
Xilinx Versal ACAP/SoC for (Quasi) Real-Time Data Processing

Ben Rosser Tianjia Du Timothy Hoffman David Miller

University of Chicago

October 5, 2023

Ben Rosser (Chicago) CERN SoC Workshop October 5, 2023 1 / 17

Introduction

Two disclaimers:
I’m not an FPGA/SoC expert; I’m a physics postdoc (with some digital logic experience).
This work is still ongoing: hope to show more concrete results/conclusions in the future.

Interested in hardware acceleration of algorithms for e.g. collider trigger systems:
Want to run high-quality particle reconstruction algorithms, make decisions in real time.
Increasing demand for hardware-based machine learning; lots of community interest.
Approaches using high level synthesis (e.g. hls4ml): very powerful, but still require
significant firmware engineering expertise for final implementation– which is in short supply.

This talk: how do the new Xilinx Versal FPGAs fit into this picture?
Can "data scientists" successfully deploy neural networks to them with minimal FPGA
experience? If so, what are the limitations of this approach?
We looked at reproducing examples using the Xilinx Vitis AI framework.
We started attempting to deploy a custom neural network using these tools (PELICAN); and
explored some of the potential problems and limitations.

Ben Rosser (Chicago) CERN SoC Workshop October 5, 2023 2 / 17

https://indico.cern.ch/event/776422/attachments/1769690/2874927/cocotb_talk.pdf
https://github.com/fastmachinelearning/hls4ml
https://github.com/Xilinx/Vitis-AI
https://github.com/abogatskiy/PELICAN

Xilinx Versal ACAP and AI Engines

vck190 Evaluation Kit

We purchased a Xilinx Versal ACAP
evaluation kit for R&D:

Adaptive Compute Acceleration
Platform has FPGAs and ARM SoC.

Bought a VCK190 (AI Core series).
This board also contains an array of
400 AI Engine tiles with:

Scalar and vector processors.
32 kB local memory.
Fast interconnects, AXI interface.

AI Engines can run up to 1.3 GHz;
intended for real-time processing and
ML applications.

Ben Rosser (Chicago) CERN SoC Workshop October 5, 2023 3 / 17

https://www.xilinx.com/products/boards-and-kits/vck190.html
https://www.xilinx.com/an/adaptive-compute-acceleration-platforms.html
https://www.xilinx.com/an/adaptive-compute-acceleration-platforms.html
https://www.xilinx.com/products/technology/ai-engine.html

Programming AI Engines with Vitis AI

AI engines cannot be programmed directly through (high-level) synthesis or RTL.
Xilinx provide two different "flows" for programming AI engines:

Writing C/C++ code, compiling and creating AI Engine Kernel using aiecompiler.
Using Vitis AI to deploy pre-trained neural networks directly on the board.

Vitis AI intended "for data scientists":
Requires Xilinx DPU (Deep Learning
Processor Unit) firmware.
DPU uses AI Engines on the Versal;
programmable logic on other boards.

Integrates with Python ML environments:
Supports PyTorch and TensorFlow.
Vitis AI provides quantizer, model
inspector, and optimizer (requires license)
(Mostly) open source, does not require Vitis.

Ben Rosser (Chicago) CERN SoC Workshop October 5, 2023 4 / 17

https://github.com/Xilinx/Vitis-AI
https://github.com/Xilinx/Vitis-AI

Xilinx RESNET Tutorial

Xilinx provide Vitis AI tutorials for both PyTorch and TensorFlow.
First question: do these tutorials actually work? Can we reproduce their results?
For Vitis AI 3.0+: basic tutorial using ResNet network for image recognition.

ResNet-18 trained on CIFAR10 dataset: we ran this, will walk through today.
ResNet-18 trained on ImageNet dataset: same approach, just different dataset.
Note: newest release (Vitis AI 3.5) doesn’t have pre-built DPU images for the VCK190.

Must set up board with DPU: can download pre-built image or build IP (requires Vitis).
Steps (common to both tutorials):

Preprocess data (images), set up directory structures appropriately, etc.
Train the model (can skip if using pre-trained model).
Inspect the model: is it compatible with the target DPU?
Quantize and compile the model.

Ben Rosser (Chicago) CERN SoC Workshop October 5, 2023 5 / 17

https://github.com/Xilinx/Vitis-AI-Tutorials
https://arxiv.org/abs/1512.03385
https://www.xilinx.com/products/intellectual-property/dpu.html

Vitis AI Setup

Install instructions; see also official Xilinx instructions:
Xilinx provide docker containers; code can also be installed manually from source.
Docker containers with Nvidia GPU support must be built manually.
CPU-only containers can be downloaded from dockerhub: xilinx/vitis-ai-tensorflow2-cpu

Instructions for setting up GPU TensorFlow2 container:
$ git clone https://github.com/Xilinx/Vitis-AI.git
$ cd Vitis-AI
$ git clone -b 3.5 https://github.com/Xilinx/Vitis-AI-Tutorials.git tutorials
$ cd docker && ./docker_build.sh -t gpu -f tf2

To activate and run a container (and then start the tutorial):
$ cd ..
$./docker_run.sh xilinx/vitis-ai-tensorflow2-gpu:3.5.0.001-bbccde60d
> conda activate vitis-ai-tensorflow2
> cd /workspace/tutorials/RESNET18

Ben Rosser (Chicago) CERN SoC Workshop October 5, 2023 6 / 17

https://xilinx.github.io/Vitis-AI/3.0/html/docs/install/install.html
https://hub.docker.com/r/xilinx/vitis-ai-tensorflow2-cpu

Training from Inside Vitis AI

Training results, pre-quantization, from 50 epochs (batch size 256) and two different runs.
Train1 does file I/O; Train2 loads images over memory interface; meant to be equivalent.

source run_all.sh cifar10_dataset && source run_all.sh run_cifar10_training
Ben Rosser (Chicago) CERN SoC Workshop October 5, 2023 7 / 17

Model Inspection and Quantization
Inspection: is the floating point model compatible with the target board DPU?

How does the model get partitioned for different DPU architectures?
What layers might not get mapped onto a DPU, and why?

Quantization: quantizes frozen model from 32 bit floats to 8 bit fixed point.
Quantization differs for different trainings (not immediately obvious why!)

source run_all.sh quantize_resnet18_cifar10
Ben Rosser (Chicago) CERN SoC Workshop October 5, 2023 8 / 17

Compilation and Deployment

Compiles model into
target board-specific
*.xmodel format:

ZCU102, VCK190
VEK280, VCK5000
Alveo V70

We have access to both
VCK190, ZCU102.
On each board, installed:

Xilinx DPU firmware.
Test dataset.
Example SoC control
software (using VART
API to access DPU).
Compiled model files.

source run_all.sh compile_resnet18_cifar10

Ben Rosser (Chicago) CERN SoC Workshop October 5, 2023 9 / 17

https://docs.xilinx.com/r/en-US/ug1414-vitis-ai/Programming-with-VART
https://docs.xilinx.com/r/en-US/ug1414-vitis-ai/Programming-with-VART

Versal vs Zynq Performance

Models really do run on the boards; accuracy comparable to post-quantization!
The same model was trained and quantized, so accuracy is the same on both boards;
different training runs continue to give slightly different results.

Performance statistics can be gathered using vaitrace:
vaitrace [--txt] ./control_app ./vck190_resnet18_cifar10.xmodel ...
Generates either text output or CSV files which can be loaded into Vitis Analyzer.

Versal performs faster and more efficiently, but AI engines use more bandwidth.
Full vaitrace results available in backup, includes information about CPU function calls.

Board SW Runtime (ms) HW Runtime (ms) Efficiency (%) Avg Bandwidth (MB/s)
zcu102 1.583 1.420 4.3 7516.129
vck190 0.499 0.399 1.9 26876.923

Ben Rosser (Chicago) CERN SoC Workshop October 5, 2023 10 / 17

https://docs.xilinx.com/r/en-US/ug1414-vitis-ai/vaitrace-Usage
https://docs.xilinx.com/r/en-US/ug1393-vitis-application-acceleration/Vitis-Analyzer-GUI-and-Window-Manager

PELICAN: Lorentz-Invariant Networks

Can we extend these examples to
something nontrivial?
Testing applying these methods to a novel
network, PELICAN:

Developed by our collaborators.
Built to be Lorentz and permutation
equivariant.
Use Lorentz-invariant dot products of
4-momenta as basis to build network of
Lorentz invariant/covariant functions.
Excellent performance as a top quark
tagger; promising for other tasks.
The type of network we might want to
deploy as part of a trigger system.

Jan Offermann

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Signal efficiency S

101

102

103

104

Ba
ck

gr
ou

nd
 re

je
ct

io
n

1 B

PFN
ParticleNet
TopoDNN
ResNeXt50
LorentzNet
LGN
PELICAN25/15
PELICAN60/35
PELICAN132/78

2211.00454, 2307.16506
Ben Rosser (Chicago) CERN SoC Workshop October 5, 2023 11 / 17

https://github.com/abogatskiy/PELICAN
https://indico.physics.lbl.gov/event/975/contributions/8286/attachments/4080/5481/pelican_boost_2023.pdf
https://arxiv.org/abs/2211.00454.pdf
https://arxiv.org/abs/2307.16506

Porting PELICAN using Vitis AI

How do we integrate Vitis AI with a new
model like PELICAN?

Built using PyTorch, not Tensorflow.
Pre-trained; can start with pre-built
xilinx/vitis-ai-pytorch-cpu
containers.

Load the model, run the quantizer:
Specify mode: calibration or testing.
Specify device (CPU or GPU) and output
directory for quantization results.
Specify the input shape: what
dimension is your input data?
Pre-processing may be useful to get
input data in hardware-friendly format!

Must test model after quantization.

...
from pytorch_nndct.apis import torch_quantizer
...
def main():

Instantiate and load PELICAN model..
model = PELICANClassifier(...)
model.load_state_dict(pretrained_state)
Need the input data shape.
input_shape = next(iter(dataloader))
Run the quantizer!
quantizer = torch_quantizer(quant_mode,

model,
(input_shape),
output_dir,
device="cpu")

model = quantizer.quant_model
Then run PELICAN model test suite.
...

Ben Rosser (Chicago) CERN SoC Workshop October 5, 2023 12 / 17

Issues Quantizing Networks

Does this work out of the box? Yes... with some caveats.
Lots of warnings (VAIQ_WARN); complaints about tensors that could not be quantized.
Quantization only supports floats and doubles– not integers and booleans...
Some tensors evaluate to infinity (or NaN): maybe a result of inputs that couldn’t be
quantized propagating through the model... needs investigation.

Running model inspector needed to better understand what’s happening.
[QUANTIZER_TORCH_TENSOR_TYPE_NOT_QUANTIZABLE]: The tensor type of PELICANClassifier::input_0

is torch.int64. Only support float32/double/float16 quantization.
[QUANTIZER_TORCH_TENSOR_TYPE_NOT_QUANTIZABLE]: The tensor type of PELICANClassifier::input_2

is torch.bool. Only support float32/double/float16 quantization.
[QUANTIZER_TORCH_TENSOR_VALUE_INVALID]: The tensor type of

PELICANClassifier::PELICANClassifier/Net2to2[net2to2]/Eq2to2[eq_layers]/ModuleList[0]/ret.151
have "inf" or "nan" value. The quantization for this tensor is ignored. Please check it.

[QUANTIZER_TORCH_TENSOR_VALUE_INVALID]: The tensor type of
PELICANClassifier::PELICANClassifier/Eq2to0[agg_2to0]/ret.193 have "inf" or "nan" value.
The quantization for this tensor is ignored. Please check it.

Ben Rosser (Chicago) CERN SoC Workshop October 5, 2023 13 / 17

Enabling the Model Inspector

What is needed to run the inspector?
What DPU architecture do you intend
to deploy on?
DPUCVDX8G: Versal, 8-bit quantization.
Otherwise, same inputs as quantizer.
Runs on CPU/GPU, emulates DPU.

Needed to adapt input data format to
run inspector successfully:

PELICAN assumed its input would be a
dictionary; Inspector assumed tuple/list.
Feature described as "experimental".

Generates very detailed report, with
visualization of quantized graph.

...
from pytorch_nndct.apis import torch_quantizer
from pytorch_nndct.apis import Inspector
...
def main():

Instantiate and load PELICAN model
...
Need the input data shape.
input_shape = next(iter(dataloader))
Run the inspector.
inspector=Inspector("DPUCVDX8G_ISA3_C32B6")
inspector.inspect(model, (input_shape),

device="cpu",
image_format='png')

Run the quantizer post-inspection
...

Ben Rosser (Chicago) CERN SoC Workshop October 5, 2023 14 / 17

Results from the Model Inspector

Model summary: mostly CPU...
DPU nodes: 14 total
CPU nodes: 116 total
Some inputs appear unused.

Why does DPU implementation fail?
"All the children nodes are assigned
to CPU."
"Input of reshape is not on DPU."
"nndct_cast can’t be converted to
XIR."
"xir::Op{name = ..., type = ...}
has been assigned to CPU: [DPU
does not support eltwise SUB]."

Investigation required; changes to model
likely needed!

Ben Rosser (Chicago) CERN SoC Workshop October 5, 2023 15 / 17

Programming AI Engines Directly

Vitis AI is quite powerful, but doesn’t work out of the box on complex networks.
Some tools available: WeGo, integration with ONNX; support for custom NN layers.
But for complex networks (or for non-ML applications!) may need to program AIE directly.

AI Engine tools approach:
Write C/C++ code; build with aiecompiler
Emulate AI engines, run simulation with
aiesimulator.
Create, link AI engine kernel using Vitis.
Integrate with PL kernels or SoC code.
I wrote a simple "hello world" example.

More sophisticated tutorials from Xilinx:
Including implementing neural network
(LeNet) by hand, without using Vitis AI.
We are presently evaluating this workflow!

Ben Rosser (Chicago) CERN SoC Workshop October 5, 2023 16 / 17

https://www.xilinx.com/developer/articles/whole-graph-optimizer--wego--.html
https://docs.xilinx.com/r/en-US/ug1414-vitis-ai/Microsoft-ONNX-Runtime
https://github.com/Xilinx/Vitis-AI-Tutorials/tree/2.0/Tutorials/VCK190_CUSTOM_LAMBDA_OP/
https://gitlab.cern.ch/brosser/hello-vck190/
https://github.com/Xilinx/Vitis-Tutorials/tree/2021.2/AI_Engine_Development/Design_Tutorials/01-aie_lenet_tutorial
https://ieeexplore.ieee.org/document/726791

Conclusion

The Xilinx Versal AI series boards have powerful features intended for machine learning:
Vitis AI provides a framework for easily deploying neural networks on these boards.
Easy to run a network on different board types; comparison between Versal and Zynq shows
clear performance differences, even for relatively simple examples.
Tools don’t necessarily work out of the box with all custom network architectures.
And to build a real system, still need to integrate Xilinx DPU with other firmware.

We’d like to understand better what (if anything) we can use these boards for:
Combination of SoC with programmable logic and AI engine functionality quite exciting.
Evaluating different workflows and use cases in e.g. a trigger context.
Hope to have more concrete results to present in the future!

Thanks for your attention!

Ben Rosser (Chicago) CERN SoC Workshop October 5, 2023 17 / 17

Backup

Ben Rosser (Chicago) CERN SoC Workshop October 5, 2023 1 / 3

Vaitrace Results: Versal

Ben Rosser (Chicago) CERN SoC Workshop October 5, 2023 2 / 3

Vaitrace Results: Zynq

Ben Rosser (Chicago) CERN SoC Workshop October 5, 2023 3 / 3

	Introduction
	Vitis AI
	Resnet Tutorial
	PELICAN

	AI Engine Compiler
	Conclusion
	Backup

