Xilinx Versal ACAP /SoC for (Quasi) Real-Time Data Processing

Ben Rosser Tianjia Du Timothy Hoffman David Miller
University of Chicago

October 5, 2023

CHIEAGS ATLAS

EXPERIMENT

Ben Rosser (Chicago) CERN SoC Workshop October 5, 2023 1/17

Introduction

@ Two disclaimers:
o I'm not an FPGA/SoC expert; I'm a physics postdoc (with some digital logic experience).
e This work is still ongoing: hope to show more concrete results/conclusions in the future.
@ Interested in hardware acceleration of algorithms for e.g. collider trigger systems:
e Want to run high-quality particle reconstruction algorithms, make decisions in real time.
e Increasing demand for hardware-based machine learning; lots of community interest.
e Approaches using high level synthesis (e.g. hls4ml): very powerful, but still require
significant firmware engineering expertise for final implementation— which is in short supply.
@ This talk: how do the new Xilinx Versal FPGAs fit into this picture?
e Can "data scientists" successfully deploy neural networks to them with minimal FPGA
experience? If so, what are the limitations of this approach?
o We looked at reproducing examples using the Xilinx Vitis Al framework.
o We started attempting to deploy a custom neural network using these tools (PELICAN); and
explored some of the potential problems and limitations.

Ben Rosser (Chicago) CERN SoC Workshop October 5, 2023 2 /17

https://indico.cern.ch/event/776422/attachments/1769690/2874927/cocotb_talk.pdf
https://github.com/fastmachinelearning/hls4ml
https://github.com/Xilinx/Vitis-AI
https://github.com/abogatskiy/PELICAN

Xilinx Versal ACAP and Al Engines

vck190 Evaluation Kit
Ben Rosser (Chicago)

CERN SoC Workshop

@ We purchased a Xilinx Versal ACAP
evaluation kit for R&D:

e Adaptive Compute Acceleration
Platform has FPGAs and ARM SoC.
e Bought a VCK190 (Al Core series).

@ This board also contains an array of
400 Al Engine tiles with:

e Scalar and vector processors.
e 32kB local memory.
e Fast interconnects, AXI interface.
@ Al Engines can run up to 1.3 GHz;
intended for real-time processing and
ML applications.

October 5, 2023 3/17

https://www.xilinx.com/products/boards-and-kits/vck190.html
https://www.xilinx.com/an/adaptive-compute-acceleration-platforms.html
https://www.xilinx.com/an/adaptive-compute-acceleration-platforms.html
https://www.xilinx.com/products/technology/ai-engine.html

Programming Al Engines with Vitis Al

@ Al engines cannot be programmed directly through (high-level) synthesis or RTL.
@ Xilinx provide two different "flows" for programming Al engines:
o Writing C/C++ code, compiling and creating Al Engine Kernel using aiecompiler.
e Using Vitis Al to deploy pre-trained neural networks directly on the board.

PyTorch or TensorFlow C/C++ Al Kernel
Neural Network Source Code

I
1
1
|
For Data Scientists | For FW Engineers
I
1
1
|
1

o Vitis Al intended "for data scientists":

o Requires Xilinx DPU (Deep Learning
Processor Unit) firmware.

e DPU uses Al Engines on the Versal,

programmable logic on other boards.

o Integrates with Python ML environments: <‘: AR Systomon Chp
e Supports PyTorch and TensorFlow.
e Vitis Al provides quantizer, model
inspector, and optimizer (requires license) —
o (Mostly) open source, does not require Vitis.

Use Vitis Al to Use Al Engine Tools
Quantize and Deploy to Compile and Link

Xilinx DPU Firmware ~ Custom Firmware

Al Engine Array

Versal VCK190

Programmable Logic
(PL)

Ben Rosser (Chicago) CERN SoC Workshop October 5, 2023 4 /17

https://github.com/Xilinx/Vitis-AI
https://github.com/Xilinx/Vitis-AI

Xilinx RESNET Tutorial

Xilinx provide Vitis Al tutorials for both PyTorch and TensorFlow.

First question: do these tutorials actually work? Can we reproduce their results?

For Vitis Al 3.0+4: basic tutorial using ResNet network for image recognition.
o ResNet-18 trained on CIFAR10 dataset: we ran this, will walk through today.
o ResNet-18 trained on ImageNet dataset: same approach, just different dataset.
o Note: newest release (Vitis Al 3.5) doesn't have pre-built DPU images for the VCK190.

Must set up board with DPU: can download pre-built image or build IP (requires Vitis).

Steps (common to both tutorials):
o Preprocess data (images), set up directory structures appropriately, etc.
o Train the model (can skip if using pre-trained model).
o Inspect the model: is it compatible with the target DPU?
o Quantize and compile the model.

Ben Rosser (Chicago) CERN SoC Workshop October 5, 2023 5/17

https://github.com/Xilinx/Vitis-AI-Tutorials
https://arxiv.org/abs/1512.03385
https://www.xilinx.com/products/intellectual-property/dpu.html

Vitis Al Setup

#H H hH PH

VvV V & &

@ Install instructions; see also official Xilinx instructions:
e Xilinx provide docker containers; code can also be installed manually from source.
e Docker containers with Nvidia GPU support must be built manually.
e CPU-only containers can be downloaded from dockerhub: xilinx/vitis-ai-tensorflow2-cpu

@ Instructions for setting up GPU TensorFlow2 container:

git clone https://github.com/Xilinx/Vitis-AI.git

cd Vitis-AI

git clone -b 3.5 https://github.com/Xilinx/Vitis-AI-Tutorials.git tutorials
cd docker && ./docker_build.sh -t gpu -f tf2

@ To activate and run a container (and then start the tutorial):

cd ..

./docker_run.sh xilinx/vitis-ai-tensorflow2-gpu:3.5.0.001-bbccde60d
conda activate vitis—ai-tensorflow2

cd /workspace/tutorials/RESNET18

Ben Rosser (Chicago) CERN SoC Workshop October 5, 2023 6 /17

https://xilinx.github.io/Vitis-AI/3.0/html/docs/install/install.html
https://hub.docker.com/r/xilinx/vitis-ai-tensorflow2-cpu

Training from Inside Vitis Al

@ Training results, pre-quantization, from 50 epochs (batch size 256) and two different runs.
@ Trainl does file I/O; Train2 loads images over memory interface; meant to be equivalent.
Script trainl_resnet18_cifarl0.py train2_resnet18_cifarl0.py
Validation loss 0.657 0.059

Validation accuracy

Test loss

Test accuracy

precision recall fl-score support precision recall fl-score support

airplane 0.91 0.91 0.91 500 airplane 0.88 0.84 0.86 1000
automobile 0.89 0.93 0.91 500 automobile 0.8u 0.96 0.89 1000
bird 0.84 0.80 0.82 500 bird 0.84 0.80 0.82 1000

cat 0.74 0.67 8.71 500 cat 0.77 0.64 0.70 1000

deer 0.85 0.84 0.85 500 deer 0.87 0.78 0.82 1000

dog 0.80 0.72 0.76 500 dog 0.77 0.75 0.76 1000

frog 0.81 0.94 0.87 500 frog 0.83 0.92 0.88 1000

horse 0.89 0.90 0.89 500 horse 0.83 0.92 0.87 1000

ship 0.93 0.92 0.93 500 ship 0.91 0.91 0.91 1000

truck 0.87 0.90 0.89 500 truck 0.86 0.89 0.87 1000
accuracy 0.85 5000 accuracy 0.84 10000
macro avg 0.85 0.85 0.85 5000 macro avg 0.84 0.84 0.84 10000
weighted avg 0.85 0.85 0.85 5000 weighted avg 0.84 0.84 0.84 10000

source run_all.sh cifar10_dataset && source run_all.sh run_cifar10_training
Ben Rosser (Chicago) CERN SoC Workshop October 5, 2023

Model Inspection and Quantization

@ Inspection: is the floating point model compatible with the target board DPU?
e How does the model get partitioned for different DPU architectures?
o What layers might not get mapped onto a DPU, and why?

o Quantization: quantizes frozen model from 32 bit floats to 8 bit fixed point.
e Quantization differs for different trainings (not immediately obvious why!)

Float model prediction Quantized model

Final saved CNN1 test loss = 1.34902 N g 73040
test accura 073510 acy = 081738
train loss = 0.7338

Best CNN1 . test accurac
train accu
train los:
train accurac

test accurac! .83700
train accuracy = 0.94703

source run_all.sh quantize_resnet18_cifar10

Ben Rosser (Chicago) CERN SoC Workshop October 5, 2023

Compilation and Deployment

[UNILOG][INFO] Total device subgraph number 3, DPU subgraph number 1

*] Compiles mOdeI intO [UNILOG][INFO] Compile done.

[UNILOG][INFO] The meta json is saved to "/workspace/tutorials/RESNET18/files/./build/compiled_zcul02/meta.json"

target board_speciﬁc iﬂiZ‘Zﬂfi?iglllﬁilﬁf\?"iéei'miﬂi'{'“ is saved to "/workspace/tutorials/RESNET18/files/./build/compiled_zcul02/zcule2_q_trainl_
[UNILOGI[INFO] The compiled xmodel's md5sum is 53302b6bcee8lu6daecalc018ba595baf, and has been saved to "/workspace/tutorials
* ., xmodel format: /RESNET18/Files/. /build/compiled_zcul62/md5sun. txt"
MODEL COMPILED
e ZCU102, VCK190
source run_all.sh compile_resnetl18_cifar10
e VEK280, VCK5000 - piie_ -

e Alveo V70

@ We have access to both
VCK190, ZCU102.

@ On each board, installed:
e Xilinx DPU firmware.

o Test dataset.
e Example SoC control
software (using VART
API to access DPU). :
o Compiled model files. =) = = ==

Ben Rosser (Chicago) CERN SoC Workshop October 5, 2023 9 /17

https://docs.xilinx.com/r/en-US/ug1414-vitis-ai/Programming-with-VART
https://docs.xilinx.com/r/en-US/ug1414-vitis-ai/Programming-with-VART

Versal vs Zynq Performance

./rpt/predictions_cifarl@_resnet18.log has 35008 Llines ./rpt/predictions_cifarl@_resnetl8.log has 35008 lines
number of total images predicted 4999 number of total images predicted 4999

number of topl false predictions 733 number of topl false predictions 1423

number of topl right predictions 4266 number of topl right predictions 3576

number of top5 false predictions 33 number of top5 false predictions 184

number of top5 right predictions 4966 number of top5 right predictions 4815

topl accuracy = 0.85 topl accuracy = 0.72

top5 accuracy = 0.99 top5 accuracy = 0.96

@ Models really do run on the boards; accuracy comparable to post-quantization!

o The same model was trained and quantized, so accuracy is the same on both boards;
different training runs continue to give slightly different results.

@ Performance statistics can be gathered using vaitrace:
e vaitrace [--txt] ./control_app ./vckl190_resnetl18_cifar10.xmodel
o Generates either text output or CSV files which can be loaded into Vitis Analyzer.
@ Versal performs faster and more efficiently, but Al engines use more bandwidth.

@ Full vaitrace results available in backup, includes information about CPU function calls.
Board | SW Runtime (ms) | HW Runtime (ms) | Efficiency (%) | Avg Bandwidth (MB/s)

zcul02 1.583 1.420 4.3 7516.129
vck190 0.499 0.399 1.9 26876.923

Ben Rosser (Chicago) CERN SoC Workshop October 5, 2023 10 / 17

https://docs.xilinx.com/r/en-US/ug1414-vitis-ai/vaitrace-Usage
https://docs.xilinx.com/r/en-US/ug1393-vitis-application-acceleration/Vitis-Analyzer-GUI-and-Window-Manager

PELICAN: Lorentz-Invariant Networks

XL iterations

-

Egyo
Dropet

o Can we extend these examples to 4
. .. N| Pi‘Ppj Emb
something nontrivial?

Eqay MLPy,, Batchmorm

@ Testing applying these methods to a novel
network, PELICAN:

e Developed by our collaborators.

o Built to be Lorentz and permutation
equivariant.

e Use Lorentz-invariant dot products of
4-momenta as basis to build network of
Lorentz invariant/covariant functions.

o Excellent performance as a top quark
tagger; promising for other tasks.

o The type of network we might want to
deploy as part of a trigger system. o0 0 e eaeney s 80

2211.00454, 2307.16506

Ben Rosser (Chicago) CERN SoC Workshop October 5, 2023 11 /17

Jan Offermann

—————— PFN
ParticleNet

—== TopoDNN

- ResNeXts0
LorentzNet
LGN
PELICAN:515
—————— PELICANGo3s
————— PELICAN 3278

=
2

-
<

Background rejection &
=
i

=
A

o
=)

https://github.com/abogatskiy/PELICAN
https://indico.physics.lbl.gov/event/975/contributions/8286/attachments/4080/5481/pelican_boost_2023.pdf
https://arxiv.org/abs/2211.00454.pdf
https://arxiv.org/abs/2307.16506

Porting PELICAN using Vitis Al

@ How do we integrate Vitis Al with a new
model like PELICAN? from pytorch_nndct.apis import torch_quantizer

o Built using PyTorch, not Tensorflow.

-)) def main():
e Pre-trained; can start with pre-built

Instantiate and load PELICAN model. .

xilinx/vitis-ai-pytorch-cpu model = PELICANClassifier(...)
containers. model.load_state_dict(pretrained_state)
@ Load the model, run the quantizer: # Need the input data shape.

input_shape = next(iter(dataloader))

e Specify mode: calibration or testing. # Run the quantizer!

e Specify device (CPU or GPU) and output
directory for quantization results.
e Specify the input shape: what

quantizer = torch_quantizer(quant_mode,
model,
(input_shape),

dimension is your input data? output_dir,
o Pre-processing may be useful to get device="cpu")
input data in hardware-friendly format! model = quantizer.quant_model

. . # Then run PELICAN model test sutite.
o Must test model after quantization.

Ben Rosser (Chicago) CERN SoC Workshop October 5, 2023 12 /17

Issues Quantizing Networks

@ Does this work out of the box? Yes... with some caveats.

o Lots of warnings (VAIQ_WARN); complaints about tensors that could not be quantized.

e Quantization only supports floats and doubles— not integers and booleans...

e Some tensors evaluate to infinity (or NaN): maybe a result of inputs that couldn't be
quantized propagating through the model... needs investigation.

@ Running model inspector needed to better understand what's happening.

[QUANTIZER_TORCH_TENSOR_TYPE_NOT_QUANTIZABLE]: The tensor type of PELICANClassifier::input_O
is torch.int64. Only support float32/double/floatl6 quantization.
[QUANTIZER_TORCH_TENSOR_TYPE_NOT_QUANTIZABLE]: The tensor type of PELICANClassifier::input_2
is torch.bool. Only support float32/double/floatl6 quantization.
[QUANTIZER_TORCH_TENSOR_VALUE_INVALID]: The tensor type of
PELICANClassifier: :PELICANClassifier/Net2to2[net2to2]/Eq2to2[eq_layers]/ModuleList [0]/ret.
have "inf" or "nan" value. The quantization for this tensor is ignored. Please check it.
[QUANTIZER_TORCH_TENSOR_VALUE_INVALID]: The tensor type of
PELICANClassifier: :PELICANClassifier/Eq2to0[agg_2to0]/ret.193 have "inf" or "nan" value.
The quantization for this tensor is ignored. Please check it.

Ben Rosser (Chicago) CERN SoC Workshop October 5, 2023 13 /17

Enabling the Model Inspec

@ What is needed to run the inspector?
o What DPU architecture do you intend
to deploy on?
e DPUCVDXS8G: Versal, 8-bit quantization.

from pytorch_nndct.apis import torch_quantizer
from pytorch_nndct.apis import Inspector

def main():

o Otherwise, same inputs as quantizer. # Instantiate and load PELICAN model
e Runs on CPU/GPU, emulates DPU.
@ Needed to adapt input data format to # Need the input data shape.
run inspector successfully: input_shape = next(iter(dataloader))

Run the inspector.
inspector=Inspector ("DPUCVDX8G_ISA3_C32B6")
inspector.inspect(model, (input_shape),

e PELICAN assumed its input would be a
dictionary; Inspector assumed tuple/list.

o Feature described as "experimental". device="cpu",

o Generates very detailed report, with image_format='png')
. . . . # Run the quantizer post-inspection
visualization of quantized graph.

Ben Rosser (Chicago) CERN SoC Workshop October 5, 2023 14 /17

Results from the Model Inspector

Qm/:wﬁ > / mmpﬁrsgssgggs,cin,,mb @ Model summary: mostly CPU...
-) o DPU nodes: 14 total
o CPU nodes: 116 total

e Some inputs appear unused.
@ Why does DPU implementation fail?

o "All the children nodes are assigned
to CPU."
"Input of reshape is not on DPU."
"nndct_cast can't be converted to

. XIR."
o "xir:Op{name = ..., type = ...}
s has been assigned to CPU: [DPU
C nmpEuc\Ncﬁla:mm;dgﬂcémch sifirirot. 33 > . "
L WEEEEE does not support eltwise SUB].
S N .

o ;,,;;El.c\Ncm,m,nﬁ;@sm T @ Investigation required; changes to model
~ 77777:\3%;5120”2301207“1 7777/7(17\1\ |ike|y needed !

Ben Rosser (Chicago) CERN SoC Workshop October 5, 2023 15 / 17

Programming Al Engines Directly

o Vitis Al is quite powerful, but doesn't work out of the box on complex networks.

e Some tools available: WeGo, integration with ONNX; support for custom NN layers.
e But for complex networks (or for non-ML applications!) may need to program AIE directly.

PyTorch or TensorFlow C/C++ Al Kernel
Neural Network Source Code

For Data Scientists For FW Engineers

Use Vitis Al to Use Al Engine Tools
Quantize and Deploy to Compile and Link

Xilinx DPU Firmware ~ Custom Firmware

e Al Engine tools approach:

Write C/C++ code; build with aiecompiler
Emulate Al engines, run simulation with
aiesimulator.

Create, link Al engine kernel using Vitis.

Integrate with PL kernels or SoC code. /
o | wrote a simple "hello world" example. <I: e Systom on Chp

@ More sophisticated tutorials from Xilinx:

Al Engine Array

e Including implementing neural network
(LeNet) by hand, without using Vitis Al. ==
o We are presently evaluating this workflow! \\

Programmable Logic
(PL)

Ben Rosser (Chicago) CERN SoC Workshop October 5, 2023 16 / 17

https://www.xilinx.com/developer/articles/whole-graph-optimizer--wego--.html
https://docs.xilinx.com/r/en-US/ug1414-vitis-ai/Microsoft-ONNX-Runtime
https://github.com/Xilinx/Vitis-AI-Tutorials/tree/2.0/Tutorials/VCK190_CUSTOM_LAMBDA_OP/
https://gitlab.cern.ch/brosser/hello-vck190/
https://github.com/Xilinx/Vitis-Tutorials/tree/2021.2/AI_Engine_Development/Design_Tutorials/01-aie_lenet_tutorial
https://ieeexplore.ieee.org/document/726791

Conclusion

@ The Xilinx Versal Al series boards have powerful features intended for machine learning:
o Vitis Al provides a framework for easily deploying neural networks on these boards.
e Easy to run a network on different board types; comparison between Versal and Zynq shows
clear performance differences, even for relatively simple examples.
e Tools don't necessarily work out of the box with all custom network architectures.
e And to build a real system, still need to integrate Xilinx DPU with other firmware.

e We'd like to understand better what (if anything) we can use these boards for:
e Combination of SoC with programmable logic and Al engine functionality quite exciting.

o Evaluating different workflows and use cases in e.g. a trigger context.
e Hope to have more concrete results to present in the future!

@ Thanks for your attention!

Ben Rosser (Chicago) CERN SoC Workshop October 5, 2023 17 /17

Ben Rosser (Chicago) CERN SoC Workshop October 5,

Vaitrace Results: Versal

BPh gummary:

DPU Id | Bat | DPU SubGraph | WL | SW_RT | HW_RT | Effic | LdwB | LdFM | StFM | AvgBw
DPUCVDX8G_1 | 6 | quant_add | ©.075 | ©.499 | ©.399 | 1.9 | 10.707 | 0.018 | ~0 | 26876.923
Notes:

"~@": Value is close to O, Within range of (0, 0.001)

Bat: Batch size of the DPU instance

WL(Work Load): Computation workload (MAC indicates two operations), unit is GOP

SW_RT(Software Run time): The execution time calculate by software in milliseconds, unit is ms
HW_RT(Hareware Run time): The execution time from hareware operation in milliseconds, unit is ms
Effic(Efficiency): The DPU actual performance divided by peak theoretical performance,unit is %
Perf(Performance): The DPU performance in unit of GOP per second, unit is GOP/s

LdFM(Load Size of Feature Map): External memory load size of feature map, unit is MB

LdwB(Load Size of Weight and Bias): External memory load size of bias and weight, unit is MB
StFM(Store Size of Feature Map): External memory store size of feature map, unit is MB
AvgBw(Average bandwidth): External memory average bandwidth. unit is MB/s

CPU Functions(Not in Graph, e.g.: pre/post-processing, vai-runtime):

Function | Device | Runs | AverageRunTime(ms)
cv::imread | cpu | 5000 | ©.153
cv::resize | cpu | 5000 | 0.007
vart: : TensorBuffer: : copy_tensor_buffer | CPU | 1668 | 0.0u4
xir: :XrtCu::run | cpu | 834 | 0.477
CPUCalcSoftmax | cpu | 5000 | 0.003
TopK | cpu | 5000 | 0.017

Ben Rosser (Chicago) CERN SoC Workshop October 5

Vaitrace Results: Zynq

DPU Summary :

DPU Id | Bat | DPU SubGraph | WL | SW_RT | HW_RT | Effic | LdwB | LdFM | StFM | AvgBuw
DPUCZDX8G_1 | 1 | quant_add | ©.075 | 1.583 | 1.420 | 4.3 | 10.667 | 0.003 | ~0 | 7516.129
Notes:

"~@": Value is close to O, Within range of (0, 0.001)

Bat: Batch size of the DPU instance

WL(Work Load): Computation workload (MAC indicates two operations), unit is GOP

SW_RT(Software Run time): The execution time calculate by software in milliseconds, unit is ms
HW_RT(Hareware Run time): The execution time from hareware operation in milliseconds, unit is ms
Effic(Efficiency): The DPU actual performance divided by peak theoretical performance,unit is %
Perf(Performance): The DPU performance in unit of GOP per second, unit is GOP/s

LdFM(Load Size of Feature Map): External memory load size of feature map, unit is MB

LdwB(Load Size of Weight and Bias): External memory load size of bias and weight, unit is MB
StFM(Store Size of Feature Map): External memory store size of feature map, unit is MB
AvgBw(Average bandwidth): External memory average bandwidth. unit is MB/s

CPU Functions(Not in Graph, e.g.: pre/post-processing, vai-runtime):

Function | Device | Runs | AverageRunTime(ms)
cv: :imread | cpu | 3786 | 0.269
cv::resize | cpu | 3786 | 0.012
vart: : TensorBuffer: : copy_tensor_buffer | CPU | 7572 | 0.023
xir: :XrtCu: :run | cpu | 3786 | 1.571
CPUCalcSoftmax | cpu | 3785 | 0.006
TopK | cPru | 3785 | 0.033

Ben Rosser (Chicago) CERN SoC Workshop October 5

	Introduction
	Vitis AI
	Resnet Tutorial
	PELICAN

	AI Engine Compiler
	Conclusion
	Backup

