CaloPointFlow II **Updates for the CaloChallenge**

Kerstin Borras, Dirk Krücker, Benno Käch, Moritz Scham, Simon Schnake 07.11.23 **ML4Jets 2023**

HELMHOLTZ

CaloChallenge Dataset 3

- 200k GEANT4 electron showers
- Energy Distribution: 1 GeV to 1 TeV using log-uniform distribution
- 45 layers with 18 radial and 50 angular bins, totaling 40,500 voxels

3d view

using log-uniform distribution lar bins, totaling 40,500 voxels

https://calochallenge.github.io/homepage/

The performance of CaloPointFlow I

CaloPointFlow I was performing poorly.

Claudius Krause - CaloChallenge (preliminary) Results - CaloChallenge Workshop

Results for Dataset 3 were not ready at that time.

CaloPointFlow Preprocessing

- Showers in high granular calorimeters are sparse
- Their geometry can be irregular
- Use point clouds to handle this

- Get rid of empty cells
- Each hit is represented as point
- One shower equals to one point cloud

Dequantization **Marginal distributions**

• The probability of different index has a large variation

Dequantization **Standard dequantization**

- distribution
- This is called *dequantization*

• A normalizing flow maps a input distribution to a normal distribution

Discrete distributions are not directly mappable to a normal

• We have to lift it to a continuous distribution

Dequantization Previous dequantization

Uria et al [<u>arxiv:1306.0186</u>]

• The whole distribution is scaled to [0,1]

Dequantization **Previous dequantization**

Uria et al - RNADE [arxiv:1306.0186]

- As an invertible mapping $[0,1] \rightarrow [-\infty,\infty]$ the logit function is choosen
- The inverse is sigmoid
- The resulting distribution has edges and long tails

Dinh et al - RealNVP [arxiv:1605.08803]

Dequantization **CDFDequantization**

• Can we do better?

Dequantization CDFDequantization

- We transform each index *i* to a random value between cdf(x) and cdf(x + 1)
- $\Phi_X(x) = \operatorname{cdf}(x) + \operatorname{pmf}(x) \cdot \epsilon$
- $\epsilon \sim U(0,1)$
- Inverse $\Phi^{-1}(u) = \min\{x \ u \le \operatorname{cdf}(x+1)\}$

Dequantization CDFDequantization

- Instead of logit we use the quantile function of $\mathcal{N}(0,1)$
- Our transformed distribution is normal disitributed

CaloPointFlow Learn each point separately

• Point Flow is a point-wise transformation

 $\sim \mathcal{N}(0, \mathbb{I}_4)$

CaloPointFlow Point Flow *g* **architecture**

The Point Flow g is a Normalizing Flow

CaloPointFlow **Point Flow** *g* **architecture**

CaloPointFlow **Point Flow** *g* **architecture**

CaloPointFlow

- The shower information is encoded in the latent variable z
- The Encoder q_{φ} is based on DeepSets [arxiv:1703.06114]

CaloPointFlow

• *z* is generated by the Latent Flow *f*

• *f* has the same structure as *g*

model is based on PointFlow [arXiv:1906.12320]

CaloPointFlow

- By construction there is no point-to-point communication, while transformation
- Therefore, the points are conditional independent $(x_i \perp x_j z)$

- inspired by EPiC-GAN [arXiv:2301.08128]

Multiple Hits Problem

- The points are generated on continuous space
- Mapped to discrete indices
- Multiple hits can have the same index
- Multiple hits cannot occur in the real data

Rotation invariance

- The data is rotation invariant
- Therefore, the marginal distribution in α is flat
- One could generate the α dimension, by random sampling
- This does not preserve shower substructure in α

Generate without α

- Generate points without p_{α}
- This allows 50 hits per (z, r)-bin
- Distribute randomly uniformly in α
- If there are more than 50 hits, we also add them to random α bins

entries 107 10^{6} 10^{3} 10^{4} 10^{3} 10^{2} հմնունո 60 20 40 80 100 0 hits per z-r-bin

Results

Shower Shapes Dataset 3

 \Rightarrow Shower shapes are modelled well

Entries 10^4 10^4

 10^{1}

 $\frac{10^5}{10^4}$ Entries

Energy distributions Dataset 3

- Bulk area is well modelled in each layer
- Tails are not always well matching

Correlation coefficients Dataset 3

-1.00	-0.75	-0.50	-0.25	0.00	0.25	0.50	0.75	1.00	-1.00

\Rightarrow Correlations are modelled well

CaloPointflow II ranks third on dataset 3

From Claudius Krause, for more details \Rightarrow <u>talk on Thurday</u>

Conclusion

- CaloPointFlow I
- Improvements of CaloPointFlow II
 - CDFDequantization
 - DeepSetFlow
 - Mitigate multiple hit problem by randomly assigning α
- CaloPointflow II ranks third on dataset 3

Conclusion

- CaloPointFlow I
- Improvements of CaloPointFlow II
 - CDFDequantization
 - DeepSetFlow
 - Mitigate multiple hit problem by randomly assigning α
- CaloPointflow II ranks third on dataset 3

Thank you for your attention!

DATASET 2 PLOTS

VAE **Variational Autoencoders**

 $\mathsf{ELBO}\,\mathscr{L} = \mathbb{E}_{q_{\varphi}(z \ x)}[\ln p_{\theta}(x \ z)] - D_{KL}(q_{\varphi}(z \ x) \ p_{\theta}(z))$

- If we assume that the data is gaussian distributed the first term is the MSE and the last term is a regularisation that keeps the latent gaussian
- The Encoder predicts (μ, σ)
- To a differentiable point is sampled by $z = \mu + \epsilon \odot \sigma$.

here $\epsilon \sim N(0,1)$ (reparametrization trick)

Durk Kingma PhD Thesis

Encoding **VAE with an NF Prior**

 $\mathsf{ELBO}\,\mathscr{L} = \mathbb{E}_{q_{\varphi}(z|X)}[\ln p_{\theta}(X|z)] - D_{KL}(q_{\varphi}(z|X) - p_{\theta}(z)) = \mathbb{E}_{q_{\varphi}(z|X)}[\ln p_{\theta}(X|z) + \ln p_{\theta}(z) - \ln q_{\varphi}(z|X)]$

Bijective transformation (NF) w = f(z) with $w \sim N(0,1)$

$$\begin{aligned} \mathscr{L} &= \mathbb{E}_{q_{\varphi}(z|X)} \left[\ln p_{\theta}(X|z) + \ln p_{\theta}(z) - \ln q_{\varphi}(z|X) \right] \\ &= \mathbb{E}_{q_{\varphi}(z|X)} \left[\ln p_{\theta}(X|z) + \log p_{\theta}(f(z)) + \log \left| \det \frac{\mathrm{d}f(z)}{\mathrm{d}z} \right| - \ln q_{\varphi}(z|X) \right] \\ &= \mathbb{E}_{q_{\varphi}(z|X)} \left[\ln p_{\theta}(X|z) \right] + \mathbb{E}_{q_{\varphi}(z|X)} \left[\log p_{\theta}(f(z)) + \log \left| \det \frac{\mathrm{d}f(z)}{\mathrm{d}z} \right| \right] - \mathscr{H}(q_{\varphi}(z|X)) \end{aligned}$$

Decoding Using a second Normalizing Flow

$$\ln p_{\theta}(X \ z) = \ln \prod_{x_i \in X} p_{\theta}(x_i \ z) = \sum_{x_i \in X} \ln p_{\theta}(x_i \ z)$$

(NF) $y_i = g(x_i, z)$ with $y_i \sim N(0, 1)$

$$\ln p_{\theta}(X \ z) = \sum_{x_i \in X} \ln p_{\theta}(x_i \ z)$$
$$= \sum_{x_i \in X} \ln p_{\theta}(g(x_i, z)) + \log \left| \det \frac{\partial g(x_i, z)}{\partial x} \right|$$

The Algorithm How to tame the beast

for t = 1, 2, ..., T do

 $\mu, \sigma \leftarrow q_{\varphi}(X_t)$ where *d* is the dimension of μ

and X_t is a point cloud sample

$$\mathscr{L}_{entr} = \frac{d}{2}(1 + \ln(2\pi)) + \sum_{i=1}^{d} \ln \sigma_i$$

$$z = \epsilon \odot \sigma + \mu \qquad \text{(Reparametrization)}$$

$$w \leftarrow f(z)$$

$$\mathscr{L}_{prior} = N(w; 0, I) + \ln \left| \det \frac{df(z)}{dz} \right|$$

$$L \leftarrow 0$$

for $x_i \in X_t$ do

$$y_i \leftarrow g(x_i, z)$$

$$L_i \leftarrow \log N(y_i; 0, I) + \log \left| \det \frac{\partial g(x_i, z)}{\partial x} \right|$$

$$L \leftarrow L + L_i$$

end for

 $\mathscr{L}_{\text{recon}} = \frac{L}{n_{X_t}}$ $\mathscr{L} = \mathscr{L}_{\text{recon}} + \mathscr{L}_{\text{prior}} + \mathscr{L}_{\text{entr}}$

 $Adam(-\mathscr{L})$

end for

