

System And Network Administration for SoCs

D. A. Scannicchio & M. Dobson

on behalf of the ATLAS TDAQ & CMS DAQ SysAdmin Teams

- CNIC Rules
- OS Administration
- Network Administration
- Network address proposal
 - ★ HPM.3 Site Type proposal, Client ID, DNS Names
- **Containers**
- □ How far have we come since last Workshop
- Next Steps
- Conclusions

This presentation covers System and Network Administration on Experiment Networks (would be applicable to the Technical Network also), and will concentrate on the specific case of SoC devices.

- All CERN users have agreed to Operational Circular N°5 (OC5) and the subsidiary rules and guidelines defining the use of CERN Computing facilities (includes the experiment facilities)
- The Computing and Network Infrastructure for Controls (CNIC) security policy defines the Experiment domain rules:
 - https://edms.cern.ch/document/584092

General (reminder)

- ★ Experiment networks are **isolated** from the General Purpose Network
- ★ Dedicated Gateway PCs are used to access the Experiment Networks
- ★ Communication between domains are **restricted** with Firewall Rules
- ★ All systems must be **centrally managed**
- ★ Regular updates and capability to apply security patches
- ★ Only Approved systems connected to the network
- * Network segregation and isolation used for restricted connectivity
- \star Responsibility could be delegated to the owner of the devices

□ Currently supported OSs at CERN

- ★ CentOS 7 & RHEL 7 : EOL 30 June 2024
 - Extended Lifecycle support for special cases (e.g. experiments): 30 June 2026
- ★ ALMA/RHEL 8: EOL 31 May 2029
- ★ ALMA/RHEL 9: EOL 31 May 2032
- ★ End of RH Site License 31 May 2029
- **Future Linux Committee**
 - ★ Gathered requirements for future linux from all stakeholders, including experiments
 - ★ Options as presented in IT Linux talk

See presentation by Alex for IT-Linux team

By experiment TDAQ SysAdmins

The currently supported Linux OSes

★ In ATCN, moving to ALMA 9 over the EYETS 23/24

- ★ In CMS network: mainly CC7, RHEL 8 for DAQ Event Building & HV, ALMA 9 for core services. Subsystems can move to ALMA 9 during EYETS 23/24 if desired
- \star All are installed, configured and managed by the corresponding SysAdmin team
- Embedded systems' OSes (e.g. Raspberry PIs, Topic, ARM, ATCA) are mostly not supported by CERN IT and therefore not by SysAdmins either
 - ★ Exception is ARM (aarch 64)

D Embedded Linux devices are currently isolated

- ★ Centrally maintained node acting as a Gateway, connected to the experiment network AND to an isolated "private" switch
- ★ Or network equivalent (see later)
- Aim is to ensure security for all the experiment network systems
 - \star Protecting experiment devices from the embedded systems and vice versa

Appropriate policies on regular updates and/or security updates need to be defined to lift restrictions

OS management and updates

□ Inside ATLAS/CMS CERN Linux repos are mirrored and snapshotted

- ★ Prevent unwanted updates
- **\star** Know exactly which version is being used
- ★ Know which nodes are aligned and how
- ★ Some software is linked to the kernel version (e.g. TDAQ drivers)
- Usually OS are updated yearly (during YETS)
 - ★ Unless major vulnerabilities and update is requested by Computing Security Officer

Updates/upgrades are tested on test nodes before applying on productions

- ★ Normally tested on test beds or selected machine, and pushed to production a couple of weeks later
- □ Procedure is speeded up in case of a security vulnerability
 - ★ Could be done within a day or so (happened in the past)

Operating System for ARM

The second secon

- Support for ARM (aarch 64), upstream support by OS
 - ★ 32 bit not supported
 - ★ Packages and images made available, CERN packages built
- Kernel?
 - ★ Can the RHEL/ALMA kernel be used ?
 - Demonstrated to work for simple design/test boards
 - ➢ However RHEL 9 removed support for Xilinx HW between 9.1 and 9.2
 - Need to go back to stock kernel: being investigated now
 - ➢ How to port all needed device drivers? How to keep up with Vivado/Petalinux updates?
 - ★ Petalinux Kernel: used by most/all people at the moment
 - > What mitigation might be needed (kernel config, other...) to use it unprotected in exp. net. ?

Root FS

- ★ Use the RHEL/ALMA one
 - \succ Proven to work
- ★ NFS mounted root FS?
 - Potentially read only, with read/write overlay for each host
- ★ Puppet based configuration steps
 - ➤ Used as only mechanism ? (Yes for ATLAS, very high probability for CMS)
 - > Puppet apply for well defined synchronisation points (boot) and no run time interference

□ ATLAS already use netbooted machines extensively

- ★ Kernel and ramdisk loaded via UEFI, DHCP, TFTP
- ★ Unique shared root filesystem mounted from the local file server
 - Read/Write overlay on read-only root FS
 - System finishes its configuration in the RW areas by running Puppet at boot time (then once an hour)
- ★ Versioning for the root filesystem, kernel and initial ramdisk together
- \star Able to go forward and back as needed

□ Netbooting of SoCs is nearly as easy

- ★ SDcard to hold only FSBL and U-boot, rest can be obtained remotely:
 - Shown by a few people, including Kareen on Thursday
 - Even more versatile with partial PS configuration. Complexity in development/understanding ? Needs better understanding.
- \star Can be extended for the bit map files & HW description
 - ➢ To include bit map files, hardware description files etc...
- ★ Versioning and auto upgrade/downgrade has also been shown
- ★ Backup to QSPI or eMMC can also be used as backup/failover
- ★ Advantages: file system accessible even when SoC is down

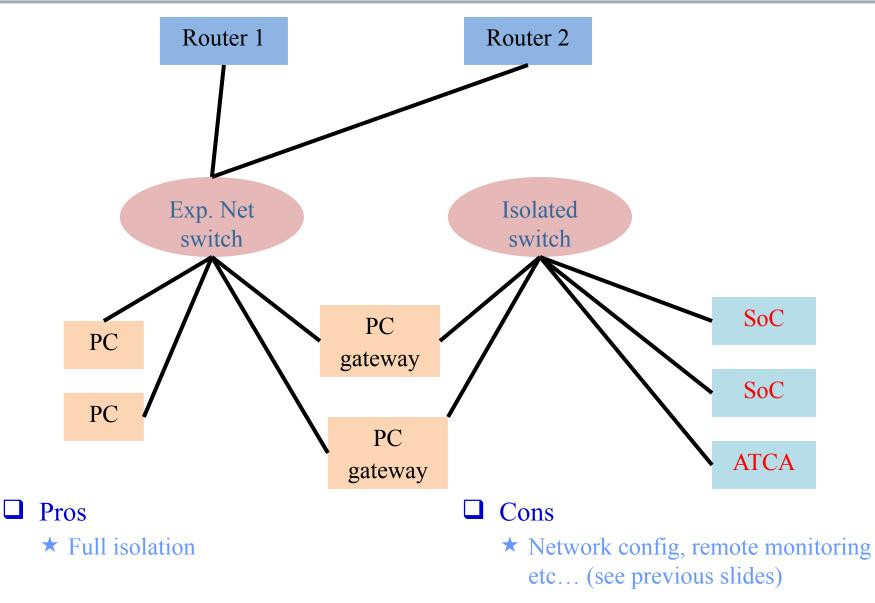
- The CNIC Security Policy also defined network aspects
- All network devices (mainly Ethernet) must be registered in the CERN Network database (LanDB)
 - ★ No unregistered private networks (e.g. 192.168.X.Y) are allowed
 - ★ All private interfaces have to be registered
 - ★ No Network Address Translation (NAT) allowed
 - ★ Experiment networks are private 10.X.Y.Z subnets
 - ★ Network isolation:
 - Isolated networks can be registered as Experiment network subnets (e.g 10.X.Y.Z)
 - Restricted experiment subnets via Access Control Lists are more versatile. They are implemented via Inter Domain or Control Sets in LanDB (CERN Network database).

I Network infrastructure and devices can be managed by IT Networking or by experiments

- ★ In practice most experiments asked IT networking to manage their networks
 - ➤ The case for ATLAS and CMS, the accelerator, etc...
- ★ Monitoring tools and HW replacement also taken care of by IT networking
- ★ However, DHCP/DNS essential services managed by TDAQ SysAdmins
 - ➢ Using the information from the IT network database

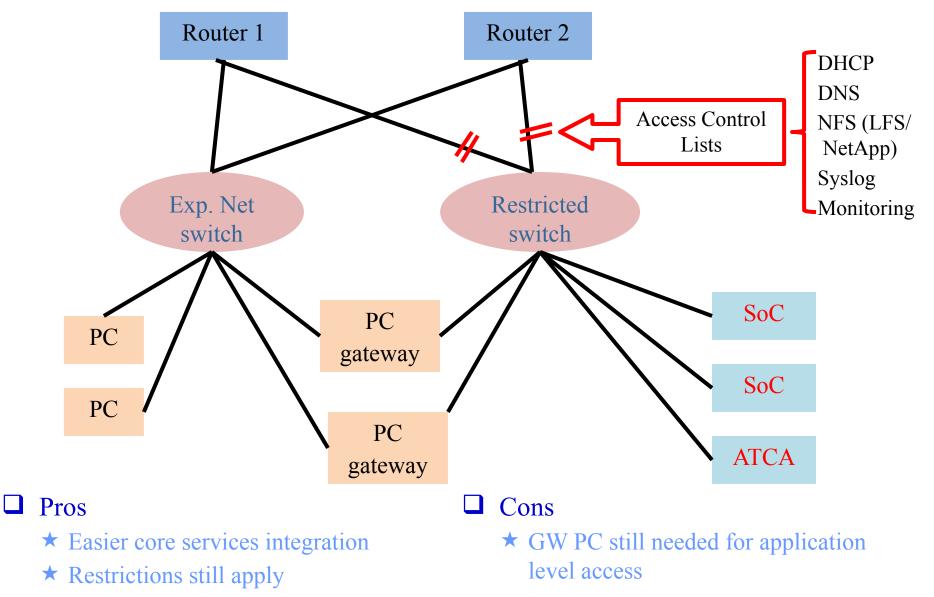
System Administration Today

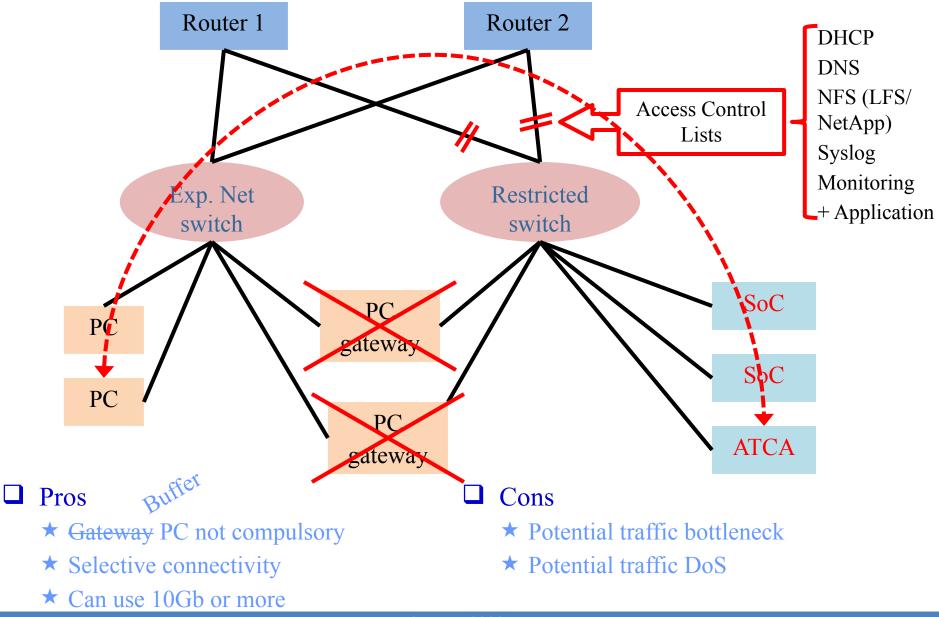
Central Management by Experiment System Administration teams


- ★ Manage the CERN supported OSes
- ★ A Configuration Management System is used
 - > Puppet for both ATLAS and CMS (also used by CERN), others in other areas
- ★ User/role management also available throughout the system
- ★ Authentication via Kerberos (not entirely or not yet, LDAP used for some cases)

For devices with non managed OSes

- ★ Network Isolated
- **\star** Managed Gateway nodes to access them
- ★ Additional effort to configure the isolated network
- ★ Monitoring systems have to be adapted to check isolated devices
- \star Striving to ensure security for the whole system
- Today split between the two categories is very much >95% for centrally managed versus <5% for non managed</p>




Restricted switch: core services

Restricted switch: limited comm.

- CMS var and var
- Proportion of SoC (maybe unsupported Linux devices) increases dramatically for Phase-2
 - ★ Order 150 ATCA crates (both ATLAS/CMS) with ~10 boards each (~1500 ATCA boards)
 - ★ Each ATCA board has at least an IPMC (could be Zynq based, probably with FreeRTOS)
 - ★ Each board will likely have a Zynq or ComExpress controller
 - ★ Potentially more Zynq devices on the core FPGAs

□ Network isolation could be very cumbersome

- \star For all the reasons stated earlier, exacerbated by sheer number
- ★ Gateway PCs could be a significant number

□ Restricted Network are probably the viable alternative

- ★ Restrictions but with many core services available
- ★ Potentially getting rid of Gateway PC and allow selective connectivity
- ★ Gateway PC may need to be replaced by "Buffer/Supervisor" PC (see later)

ATCA Specifics: network addresses

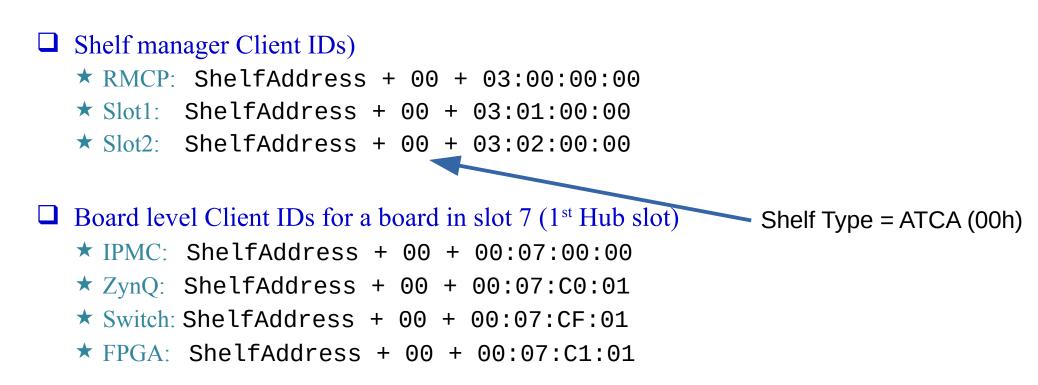
CCMS unit with the second seco

- ATCA spec. foresees usage of Client ID based DHCP
 - ★ Each Shelf is identified by a Shelf address (an arbitrary <=20 character long ASCII string):
 - Should be unique in a DHCP domain
 - ➢ For us it could be "Building", "Rack" and "U" (always unique): USC55-S1A10-10
 - Could drop "Building" in experiment networks
 - Configuration of shelf done when installed (script to run over serial line from laptop)
 - ★ IPMC gets this info (FRU data) from Shelf Manager
 - ★ ATCA boards are located in the shelf by the Physical Slot Number
 - > Primary site type is 00h and primary site number is Physical slot number
 - ★ Secondary site type and secondary site number can be used to identify sub-elements of an ATCA board (e.g. AMC Modules):
 - Could be used to identify Zynq, FPGAs, Switches
 - Propose to use values from OEM range (see next slide)
 - ★ ComExpress or Zynq controllers can get this info from IPMC:
 - See talk by Petr on Thursday and the talk by Ralf in previous SoC Workshop
- □ Suggest to implement LLDP on end-points:
 - ★ Very useful for network debugging, especially during commissioning
 - Done in ATLAS & CMS for Run 3 in DAQ data network, very useful

Secondary Site type/number proposal

- □ Primary Site Type is 00h for a board level end-point (HPM.3 spec)
- □ Primary Site Number is then the Physical Slot Number of the board
 - \star See warning by Petr on Physical versus Logical versus what you see !
- Secondary Site Type offers multiple categories
 - ★ Suggest not to use the RTM one (even for the SRTM or CMS DAQ RTM)
 - ★ Suggest to use OEM range (C0h to CFh)
- Secondary Site Numbers
 - ★ Suggest starting at 1 and allowing multiple (will not use 0 with OEM type)

End Point	Primary Site Type	Primary Site Number	Seconda	ary Site Type	Secondary Site Number
Board IPMC	00h	XXh	00h		00h
Board Switch	00h	XXh	CFh	Last OEM value	YYh
Board Controller	00h	XXh	C0h	First OEM value	YYh
Workhorse FPGA	00h	XXh	C1h	Second OEM value	YYh
Other	00h	XXh	CNh	1 < N < F	YYh



Example using the above proposal

Crate located in CMS underground service cavern (USC55) in rack S1A10 in U10

Shelf Address: USC55-S1A10-10 or 55:53:43:35:35:2d:53:31:41:31:30:2d:31:30:00:00:00:00:00:00

- Geographical
 - ★ Based on Shelf Address, Slot, Function and Index/Number
 - ★ Prepended by "ATCA"
 - ★ Shelf Manager:
 - ➤ ATCA-USC55-S1A10-10-SHMM-0/1/2
 - ★ IPMC:
 - ➤ ATCA-USC55-S1A10-10-XX-IPMC
 - ★ Switch:
 - ➢ ATCA-USC55-S1A10-10-XX-SW
 - ★ Controller (Zynq or Com-e):
 - ➢ ATCA-USC55-S1A10-10-XX-CTRL-1/2/3
 - ★ FPGA:
 - ➤ ATCA-USC55-S1A10-10-XX-FPGA-1/2/3
 - **\star** ATLAS not using this kind of naming convention today
- DNS Aliases can be added for easier use by sub-detectors
 - ★ e.g. ATCA-TRACKER-ECM-1
- □ For end-points which cannot do DHCP
 - ★ SoC could do request on behalf of end-point and communicate IP back:
 - e.g. reverse lookup using naming convention

Under discussion since last SoC Workshop

□ Support for ClientID accepted in the network database (LanDB)

- ★ Property of a device (like MAC address)
- \star Linked to an interface
- ★ Soap methods to add information and query (rest API later)
- ***** Should be going **production before the end of the year**

□ NO support for ClientID in the CERN DHCP servers

- \star Question of security
 - Currently based mainly on MAC address verification/banning
- ★ Not a major problem
 - At the experimental site, TDAQ SysAdmins manage DHCP servers with info extracted from LanDB
 - In the labs, usually have private DHCP servers (can also be populated from LanDB)

CCN Service And Se

Network connectivity needs

- ★ Each board has a 1Gb connection (used for Zynq/IPMC)
 - ➢ Should go via the Hub Slot Switch
- ★ Do boards "require" (not want) higher bandwidth links ? Usage/Need ?
- ★ CMS plans a 1Gb per board with 2x10Gb uplinks (redundancy ?)
- ★ Front/back panel links not foreseen in CMS => requires external switch (space, power)

Overall bandwidth needs (NEED INPUT)

- ★ 1500 boards at 1Gb => 1.5Tb/s !!! (no mention of 10Gb)
- ★ Aggregate links with row level switches or one chassis switch
- \star Where to ?
 - ➢ Boot, syslog, NFS servers: probably local per sub-system and/or switch
 - ➤ Monitoring: where to ? How much ? Local aggregation points by sub-system ?
 - Configuration data: buffer/supervisor PC that gets the data from the DB and feeds the boards with information at high speed (10-100Gb)
 - Control: buffer/supervisor PC to act as intermediary controller for many crates/boards
- ★ Need to understand needs to design the infrastructure ! Hence test systems.

- Currently ATLAS/CMS do not use containers online
 - ★ Currently hypervisors and VMs are used (same install procedure as for physical machines)
- Containers are nice for Application development/deployment
 - ★ TDAQ SysAdmins understand this
- □ Completely new model to integrate into infrastructure
 - ★ Being investigated by TDAQ SysAdmin teams
 - ★ The build of container images gives users full flexibility
 - More than they would usually get on bare metal !
 - Could include SW which is not known or with security bugs which TDAQ SysAdmins have no control over (compare to bare metal)
 - \star Security assessment of the images is more complex to evaluate
 - > CERN level service would be nice : proposal to IT being assessed in the next few months
 - \star Will require significant work to be able to come to a production service
 - * Kubernetes being investigated by some ATLAS & CMS groups at proof of concept level
 - Some people have ideas about running container on SoC !

Proposals: advances since last WS

CCNS and a second secon

□ Support for an ARM OS

- ★ No support for Arm32 from IT due to upstream support not existing
- ★ Arm64 support for CentOS/RHEL/ALMA 8 and 9
- ★ Links with CentOS community Special Interest Groups ?
- ★ Central build infrastructure: two initiatives
 - ▶ Build infrastructure for FPGA etc... (mentioned earlier this week by ATS sector and supported by EP)
 - ▶ Build infrastructure for Gitlab-CI with bare metal: being setup by IT, with new HW on order
- □ Discussions with IT networking to support ClientID
 - **\star** Available in LanDB by end of this year

Discussions with sub-detectors HW producers to understand network requirements

- \star Number of connections
- ★ Of which type (1Gb/10Gb)
- ★ Via a Hub slot switch/front panel

Proposals 2: advances since last WS

SoC Interest Group setup

Mutualising effort between SysAdmins

Twiki has information

Feed the SoC Interest group twiki with:

- \star Tools, tool chains
- **★** Compilers
- ★ Instructions for using/building etc...
- ★ Document working (or not) solutions

Use the SoC Interest Group mailing list

- ★ For sharing knowledge
- **\star** For community help

Test setups

- ★ Provided and maintained by SysAdmins
- Test setups being finalised * Where supported tools/ideas/solutions can be tested

Define collaboration between SysAdmin teams

- ★ Mutualize effort
- ★ Pool knowledge
- ★ Avoid re-inventing the wheel

- □ Not listed in any special order, may be tackled out of order
- □ Setup ClientID support on experiment test setups
 - ★ Test implementation done by IT in LanDB
 - **★** Workaround in place for CMS, based on naming convention (see next talk)
- □ Setup root FS with puppet configuration running at boot
 - ★ With NFS in RW mode: working
 - ★ With RO root FS and RW overlay
- Are people interested in VM/docker image with central services for labs or bastion hosts ?
 - ★ DHCP with ClientID, TFTP, NFS, syslog server, DNS, NTP : shown by Kareen on Thursday morning, more news on next presentation
- □ Integration with different types of boards
 - ★ Investigate requirements
 - ★ Understand issues
 - ★ Look at the kernel issues (see previous slides)

- An attempt at clarification ...
- ❑ What is applicable to Phase-1 ?
 - ★ MAC addresses and not Client ID
 - ★ Network isolation (no support for ARM) in both proposed ways

□ What is applicable to Phase-2 ?

- ★ Site Number proposal, Client ID, Naming convention
- ★ ARM support (likely netboot)
- ★ Puppet configuration

Differences between ATLAS/CMS

- ★ On timescale of Phase-2, should be more or less in line on all covered topics
- \star Specific exception would be mentioned as we progress
- ★ Different role out/testing timescales (very manpower dependent)
- \star We are collaborating to try to benefit from the available manpower

GitLab - New ARM Runners centrally offered OTG0144823

ARM Instance Runners

- ★ Git service would like to share an important update regarding our GitLab Runners infrastructure.
- ★ As of Friday 6th October 2023, Git Service will start offering new centrally ARM runners based on Kubernetes.
- ★ Initially, these runners will run with limited capacity, allowing a total maximum of 6 concurrent jobs, and they will run non-privileged workflows (docker commands are unlikely to work). This concurrency will be increased over time as the demand increases, and privileged workflows will be considered in a later stage.
- The documentation about usage of GitLab ARM Runners can be found at General considerations for K8s+executer ARM Runners

GitLab documentation in general is: https://gitlab.docs.cern.ch/

□ Progress is being made on the TDAQ SysAdmin side

- ★ Booting of SoC
- ★ ClientID soon ready for use, workaround already in place for CMS
- ★ OS support:
 - Stock kernel to be investigated
- ★ Setup and use/support of test labs
- ★ Containers usage being investigated
- You may be interested to subscribe to an IT Mattermost channel (ARM64): https://mattermost.web.cern.ch/it-dep/channels/aarch64-arm64

□ Thank you

Network addresses up to now...

The second secon

□ Standard PCs/uTCA based HW:

- ★ Names (in CMS) are functional & geographical
 - {type/function}-{Rack}-{U-position}-{index/slot}
 - ✓ mch-s2f05-20-01
 - ✓ amc-s2f05-20-[01..12]
- ★ Names (in ATLAS) are functional
 - {type}-{detector}-{function}
- ★ Either IP/Name assigned based on MAC address using DHCP or RARP (uTCA)
 - ➢ Needs update to change PC/board in case of failure
 - Centrally managed by TDAQ SysAdmin Teams
 - ATLAS has this one only
- ★ Or using System Manager (based on IPMI board insertine moval) triggers
 - Needs description of crate layouts
 - ➢ No MAC address needed
 - Geographical names important
 - ➢ No update on failure
 - Layout description managery sub-detector