricted to addition of a constant
(the value of which is learned during training). At each
time step i, SciNet is asked to predict the angles as seen
from Earth at the time ti using only its representation
r(ti). Because this question is constant, we do not need
to feed it to the decoder explicitly.
We train SciNet with randomly chosen subsequences of

weekly (simulated) observations of the angles ✓M and ✓S
within Copernicus’ lifetime (3665 observations in total).
For our simulation, we assume circular orbits of Mars
and Earth around the Sun. Figure 3c shows the learned
representation and confirms that SciNet indeed stores
a linear combination of heliocentric angles. We stress
that the training data only contains angles observed from
Earth, but SciNet nonetheless switches to a heliocentric
representation.
Conclusion. In this work, we have shown that SciNet

can be used to recover physical variables from experi-
mental data in various physical toy settings. The learnt
representations turned out to be the ones commonly used
in physics textbooks, under the assumption of uncorre-
lated sampling. In future work we plan to extend our ap-
proach to data where the natural underlying parameters
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therefore needed to be discovered at the same time.
The first stage’s learned simulator is based on graph

networks (GN) (15), which are deep neural networks
that can be trained to approximate complex functions on
graphs. Here the (relative) positions and velocities of the
solar system’s sun, planets, and moons are represented
as nodes of the input graph, and possible physical inter-
actions (e.g., forces) between the bodies are represented
by the graph’s edges. GN-based simulators have been
trained to accurately model N-body and more complex
particle- and mesh-based systems in recent years (16–18),
though they have never been trained on real observations
until now. We fit the GN-based simulator to 30 years
of observed solar system trajectories, where the training
procedure optimized the parameters of the GN’s neural
network “edge function”, which plays the role of comput-
ing forces (see 13, 14).

In the second stage, we isolate this edge function, and
apply symbolic regression to fit an analytical formula to
it. Our best fitting expression was the correct Newto-
nian formula for gravitational force. We then re-fit the
unobserved (relative) masses of the bodies using our dis-
covered equation, and found a nearly perfect fit to the
true masses. We could then simulate the solar system
dynamics using the discovered equation and re-learned
masses, and get a very close correspondence to the true
observed trajectories.

The reason we adopt this two-step approach, instead of
applying symbolic regression directly on the data, is that
symbolic regression is not practical or e�cient. Because
the learned simulator is a neural network, it is di�eren-
tiable, and thus fitting it to the real data is very e�cient.
By contrast, the symbolic regression procedure involves
an expensive search using evolutionary algorithms, which
would take orders of magnitude longer. The di�erentia-
bility is also e�ective for fitting continuous quantities,
such as the masses of the bodies. So by fitting a neural
network simulator first, then applying symbolic regres-
sion to only that component of the learned simulator we
were interested in, we reduced the cost of the equation
discovery a great deal, and make the problem tractable
for our symbolic regression code.

There are several reasons to prefer a symbolic expres-
sion, instead of settling with a learned simulator. Natu-
rally, describing physical phenomena with compact sym-
bolic formulations supports scientific interpretation, and
can interface with existing symbolically defined physi-
cal theories. By contrast, the knowledge stored within
a trained neural network cannot easily interface with
existing theories—how can one interpret the thousands,
millions, or even billions of weights within a neural net-
work, or communicate that knowledge e�ectively to oth-
ers? Beyond interpretability, the symbolic expression we
extracted was more accurate than the predictions of the
neural network, due to the strong bias toward simplicity
in the symbolic regression. We found it could generate far

Fig. 1. Schematic rendering of the Sun, Mercury, Venus, Earth, and Mars, with
the corresponding graph structure our learned simulator uses. The graph’s nodes
represent the bodies, and the brightness of the edges is proportional to the strength
of the gravitational interaction between them. A video version of this figure will be
made available upon publication.

more accurate predictions than the GN-based simulator,
and by virtue of that fact that it is correct, it should
generalize to any scale, while the neural network is only
accurate when the statistics of the input match what it
was trained on. In other words, the analytical expression
can model galactic dynamics, while the learned simulator
cannot.

Symbolic regression, also known as automated equation
discovery, has been explored for decades in the context
of scientific discovery, for example Langley et al. (19)’s
BACON (20), COPER (21), FAHRENHEIT/EF (22, 23)
and LAGRANGE (24). More recent work (25, 26) intro-
duced the symbolic regression package eureqa, which has
been applied to finding symbolic formulae for Lagrangians,
Hamiltonians, repeated sub-equations, etc., without rely-
ing on known constants or strong priors on the physical
nature of the system. Though there have been many
advances in search techniques (e.g. 27–41), in this work
we use the neural network-symbolic regression technique
we first introduced in (14), which extends symbolic regres-
sion to high-dimensional input such as graphs by using a
neural network as an intermediate stepping-stone model.
We have also released an open-source symbolic regres-
sion software library, which we used in this work PySR

�

(42, 43) .
It is important to emphasize that there is no way

to “discover” new theories without imposing some con-
straints, inductive biases, or other assumptions on the
process. For example, mathematical axioms are required
to define quantitative theories; the concepts of space and
time are required to specify equations of motion; and a
physical mechanics formalism, such as classical mechan-
ics, is required to define specific dynamical laws, such as
Hooke’s law or the Hamiltonian of a many-body system.
Here, our approach leverages the fact that an N-body
system can be represented as a graph; and that these
systems are translationally equivariant (44). Our learned

�https://github.com/MilesCranmer/PySR
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Fig. 5. Left: Discovered equations from our learned simulator across different random initializations. The different equations are sorted in order of increasing complexity
along the x-axis. The output variable in all cases is Fx, but similarly results are obtained for Fy and Fz . The y-axis shows the equation score, which balances loss and
complexity, as described in (42). Right: Loss per step on predicted orbits using each equation, summed over all planets. Note that we do not show the complexity 17
equation, as the results perfectly overlap with those of the complexity 13 equation. For the two equations that have masses, we plot the error using the masses from the
learned simulator (continuous line) and from refitting the masses after obtaining the equation (dashed). The grey, thicker line is the error obtained using Newtonian gravity
with the correct masses.

factor of five lower than before relearning the masses.
Similarly, the bottom-right panel of Fig. 4 (4D) clearly
shows how the negative correlation between error in mass
estimate and gravitational influence in other bodies is
greatly strengthened by re-learning the masses, with the
Pearson correlation coe�cient in log-space going from
≠0.64 (before re-learning the masses) to ≠0.87 (after
re-learning).

We also predicted new trajectories with the symbolic
equation and re-learned masses (bottom panel of Fig. 2,
2E and 2F), which shows the trajectories are far more ac-
curate than those obtained directly from both the learned
simulator, and the symbolic equation with original masses.
The blue dashed curve in the right part of Fig. 5 shows
the di�erence between data and prediction for these re-
estimated masses. The figure clearly shows how this
outperforms the learned simulator and symbolic regres-
sion, and perform just as well as Newtonian gravity using
the correct parameters (thick grey curve). Therefore, our
algorithm obtains the correct equation for Newtonian
gravity (Fig. 5) and very accurate values for the masses
of the bodies (bottom part of Fig. 4), using only the orbit
data, graph structure, and some inductive biases as input
information.

Discussion & Conclusions
Our results show that our two-step approach—training
a neural network simulator with physical inductive bi-
ases, then interpreting what it has learned using symbolic
regression—is a powerful tool for discovering physical

laws from real observations. We (re-)discovered Newton’s
formula for gravitational force from observed trajecto-
ries of the Sun, planets, and moons of our solar system,
and made accurate estimates of hidden properties of the
system.

While our method allows us to re-discover Newton’s
formula and the masses, it is important to note that this
was only possible through the use of inductive biases,
particularly Newton’s second and third law, and spherical
symmetry. Furthermore, we made use of choices such as
spherical coordinates and logarithmic units, which facili-
tated the learning. This illustrates that while automated
theory formation with machine learning is possible, it
does require some prior knowledge. Our understanding
of the system can therefore greatly facilitate the task of
discovering physical laws with machine learning.

While automated theory formation is a very promising
and exciting field of work, it is important to consider the
limitations of this procedure. First, while we can provide
a rough estimate of the uncertainty in the mass estimates
by running with multiple random seeds, this does not
produce a true estimate of the errors, and instead shows
multiple local minima where the algorithm terminates.
To perform Bayesian inference on the mass estimates,
we would need to model the posterior distribution on
each mass, which cannot be done with our current graph
network algorithm, which uses gradient descent to produce
point estimates. Bayesian neural networks could provide
a future avenue for this. Second, while our algorithm
can provide a scientist with candidate equations that
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Particle physics is not about testing any particular kind of 
prediction about physics beyond the Standard Model.  

Some final thoughts…
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The new era of big data and powerful machine learning tools 
offers us the opportunity to conduct basic research in a way that 

is no longer limited to pre-defined paths, but is more open, 
exploratory and driven by data. 

Particle physics is not about testing any particular kind of 
prediction about physics beyond the Standard Model.  

Some final thoughts…
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