
Gitlab CI for FPGA/SoC Projects

Carmen Marcos, Christos Gentsos* 
(IT-CA-GES)

6 October 2023



● What is CI, why do we care?

● Project purpose and objectives

● Gitlab CI basics

● Gitlab Runners, our cluster

● Defining CI jobs

● Lazy pulling

● Existing images – possible improvements

● Current state and future plans

● Questions?

Outline

26 October 2023IT-CA-GES | Gitlab CI for FPGA/SoC Designs 3rd CERN System-on-Chip Workshop



What is CI, why do we care?

6 October 2023
IT-CA-GES | Gitlab CI for FPGA/SoC Designs

33rd CERN System-on-Chip Workshop

What is CI in FPGA/SoC Projects?
● Continuous Integration: first used in software development
● Involves regularly and automatically integrating code changes from multiple 

contributors into a shared codebase
● The term has come to be mostly used to refer to automatic testing and building 

at the repository level → a pillar when it comes to applying CI principles

Benefits:
● Automated and consistent system for various types of tests (unit tests, system-

level tests, linting, code coverage, …) and builds (bitstream, drivers, utilities)
● Whole sets of jobs easy to launch → used more often → less breakage, easier bug-

hunting on regressions
● Facilitates common development and code sharing (could be IP core libraries)



Project purpose and Objectives

6 October 2023
IT-CA-GES | Gitlab CI for FPGA/SoC Designs

43rd CERN System-on-Chip Workshop

Why this project?
● Enabling CI practices can greatly benefit FPGA/SoC design
● Some teams have already done considerable work to get there, but lack of 

centralized infrastructure is a pain:
○ Hard to efficiently set up and (most importantly) maintain build clusters
○ Electronics engineers are not IT → even harder
○ Huge toolchains (O(100GB) for toolchains) don’t make it any easier, either
○ Effort multiplied across all the different teams, very inefficient at scale

Our objectives:
● Scalable, maintained VM-based cluster to run the CI jobs, adapted to the 

resource requirements of EDA tools (IT-PW)
● Easy to use Docker images for EDA tools, like simulators and toolchains (IT-CA)
● Document the above clearly to support the 100+ projected users



Gitlab CI basics

56 October 2023
IT-CA-GES | Gitlab CI for FPGA/SoC Designs

3rd CERN System-on-Chip Workshop

Gitlab CI gives tools to do exactly that

● Pipeline can be started after each 
push or merge request

● A pipeline can bundle many jobs 
together: tests, builds, doc 
generation

● One can also test or even deploy 
on real HW (out of scope)

● Code changed often → sometimes changes reach the main branch many times/day
● Each change can introduce a bug, especially when touching fundamental building 

blocks in complex systems
● Ideally one should run a “full” test suite and build after each change to the main 

branch (or on a schedule – nightly, for example)



Gitlab Runners, our cluster

66 October 2023
IT-CA-GES | Gitlab CI for FPGA/SoC Designs

3rd CERN System-on-Chip Workshop

● A runner is a computer (or a k8s 
cluster) that will execute CI jobs 
from a pipeline

● It can be either private, 
registered to a project/group; or 
instance (shared), visible to all 
projects

● A runner is assigned one or more 
tags, depending on its purpose / 
capabilities (e.g. can be fpga-
small or fpga-bigmem in our 
cluster)

● The cluster that we will deploy will mainly consist of (20-30?) 
instances with 29GB RAM, 16VCPUs, 160GB SSD → fine for most 
tasks

● We can get quota for a few machines of double that size (60GB 
RAM)

● We can request quota for more machines if we see that we need it
○ easy to scale up or down



Defining CI jobs

76 October 2023
IT-CA-GES | Gitlab CI for FPGA/SoC Designs

3rd CERN System-on-Chip Workshop

● In a special file (.gitlab-ci.yml) we 
can declare the stages and jobs 
that make up a pipeline

● For each job, we assign a runner 
tag and a docker image name (e.g. 
fpga-bigmem and 
registry.cern.ch/vivado:2023.1), the 
commands to be ran and any 
resulting files to be kept

● The right runner type will be 
instantiated based on the tag, 
downloading the docker image 
and running the specified 
commands

● If all goes well, the resulting files 
can be found on the gitlab web 
page

stages:

- test

test-job:

stage: test

tags:

- fpga-mid

image: registry.cern.ch/ci4fpga/vivado:2022.2

script:

- vivado -mode batch -source build.tcl

artifacts:

paths:

- "*.rpt"

- "*.bit"



Lazy Pulling

86 October 2023
IT-CA-GES | Gitlab CI for FPGA/SoC Designs

3rd CERN System-on-Chip Workshop

● To pull the image can be one of the most time-consuming steps in the 
container lifecycle…
○ …but in many cases only a small part of the pulled data is ever read
○ Imagine a case of an FPGA toolchain installation, full of 10s of GBs of device 

data for all families – but we only need one family in a run!

● Lazy pulling allows a container to be started with just the necessary data pulled
○ 100GB image as an example: 15 secs vs 15 minutes (with a 1Gbps connection)
○ eStargz format, allows chunks of data to be fetched on-demand



Toolchains

● Xilinx ISE

○ 14.7

● Xilinx Vivado

○ 2018.1

○ 2018.3

○ 2019.1

○ 2019.2

○ 2021.1

○ 2021.2

○ 2022.1

○ 2022.2

● Microsemi Libero

○ 11.9

● Intel Quartus Prime

○ 20.1

Existing Images

96 October 2023
IT-CA-GES | Gitlab CI for FPGA/SoC Designs

3rd CERN System-on-Chip Workshop

Simulators

● Aldec Riviera-Pro

○ 2021.04

○ 2022.10

○ 2023.04

● Mentor ModelSim

○ 10.7a

● Mentor Questasim

○ 2022.1

● Ghdl

Others

● OpenOCD (Ubuntu)

● Doxygen

● Typhoon HIL

● PetaLinux

○ 2018.1

○ 2019.2

○ 2021.1

○ 2021.2

○ 2022.1

○ 2022.2



Possible improvements

106 October 2023
IT-CA-GES | Gitlab CI for FPGA/SoC Designs

3rd CERN System-on-Chip Workshop

● Adoption of lazy pulling is only one of those
● We can adapt the images to run the tools as the user that launched the job

○ This can enable us to use Europractice licenses with CI (not possible today)
● We can consider implementing license checks that run on container startup to 

avoid CI hogging licenses when humans need them
● Richer images (we don’t care about making the image larger because of lazy 

pulling)
○ Pre-compiled libraries for multiple releases of each vendor toolchain
○ Possibility to have tools like embedded compilers etc pre-installed

● Consistent images open up the possibility of the community sharing and 
collaborating on common, “base” build “recipes” that might be used across 
multiple projects and teams



Current state and future plans

116 October 2023
IT-CA-GES | Gitlab CI for FPGA/SoC Designs

3rd CERN System-on-Chip Workshop

Still a work in-progress
● Most of the Dockerfile adaptation needed to utilize lazy pulling is complete

● The staging cluster has been used to implement small projects, very fast (around 3 minutes to 

bring up a new VM, transfer the necessary parts of the otherwise huge Vivado, and generate a 

bitstream)

● Beta-testing by ATS and EP users at the end of 2023 will be available as proof of concept

Expected Outcome:

● Assist common development and code sharing

● Eliminate technical burden of creating and maintaining the necessary infrastructure

● Provide and maintain the simulation and synthesis tools and their licensing configuration

● Make all this available to both accelerators and the experiments



Current state and future plans

126 October 2023
IT-CA-GES | Gitlab CI for FPGA/SoC Designs

3rd CERN System-on-Chip Workshop

Please feel free to join the ci4fpga-beta e-group to get informed 
when the beta is available!



Any questions?

Many thanks!


