
SoC Infrastructure for the ATLAS

Phase-II Level-0 Central Trigger

• Introduction

• Build Automation

• Booting & Host Configuration

• Summary & Outlook

SoC Workshop - 2-6-OCT-2023 R. Spiwoks, G. Muscarello 1

on behalf of ATLAS L0CT team

ATLAS Phase-I MUCTPI
→ Muon to Central Trigger Processor Interface: upgrade project for Run 3

• ATCA blade with SoC
= Programming Logic (PL) + Processor System (PS):

- Earlier prototypes: Xilinx Zynq 7000 SoC

- Later prototypes and production modules
using Xilinx Zynq Ultrascale+ MPSoC

• Trigger processing implemented in FPGAs
controlled and monitored by SoC

• MUCTPI installed in ATLAS since August 2021:
smooth commissioning and operation

• Several MUCTPIs in lab as spares and for
potential software developments

SoC Workshop - 2-6-OCT-2023 R. Spiwoks, G. Muscarello 2

ATLAS Phase-II L0CT
• MUCTPI: two MUCTPIs of existing type

with new firmware (current plan)

• L0 Central Trigger Processor (L0CTP) =
new module

• Local Trigger Interface (LTI),
replacing current timing modules =
new modules, around 48 in experiment

 All modules will be ATCA blades and use
SoC, most likely Xilinx Kria SoM

In addition, several evaluation boards,
prototypes, and production modules in lab will be used concurrently

⇒ Requires support for several different SoC-based modules (types and
instances of type), each with their specific firmware and software

SoC Workshop - 2-6-OCT-2023 R. Spiwoks, G. Muscarello 3

Development Workflow
• Firmware:

– Design (VHDL) using Xilinx Vivado

– Produce SoC PL bit file, and hardware description file (.xsa file)

– Produce processing FPGA bit files

• Boot files:
– First-stage boot loader (FSBL)

– Other files: PMU firmware and ARM-trusted firmware (ATF)

– Secondary Program Loader = U-Boot

– Linux kernel, device tree, and root file system = CentOS → Alma

• User application software:
– Low-level: access to module-specific features, based on firmware

– High-level: integrate into ATLAS TDAQ using run control processes on SoC

⇒ During development, iterate over new firmware, new boot files, new
software

SoC Workshop - 2-6-OCT-2023 R. Spiwoks, G. Muscarello 4

Build Automation (1)
First aspect: consistency of firmware and software

• Firmware and software are built from common XML file:
– Previously presented: hardware compiler, improved with automatic generation of

address decoder

– Translates register definitions to VHDL code and C++ (run control)
and Python (interactive testing)

 Provides a fast and local development cycle:
– Firmware development: load new bit file

– Recompile software locally to test new firmware,
i.e. cross-compilation against a release ⇒ new software on NFS available on SoC

– Test new firmware interactively using Python

– Skip recompilation of boot files and reboot (if only processing FPGAs need new firmware)

SoC Workshop - 2-6-OCT-2023 R. Spiwoks, G. Muscarello 5

Build Automation (2)
Second aspect: actual compilation of firmware and software

• Automate building of bit files, boot files, and software
⇒ Use Continuous Integration (CI)

• Use GitLab CI and describe compilation in YAML files:

Once new firmware (and XML file) pushed into GitLab repository

⇒ Rebuild FPGA bit files

⇒ Rebuild software

• YAML files make use of GitLab variables to select what to build

⇒ Rebuild bit files, boot files, and software for a given type of module (= platform)

• Nightly builds provide a common basis for developers to continue their
work

• At regular moments, a build on request is used as a stable release for
operation

SoC Workshop - 2-6-OCT-2023 R. Spiwoks, G. Muscarello 6

Build Automation: Firmware
• Xilinx Vivado is used for building the firmware

• We rebuild the bit files for the processing FPGAs; the SoC PL provides Chip2Chip
communication with processing FPAGs and stays very stable

• GitLab runners with a shell executor run on dedicated firmware PCs

• A TCL script is used to generate the necessary IPs, to compile the firmware, and to
generate the bit files

• The firmware is structured using git submodules:

– Common parts used by several processing FPGAs

– Parts specific for the different prototypes of the MUCTPI

• Nightly builds produce all bit files for testing

• Firmware for the future LTI and CTP will be structured in a similar way; we may use
docker images for the building

SoC Workshop - 2-6-OCT-2023 R. Spiwoks, G. Muscarello 7

Build Automation: Boot Files
Xilinx PetaLinux is used for the generation of the necessary boot files: FSBL, PMUfw,
ATF, U-Boot, Linux kernel, and device tree

• GitLab runners with docker executors use image prepared by CERN ATS
→ Big thanks to Adrian Byszuk and SY-EPC-CCE!

• Modifications to Xilinx ZynqMP template:
– U-Boot, get shelf address and slot number (see later)

– Kernel configurations, e.g. selection of device drivers

– Modify the device tree, e.g. external devices, UIO, etc.

• Since there are several different L0CT modules, a common template was developed
using Yocto layers
→ Tutorial on SoC PetaLinux Template, THU 5-OCT 10.00 by Giulio Muscarello

• Normally use the PetaLinux kernel; successful tests with Alma 9 kernel were done
in collaboration with ATLAS TDAQ SysAdmins
→ ATLAS Network and Booting, FRI 6-OCT 16.30 by Quentin Duponnois

• Do not use the PetaLinux root file system, but CentOS 7, currently moving to Alma 9

• Compile axi device driver for AXI access and DMA

SoC Workshop - 2-6-OCT-2023 R. Spiwoks, G. Muscarello 8

Build Automation: Software
User application software: based on ATLAS TDAQ software + L0CT specific software

• Build docker images with root file system and cross-compiler

• Build dependencies (32-bit)* or copy from LCG (64-bit)

* 32-bit support to be phased out by Phase-2

• Use ATLAS TDAQ build script (CMake) for cross compiling TDAQ software

• Could use ATLAS TDAQ build for ARM (64-bit) but need the cross-compilers,

(32-bit)* for earlier prototypes of MUCTPI and both cross-compilers for local
development

• GitLab CI uses GitLab variables to select what needs to be built: e.g. docker image,
TDAQ, or L0CT software, i.e. do not have to rebuilt everything all the time

→ Tutorial on GitLab CI Parallel Builds, THU 5-OCT 11.20 by Kareen Arutjunjan

• Nightly build for having common development basis, and on request for releases

SoC Workshop - 2-6-OCT-2023 R. Spiwoks, G. Muscarello 9

Deployment
• Deploy results (= CI artifacts) to all host PCs*:

* In phase-1: SoC modules are locally connected to a host PC due to network isolation in ATCN,
in phase-2: SoC modules will be directly connected, software installed on TDAQ servers

– Install processing FPGA bit files

– Install SoC boot files, and kernel and root file system

– Install cross-compiler for local compilation

– Install TDAQ and L0CT software

– Push approach, being replaced by running Puppet on host PCs (pull approach)

• Provide a single script that allows users to set up environment
– Select module, boot files, root files system, and software release:

• On host PC: for booting and for local compilation

• On SoC: for running L0CT software

• Use GitLab CD to run several tests on all hosts:
– Could potentially (re-)boot SoC: disruptive, only manually!

– Run local cross-compilation

– Login (ssh) to SoC

– Execute script with simple tests, e.g. read some I2C values, etc.

→ Tutorial on Test Automation, FRI 6-OCT 10.00 by. Michal Husejko

SoC Workshop - 2-6-OCT-2023 R. Spiwoks, G. Muscarello 10

Booting
Crucial aspect: identity of a module (type and instance)

Boot files and software alone are not sufficient;
need also to know which given module of a given module type

• Identity can be defined by module or by location in the installation:
– Module: e.g. MAC, read from EEPROM

– Location: e.g. shelf address and slot number,
read from IPMC (required in ATCA)

– Could use a mix of both

• Use identity to obtain boot files, several scenarios:
– Static IP address and host name

– Read from U-Boot script file

– Use DHCP with or without PXE (ATLAS)

– Can be used with UEFI and GRUB

→ ATLAS Network and Booting, FRI 6-OCT 16.35
by Quentin Duponnois

SoC Workshop - 2-6-OCT-2023 R. Spiwoks, G. Muscarello 11

Host Database
Crucial aspect: single “source of truth” for all modules identities

• Keep a base of all modules:
– Module identifier: MAC, USB (console, JTAG)

– Module type (=platform): e.g muctpi-v4, kria, lti-zcu102, etc.

– Module and host name: e.g. MUCTPI-v4-01, LTI-5, etc.

– Host PC the module is connected to (in phase-1: network isolation in ATCN)

• To start with, use a CSV file:
– Update information in git repository

– Deploy on all host PCs:

• Use for configuration of DHCP and DNS servers

• Udev rules: create /dev files for console and JTAG with information from host database

– Use for deployment of CI build results

– Use with single script to boot any system; knows which SoC is connected

• May possibly move to some other format later (LDAP?)
SoC Workshop - 2-6-OCT-2023 R. Spiwoks, G. Muscarello 12

Host Configuration
Crucial aspect: identity of the running module – host name

• Configure software and services, use systemd and Puppet

• Systemd:

→ Run daemons and tasks:

– Linux and network services

– Module initialization: bit files of processing FPGAs

• Puppet:

→ Provide configuration:

– Udev rules: create /dev files for I2C, GPIO, SPI, etc.

– Users: add/remove users

– For L0CT services: hardware monitoring (using IPMC), pmg server, run control processes

SoC Workshop - 2-6-OCT-2023 R. Spiwoks, G. Muscarello 13

Summary

• Scalable system:

– From single module to multiple modules of multiple types

• Automated system for development:

– Use firmware-software co-development

– Use GitLab CI for firmware, boot files, and user application software

– Provide local compilation for fast development cycle

• Configurable system for booting and host configuration:

– Identity from module (MAC) and/or from location (Client ID, IPMC)

– List of boot files provided from single source of information using DHCP and PXE

– Provide host configuration using systemd and Puppet

SoC Workshop - 2-6-OCT-2023 R. Spiwoks, G. Muscarello 14

Outlook
To be done:

• Continue testing Alma 9 kernel + root file system

• Further investigate booting with UEFI and GRUB

• Test integration of module into ATLAS TDAQ test bed

• Improve automated testing: more tests and a dashboard of results

• Implement user authentication using LDAP

• Alternative implementation for host database

• Maintain Phase-1 system and get ready for Phase-2 system

SoC Workshop - 2-6-OCT-2023 R. Spiwoks, G. Muscarello 15

References
• ATLAS L1CT Hardware Compiler:

https://gitlab.cern.ch/atlas-l1ct/hwcompiler

• CERN ATS Docker Files for HDL EDA Software:

https://gitlab.cern.ch/cce/docker_build

• SoC PetaLinux Template:

https://gitlab.cern.ch/soc/petalinux-template

• SoC IPMC Communication (SIPL):

https://gitlab.cern.ch/soc/u-boot-sipl

• SoC CentOS Root File System:

https://gitlab.cern.ch/soc/centos-rootfs

SoC Workshop - 2-6-OCT-2023 R. Spiwoks, G. Muscarello 16

https://gitlab.cern.ch/atlas-l1ct/hwcompiler
https://gitlab.cern.ch/cce/docker_build
https://gitlab.cern.ch/soc/petalinux-template
https://gitlab.cern.ch/soc/u-boot-sipl
https://gitlab.cern.ch/soc/centos-rootfs

