

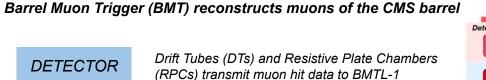
The CMS Barrel Muon Trigger Layer-1 Processor

5.10.2023

3rd CERN System-on-Chip Workshop

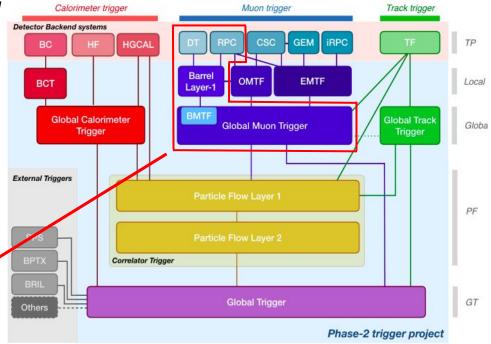
CERN

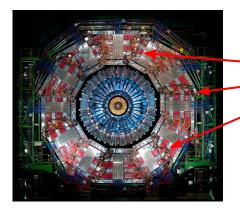
Ioannis Bestintzanos, BMTL-1 team



BMTL-1

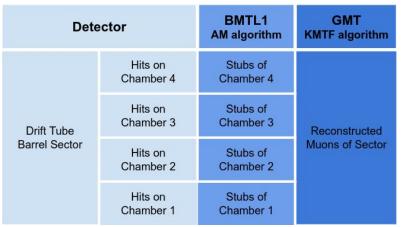
GMT

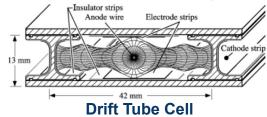

Phase 2 Barrel Muon Trigger

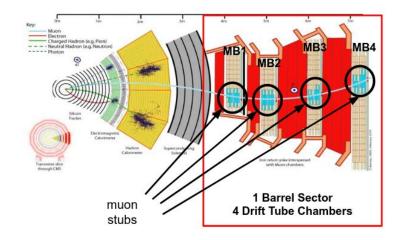


Builds DTs track segments and clusters RPC hits Merges both subsystem information into "super-primitives"

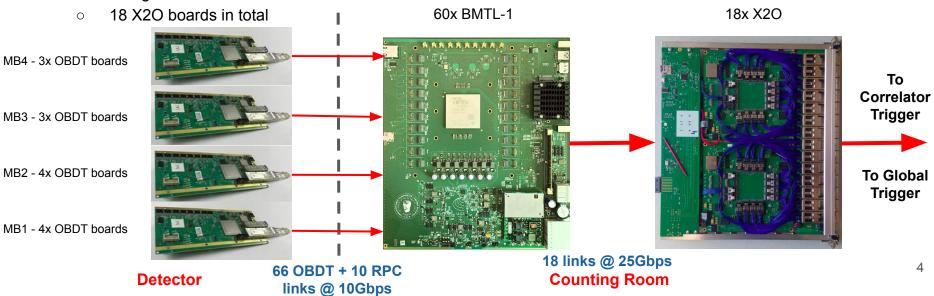
Matches track segments to reconstruct standalone muon objects






Barrel Muon Trigger

- On detector Board for Drift Tubes (OBDT) transmits detector data to BMTL-1
 - Time digitization of DT signals
- BMTL-1 processes hit information to produce Muon stubs (track segments)
 - Analytical Method (AM) algorithm processes TDC hits and generates Trigger Primitives
 - Bunch crossing, Stub Position, Bending Angle
- Stubs of the 4 chambers are received by GMT
 - Kalman Muon Track Finder (KMTF) algorithm matches tracks and reconstructs muon candidates
 - Assigns position and momentum




- CMS Barrel Muon system consists of 60 DT sectors
 - Each sector consists of 4 DT chambers
- OBDT boards transmit TDC hits to BMTL-1
 - 14 OBDT boards per sector
- Every BMTL-1 board processes data from 2 Sectors
 - 30 BMTL-1 boards needed for the whole barrel
- GMT receives primitives from BMTL-1
 - Using TMT18

BMTL-1 ATCA board architecture

FPGA / Connectivity

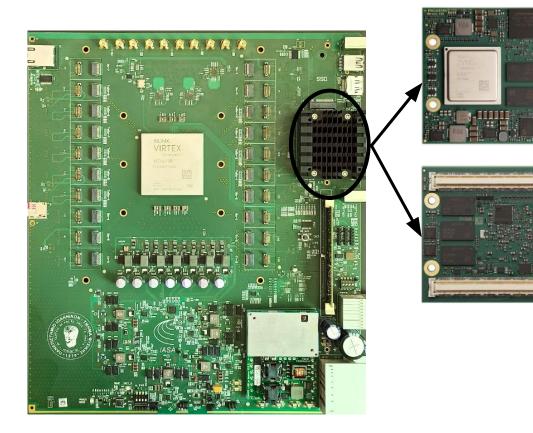
Xilinx XCVU13P FPGA

- Ultrascale+ architecture \cap
- 16 nm lithography Ο
- 4 SLRs (Super Logic Regions) 0
- 1.728.000 LUTs 0
- 3,456,000 Flip Flops Ο
- 12,288 DSP slices 0
- 128 GTY transceivers @ 28G Ο
- -1 speed grade Ο

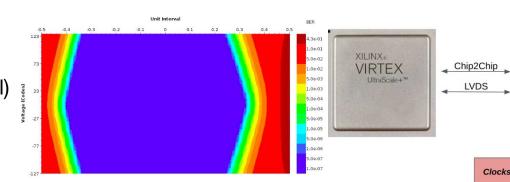
Optical connectivity

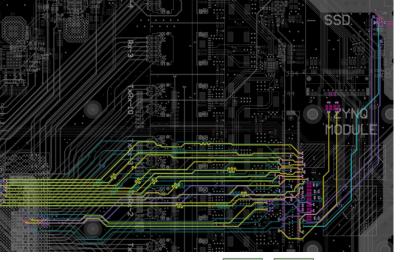
- 40 RX @ 25 Gbps 10 x BiDir FireFly Modules 25G
- 40 TX @ 25 Gbps
 - 80 RX @ 16 Gbps > 7 x Rx FireFly Modules 16G
- 36 TX @ 16 Gbps
- 3 x Tx FireFly Modules 16G

111 111 111 0 0 \frown 20191123036 N35H64 18 616. 296 C 28 XCVU13P FPGA mounted on the BMTL-1 ATCA board Connector Zone 2 FPGA Ethernet Zone 2 SGMII Switch ZYNQ SoM IPMC Onboard Ethernet switch circuitry provides access to many subsystems on board


120 RX + **76** TX ~ **3.9** *Tbps*

System Controller


- Enclustra Mercury XU5
 - XCZU5EV-1FSVC784E SoC
 - 117k LUTs
 - 234k Flip Flops
 - 1248 DSP slices
- Zynq Ultrascale+ architecture
- Commercially available
- Quad core Arm Cortex A-53
 - Capable of running Linux
- Independent RAM on PS & PL
 - 2 GB (PS)
 - 1 GB (PL)
- On module storage
 - eMMC flash
 - o QSPI
- Gigabit Ethernet (2x)
 - Processor system
 - Programmable logic

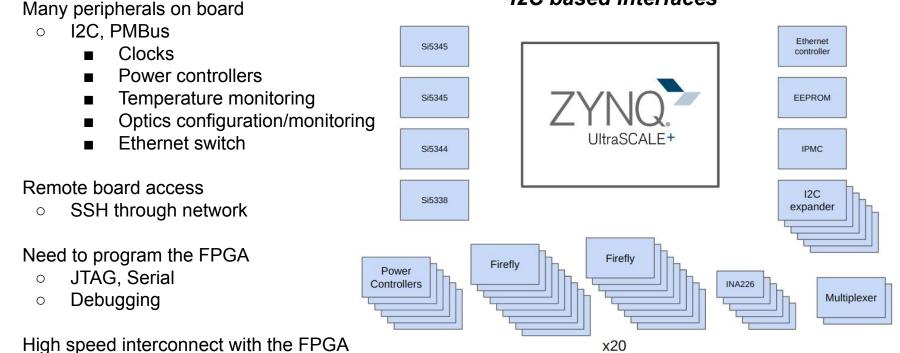


- Direct connections with the FPGA
 - 4 GTH MGTs
 - 10Gbps
 - 1 MGT dedicated to Chip2Chip
 - 20 LVDS pairs
 - Length matched
 - Suitable for high speed data transfer
- On board storage
 - Solid State Drive
 - SD card
- I2C
- Ethernet
- UART (front panel)
- USB 3.0
- Displayport

Optics

Power

Monitor


8

Why use a SoC

I2C based interfaces

- AXI Memory Mapped bus
- Real time payload monitoring

Firmware components

- AXI chip2chip
 - ZYNQ-FPGA
- Aurora 64b66b
- AXI firewall
- Debug bridge (XVC)
 - FPGA programming

Utilization

LUT

FF

BRAM

DSP

10

GT

7%

13%

25

BUFG

ммсм

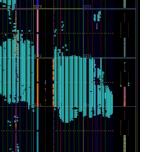
PLL

25%

50%

75

100


125

50

LUTRAM -

- Debug
- DDR4 MIG
 - PL memory
- AXI interconnect

•	CentOS operating system	root@bmtl1-1:~ _ 🗖	×
	• Runs on arm cores	File Edit View Search Terminal Help [kadamidi@actrl-s1d06-43-01 ~]\$ [kadamidi@actrl-s1d06-43-01 ~]\$	
•	Configuration and monitoring of the on-board peripherals using Python scripts	[kadamidi@actrl-sld06-43-01 ~]\$ ssh root@192.168.7.10 root@192.168.7.10's password: Last login: Thu Oct 5 01:40:24 2023 from 192.168.40.1	
	 Clock synthesizers Firefly modules Power modules 	BMTL1 ATCA rev. 0 ///////////////////////////////	
•	 Configuration and monitoring of FPGA using IPbus Software EMPbutler SW to control the firmware framework "DTUP" SW to control the algorithm 	VCCINT : 0.850 V, 8.663 A, 7.4 W MGTAVTT : 1.199 V 9.190 A, 11.0 W MGTAVCC : 0.897 V 3.390 A, 3.0 W VCC3V3 : 3.301 V 4.495 A, 14.8 W VCC1V8 : 1.795 V 3.750 A, 6.7 W MGTVCCAUX : 1.799 V 0.048 A, 0.1 W Board power : 43.2 W FPGA power : 21.5 W FPGA TEMP : 32.6 C [root@bmtll-1~]#	
•	 Xilinx Virtual Cable server JTAG access to VU13P Programming, ILAs, etc. 	[root@bmtl1-1 ~]# [root@bmtl1-1 ~]#	

• BMTL1 design is under revision

- Need arises mainly from parts becoming obsolete
- Changes in clocks, power supplies, etc.
- Halogen free material

Move to Xilinx Kria SoM

- Common across CMS trigger
 - Reduce development effort
- Lower cost
- Move configuration commands to C++
 - Deploy HERD server & plugin
 - High level control of many boards

- BMTL1 ATCA board was designed, produced & tested
- ZYNQ SoM is used as the system controller
- Firmware & software developed to cover requirements
- Current setup has been proven successful in pp collisions slice test

Thank you