Xilinx Versal ACAP/SoC for (Quasi) Real-Time Data Processing

Ben Rosser Tianjia Du Timothy Hoffman David Miller

University of Chicago

October 5, 2023

Introduction

- Two disclaimers:
 - I'm not an FPGA/SoC expert; I'm a physics postdoc (with some digital logic experience).
 - This work is still ongoing: hope to show more concrete results/conclusions in the future.
- Interested in hardware acceleration of algorithms for e.g. collider trigger systems:
 - Want to run high-quality particle reconstruction algorithms, make decisions in real time.
 - Increasing demand for hardware-based machine learning; lots of community interest.
 - Approaches using high level synthesis (e.g. hls4ml): very powerful, but still require significant firmware engineering expertise for final implementation
 – which is in short supply.
- This talk: how do the new Xilinx Versal FPGAs fit into this picture?
 - Can "data scientists" successfully deploy neural networks to them with minimal FPGA experience? If so, what are the limitations of this approach?
 - We looked at **reproducing** examples using the Xilinx Vitis AI framework.
 - We started attempting to deploy a custom neural network using these tools (PELICAN); and explored some of the potential problems and limitations.

Xilinx Versal ACAP and AI Engines

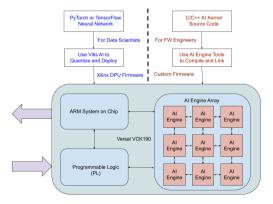
- We purchased a Xilinx Versal ACAP evaluation kit for R&D:
 - Adaptive Compute Acceleration Platform has FPGAs and ARM SoC.
- Bought a VCK190 (AI Core series).
- This board also contains an array of 400 Al Engine tiles with:
 - Scalar and vector processors.
 - 32 kB local memory.
 - Fast interconnects, AXI interface.
- Al Engines can run up to 1.3 GHz; intended for real-time processing and ML applications.

vck190 Evaluation Kit

Ben Rosser (Chicago)

Programming AI Engines with Vitis AI

- Al engines cannot be programmed directly through (high-level) synthesis or RTL.
- Xilinx provide two different "flows" for programming AI engines:
 - \bullet Writing C/C++ code, compiling and creating AI Engine Kernel using aiecompiler.
 - Using Vitis AI to deploy pre-trained neural networks directly on the board.
- Vitis AI intended "for data scientists":
 - Requires Xilinx DPU (Deep Learning Processor Unit) firmware.
 - DPU uses AI Engines on the Versal; programmable logic on other boards.
- Integrates with Python ML environments:
 - Supports PyTorch and TensorFlow.
 - Vitis Al provides quantizer, model inspector, and optimizer (requires license)
 - (Mostly) open source, does not require Vitis.



- Xilinx provide Vitis AI tutorials for both PyTorch and TensorFlow.
- First question: do these tutorials actually work? Can we reproduce their results?
- For Vitis AI 3.0+: basic tutorial using ResNet network for image recognition.
 - ResNet-18 trained on CIFAR10 dataset: we ran this, will walk through today.
 - ResNet-18 trained on ImageNet dataset: same approach, just different dataset.
 - Note: newest release (Vitis AI 3.5) doesn't have pre-built DPU images for the VCK190.
- Must set up board with DPU: can download pre-built image or build IP (requires Vitis).
- Steps (common to both tutorials):
 - Preprocess data (images), set up directory structures appropriately, etc.
 - Train the model (can skip if using pre-trained model).
 - Inspect the model: is it compatible with the target DPU?
 - Quantize and compile the model.

Vitis AI Setup

- Install instructions; see also official Xilinx instructions:
 - Xilinx provide docker containers; code can also be installed manually from source.
 - Docker containers with Nvidia GPU support must be built manually.
 - CPU-only containers can be downloaded from dockerhub: xilinx/vitis-ai-tensorflow2-cpu
- Instructions for setting up GPU TensorFlow2 container:

```
$ git clone https://github.com/Xilinx/Vitis-AI.git
$ cd Vitis-AI
$ git clone -b 3.5 https://github.com/Xilinx/Vitis-AI-Tutorials.git tutorials
$ cd docker && ./docker_build.sh -t gpu -f tf2
```

• To activate and run a container (and then start the tutorial):

```
$ cd ..
```

- \$./docker_run.sh xilinx/vitis-ai-tensorflow2-gpu:3.5.0.001-bbccde60d
- > conda activate vitis-ai-tensorflow2
- > cd /workspace/tutorials/RESNET18

Training from Inside Vitis AI

- Training results, pre-quantization, from 50 epochs (batch size 256) and two different runs.
- Train1 does file I/O; Train2 loads images over memory interface; meant to be equivalent.

Script	trainl	train1_resnet18_cifar10.py			train2_resnet18_cifar10.py					
Validation	Validation loss			0.657			0.059			
Validation	0.859	0.859			0.980					
Test loss	0.679	0.679			0.782					
Test accu	racy	0.853					0.840			
	precision	recall f	1-score	support			precision	recall	f1-score	support
airplane automobile bird cat deer dog frog horse ship truck accuracy macro avg	0.91 0.89 0.84 0.74 0.85 0.80 0.81 0.89 0.93 0.87 0.85	0.91 0.93 0.80 0.67 0.84 0.72 0.94 0.90 0.92 0.90	0.91 0.82 0.71 0.85 0.76 0.87 0.89 0.93 0.89 0.89 0.85 0.85	500 500 500 500 500 500 500 500 500 500		airplane automobile bird cat deer dog frog horse ship truck accuracy macro avg	0.88 0.84 0.84 0.77 0.87 0.77 0.83 0.83 0.83 0.83 0.83 0.83	0.84 0.96 0.64 0.78 0.75 0.92 0.92 0.91 0.89	0.86 0.89 0.82 0.70 0.82 0.76 0.88 0.87 0.91 0.87 0.84 0.84	1000 1000 1000 1000 1000 1000 1000 100
weighted avg	0.85	0.85 cifar1	0.85 data	5000		weighted avg	0.84	0.84	0.84	10000 +rair

Ben Rosser (Chicago)

CERN SoC Workshop

October 5, 2023 7 / 17

Model Inspection and Quantization

- Inspection: is the floating point model compatible with the target board DPU?
 - How does the model get partitioned for different DPU architectures?
 - What layers might not get mapped onto a DPU, and why?
- Quantization: quantizes frozen model from 32 bit floats to 8 bit fixed point.
 - Quantization differs for different trainings (not immediately obvious why!)

Model	Float model prediction	Quantized model
Final saved CNN1	test loss = 1.34902 test accuracy = 0.73510 train loss = 0.73383 train accuracy = 0.82715	test accuracy = 0.73040 train accuracy = 0.81738
Best CNN1	test loss = 1.32469 test accuracy = 0.73690 train loss = 0.73552 train accuracy = 0.82702	test accuracy = 0.73360 train accuracy = 0.81515
CNN2	test loss = 0.78224 test accuracy = 0.84000 train loss = 0.20956 train accuracy = 0.95135	test accuracy = 0.83700 train accuracy = 0.94703

source run_all.sh quantize_resnet18_cifar10

Ben Rosser (Chicago)

CERN SoC Workshop

Compilation and Deployment

- Compiles model into target **board-specific**
 - *.xmodel format:
 - ZCU102, VCK190
 - VEK280, VCK5000
 - Alveo V70
- We have access to both VCK190, ZCU102.
- On each board, installed:
 - Xilinx DPU firmware.
 - Test dataset.
 - Example SoC control software (using VART API to access DPU).
 - Compiled model files.

[UWILOG[ILWF0] Total device subgraph number 3, DPU subgraph number 1 [UWILOG[ILWF0] compile done. [UWILOG[ILWF0] The meta json is saved to "/workspace/tutorials/RESNET18/files/./build/compiled_zcu102/meta.json" [UWILOG[ILWF0] The compiled xmodel is saved to "/workspace/tutorials/RESNET18/files/./build/compiled_zcu102/zcu102_q_train1_ rement18_cifar10_final.h5.xmodel" [UWILOG[ILWF0] The compiled xmodel is saved to "/workspace/tutorials/RESNET18/files/./build/compiled_zcu102/zcu102_q_train1_ RESNET18/files/./build/compiled_zcu102/mdSsum.txt"

MODEL COMPILED

source run_all.sh compile_resnet18_cifar10

CERN SoC Workshop

Versal vs Zynq Performance

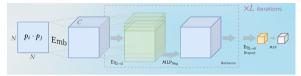
./rpt/predictions_cifar10_resnet18.log has 35008 lines number of total images predicted 4999 number of top1 false predictions 733 number of top1 right predictions 4266 number of top5 false predictions 33 number of top5 right predictions 4966 top1 accuracy = 0.89	./rpt/predictions_cifar10_resnet18 log has 35008 lines number of total images predicted 4999 number of top1 false predictions 1423 number of top1 right predictions 3576 number of top5 false predictions 184 number of top5 right predictions 4815 top1 accuracy = 0.72 top5 accuracy = 0.96
--	--

- Models really do run on the boards; accuracy comparable to post-quantization!
 - The **same model** was trained and quantized, so accuracy is the same on both boards; different training runs continue to give slightly different results.
- Performance statistics can be gathered using vaitrace:
 - vaitrace [--txt] ./control_app ./vck190_resnet18_cifar10.xmodel ...
 - Generates either text output or CSV files which can be loaded into Vitis Analyzer.
- Versal performs faster and more efficiently, but Al engines use more bandwidth.
- Full vaitrace results available in backup, includes information about CPU function calls.

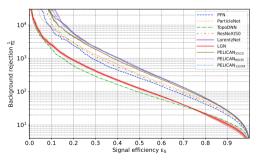
Board	SW Runtime ($ m ms$)	HW Runtime ($ m ms$)	Efficiency (%)	Avg Bandwidth $({ m MB/s})$	
zcu102	1.583	1.420	4.3	7516.129	
vck190	0.499	0.399	1.9	26876.923	

PELICAN: Lorentz-Invariant Networks

- Can we extend these examples to something nontrivial?
- Testing applying these methods to a novel network, PELICAN:
 - Developed by our collaborators.
 - Built to be Lorentz and permutation equivariant.
 - Use Lorentz-invariant dot products of 4-momenta as basis to build network of Lorentz invariant/covariant functions.
 - Excellent performance as a top quark tagger; promising for other tasks.
 - The type of network we might want to deploy as part of a trigger system.



Jan Offermann



2211.00454, 2307.16506

Porting PELICAN using Vitis AI

- How do we integrate Vitis AI with a new model like PELICAN?
 - Built using PyTorch, not Tensorflow.
 - Pre-trained; can start with pre-built xilinx/vitis-ai-pytorch-cpu containers.
- Load the model, run the quantizer:
 - Specify mode: calibration or testing.
 - Specify device (CPU or GPU) and output directory for quantization results.
 - Specify the **input shape**: what dimension is your input data?
 - Pre-processing may be useful to get input data in hardware-friendly format!
- Must test model after quantization.

from pytorch_nndct.apis import torch_quantizer . . . def main(). # Instantiate and load PELICAN model... model = PELICANClassifier(...) model.load state dict(pretrained state) # Need the input data shape. input shape = next(iter(dataloader)) # Run the quantizer! quantizer = torch_quantizer(quant_mode, model. (input_shape), output_dir, device="cpu") model = quantizer.guant_model

```
# Then run PELICAN model test suite.
```

. . .

Issues Quantizing Networks

- Does this work out of the box? Yes... with some caveats.
 - Lots of warnings (VAIQ_WARN); complaints about tensors that could not be quantized.
 - Quantization only supports floats and doubles- not integers and booleans...
 - Some tensors evaluate to infinity (or NaN): maybe a result of inputs that couldn't be quantized propagating through the model... needs investigation.
- Running model inspector needed to better understand what's happening.

[QUANTIZER_TORCH_TENSOR_TYPE_NOT_QUANTIZABLE]: The tensor type of PELICANClassifier::input_0
 is torch.int64. Only support float32/double/float16 quantization.
[QUANTIZER_TORCH_TENSOR_TYPE_NOT_QUANTIZABLE]: The tensor type of PELICANClassifier::input_2
 is torch.bool. Only support float32/double/float16 quantization.
[QUANTIZER_TORCH_TENSOR_VALUE_INVALID]: The tensor type of
 PELICANClassifier::PELICANClassifier/Net2to2[net2to2]/Eq2to2[eq_layers]/ModuleList[0]/ret.
 have "inf" or "nan" value. The quantization for this tensor is ignored. Please check it.
[QUANTIZER_TORCH_TENSOR_VALUE_INVALID]: The tensor type of
 PELICANClassifier::PELICANClassifier/Eq2to0[agg_2to0]/ret.193 have "inf" or "nan" value.
 The quantization for this tensor is ignored. Please check it.

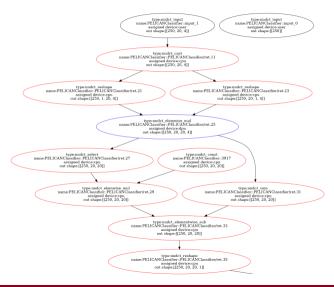
- What is needed to run the inspector?
 - What **DPU architecture** do you intend to deploy on?
 - DPUCVDX8G: Versal, 8-bit quantization.
 - Otherwise, same inputs as quantizer.
 - Runs on CPU/GPU, emulates DPU.
- Needed to **adapt input data format** to run inspector successfully:
 - PELICAN assumed its input would be a dictionary; Inspector assumed tuple/list.
 - Feature described as "experimental".
- Generates very detailed report, with visualization of quantized graph.

```
from pytorch_nndct.apis import torch_quantizer
from pytorch nndct.apis import Inspector
. . .
def main():
    # Instantiate and load PELICAN model
    . . .
    # Need the input data shape.
    input_shape = next(iter(dataloader))
    # Run the inspector.
    inspector=Inspector("DPUCVDX8G ISA3 C32B6")
    inspector.inspect(model, (input_shape),
                      device="cpu",
                      image_format='png')
    # Run the quantizer post-inspection
```

. . .

. . .

Results from the Model Inspector



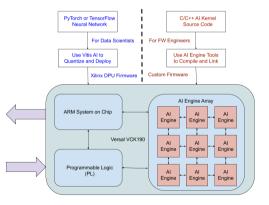
- Model summary: mostly CPU...
 - DPU nodes: 14 total
 - CPU nodes: 116 total
 - Some inputs appear unused.
- Why does DPU implementation fail?
 - "All the children nodes are assigned to CPU."
 - "Input of reshape is not on DPU."
 - "nndct_cast can't be converted to XIR."
 - "xir::Op{name = ..., type = ...} has been assigned to CPU: [DPU does not support eltwise SUB]."
- Investigation required; changes to model likely needed!

Programming AI Engines Directly

- Vitis AI is quite powerful, but doesn't work out of the box on complex networks.
 - Some tools available: WeGo, integration with ONNX; support for custom NN layers.
 - But for complex networks (or for non-ML applications!) may need to program AIE directly.

• Al Engine tools approach:

- Write C/C++ code; build with aiecompiler
- Emulate AI engines, run simulation with aiesimulator.
- Create, link AI engine kernel using Vitis.
- Integrate with PL kernels or SoC code.
- I wrote a simple "hello world" example.
- More sophisticated tutorials from Xilinx:
 - Including implementing neural network (LeNet) by hand, without using Vitis AI.
 - We are presently evaluating this workflow!



• The Xilinx Versal AI series boards have powerful features intended for machine learning:

- Vitis AI provides a framework for easily deploying neural networks on these boards.
- Easy to run a network on different board types; comparison between Versal and Zynq shows clear performance differences, even for relatively simple examples.
- Tools don't necessarily work out of the box with all custom network architectures.
- And to build a real system, still need to integrate Xilinx DPU with other firmware.
- We'd like to understand better what (if anything) we can use these boards for:
 - Combination of SoC with programmable logic and AI engine functionality quite exciting.
 - Evaluating different workflows and use cases in e.g. a trigger context.
 - Hope to have more concrete results to present in the future!
- Thanks for your attention!

Vaitrace Results: Versal

DPU Summary:
DPU Id Bat DPU SubGraph WL SW_RT HW_RT Effic LdWB LdFM StFM AvgBw
DPUCVDX8G_1 6 quant_add 0.075 0.499 0.399 1.9 10.707 0.018 ~0 26876.923

Notes:

"~0": Value is close to 0. Within range of (0. 0.001) Bat: Batch size of the DPU instance WL(Work Load): Computation workload (MAC indicates two operations), unit is GOP SW_RT(Software Run time): The execution time calculate by software in milliseconds, unit is ms HW RT(Hareware Run time): The execution time from hareware operation in milliseconds, unit is ms Effic(Efficiency): The DPU actual performance divided by peak theoretical performance unit is % Perf(Performance): The DPU performance in unit of GOP per second, unit is GOP/s LdFM(Load Size of Feature Map): External memory load size of feature map, unit is MB LdWB(Load Size of Weight and Bias): External memory load size of bias and weight, unit is MB StFM(Store Size of Feature Map): External memory store size of feature map, unit is MB AvgBw(Average bandwidth): External memory average bandwidth. unit is MB/s

CPU Functions(Not in Graph, e.g.: pre/post-processing, vai-runtime):						
Function	Device	Runs	AverageRunTime(ms)			
	+		+			
cv::imread	CPU	5000	0.153			
cv::resize	CPU	5000	0.007			
<pre>vart::TensorBuffer::copy_tensor_buffer</pre>	CPU	1668	0.044			
xir::XrtCu::run	CPU	834	0.477			
CPUCalcSoftmax	CPU	5000	0.003			
ТорК	CPU	5000	0.017			

Ben Rosser (Chicago)

Vaitrace Results: Zynq

DPU Summary:		
DPU Id Bat DPU SubGraph		
DPUCZDX8G_1 1 quant_add	 	

Notes:

"~0": Value is close to 0, Within range of (0, 0.001) Bat: Batch size of the DPU instance WL(Work Load): Computation workload (MAC indicates two operations), unit is GOP SSW_RT(Software Run time): The execution time calculate by software in milliseconds, unit is ms HW_RT(Hareware Run time): The execution time from hareware operation in milliseconds, unit is ms Effic(Efficiency): The DPU actual performance divided by peak theoretical performance, unit is % Perf(Performance): The DPU performance in unit of GOP per second, unit is GOP/s LdFM(Load Size of Feature Map): External memory load size of feature map, unit is MB StFM(Store Size of Feature Map): External memory store size of feature map, unit is MB AvgBw(Average bandwidth): External memory average bandwidth. unit is MB/s

. . . .

Function	Device	Runs	AverageRunTime(ms)		
	+	++			
cv::imread	CPU	3786	0.269		
cv::resize	CPU	3786	0.012		
<pre>vart::TensorBuffer::copy_tensor_buffer</pre>	CPU	7572	0.023		
xir::XrtCu::run	CPU	3786	1.571		
CPUCalcSoftmax	CPU	3785	0.006		
ТорК	CPU	3785	0.033		

CPU Functions(Not in Graph, e.g.: pre/post-processing, vai-runtime):

Ben Rosser (Chicago)