
SoC Infrastructure for the ATLAS

Phase-II Level-0 Central Trigger

• Introduction

• Build Automation

• Booting & Host Configuration

• Summary & Outlook

SoC Workshop - 2-6-OCT-2023 R. Spiwoks, G. Muscarello 1

on behalf of ATLAS L0CT team

ATLAS Phase-I MUCTPI
→ Muon to Central Trigger Processor Interface: upgrade project for Run 3

• ATCA blade with SoC
= Programming Logic (PL) + Processor System (PS):

- Earlier prototypes: Xilinx Zynq 7000 SoC

- Later prototypes and production modules
using Xilinx Zynq Ultrascale+ MPSoC

• Trigger processing implemented in FPGAs
controlled and monitored by SoC

• MUCTPI installed in ATLAS since August 2021:
smooth commissioning and operation

• Several MUCTPIs in lab as spares and for
potential software developments

SoC Workshop - 2-6-OCT-2023 R. Spiwoks, G. Muscarello 2

ATLAS Phase-II L0CT
• MUCTPI: two MUCTPIs of existing type

with new firmware (current plan)

• L0 Central Trigger Processor (L0CTP) =
new module

• Local Trigger Interface (LTI),
replacing current timing modules =
new modules, around 48 in experiment

 All modules will be ATCA blades and use
SoC, most likely Xilinx Kria SoM

In addition, several evaluation boards,
prototypes, and production modules in lab will be used concurrently

⇒ Requires support for several different SoC-based modules (types and
instances of type), each with their specific firmware and software

SoC Workshop - 2-6-OCT-2023 R. Spiwoks, G. Muscarello 3

Development Workflow
• Firmware:

– Design (VHDL) using Xilinx Vivado

– Produce SoC PL bit file, and hardware description file (.xsa file)

– Produce processing FPGA bit files

• Boot files:
– First-stage boot loader (FSBL)

– Other files: PMU firmware and ARM-trusted firmware (ATF)

– Secondary Program Loader = U-Boot

– Linux kernel, device tree, and root file system = CentOS → Alma

• User application software:
– Low-level: access to module-specific features, based on firmware

– High-level: integrate into ATLAS TDAQ using run control processes on SoC

⇒ During development, iterate over new firmware, new boot files, new
software

SoC Workshop - 2-6-OCT-2023 R. Spiwoks, G. Muscarello 4

Build Automation (1)
First aspect: consistency of firmware and software

• Firmware and software are built from common XML file:
– Previously presented: hardware compiler, improved with automatic generation of

address decoder

– Translates register definitions to VHDL code and C++ (run control)
and Python (interactive testing)

 Provides a fast and local development cycle:
– Firmware development: load new bit file

– Recompile software locally to test new firmware,
i.e. cross-compilation against a release ⇒ new software on NFS available on SoC

– Test new firmware interactively using Python

– Skip recompilation of boot files and reboot (if only processing FPGAs need new firmware)

SoC Workshop - 2-6-OCT-2023 R. Spiwoks, G. Muscarello 5

Build Automation (2)
Second aspect: actual compilation of firmware and software

• Automate building of bit files, boot files, and software
⇒ Use Continuous Integration (CI)

• Use GitLab CI and describe compilation in YAML files:

Once new firmware (and XML file) pushed into GitLab repository

⇒ Rebuild FPGA bit files

⇒ Rebuild software

• YAML files make use of GitLab variables to select what to build

⇒ Rebuild bit files, boot files, and software for a given type of module (= platform)

• Nightly builds provide a common basis for developers to continue their
work

• At regular moments, a build on request is used as a stable release for
operation

SoC Workshop - 2-6-OCT-2023 R. Spiwoks, G. Muscarello 6

Build Automation: Firmware
• Xilinx Vivado is used for building the firmware

• We rebuild the bit files for the processing FPGAs; the SoC PL provides Chip2Chip
communication with processing FPAGs and stays very stable

• GitLab runners with a shell executor run on dedicated firmware PCs

• A TCL script is used to generate the necessary IPs, to compile the firmware, and to
generate the bit files

• The firmware is structured using git submodules:

– Common parts used by several processing FPGAs

– Parts specific for the different prototypes of the MUCTPI

• Nightly builds produce all bit files for testing

• Firmware for the future LTI and CTP will be structured in a similar way; we may use
docker images for the building

SoC Workshop - 2-6-OCT-2023 R. Spiwoks, G. Muscarello 7

Build Automation: Boot Files
Xilinx PetaLinux is used for the generation of the necessary boot files: FSBL, PMUfw,
ATF, U-Boot, Linux kernel, and device tree

• GitLab runners with docker executors use image prepared by CERN ATS
→ Big thanks to Adrian Byszuk and SY-EPC-CCE!

• Modifications to Xilinx ZynqMP template:
– U-Boot, get shelf address and slot number (see later)

– Kernel configurations, e.g. selection of device drivers

– Modify the device tree, e.g. external devices, UIO, etc.

• Since there are several different L0CT modules, a common template was developed
using Yocto layers
→ Tutorial on SoC PetaLinux Template, THU 5-OCT 10.00 by Giulio Muscarello

• Normally use the PetaLinux kernel; successful tests with Alma 9 kernel were done
in collaboration with ATLAS TDAQ SysAdmins
→ ATLAS Network and Booting, FRI 6-OCT 16.30 by Quentin Duponnois

• Do not use the PetaLinux root file system, but CentOS 7, currently moving to Alma 9

• Compile axi device driver for AXI access and DMA

SoC Workshop - 2-6-OCT-2023 R. Spiwoks, G. Muscarello 8

Build Automation: Software
User application software: based on ATLAS TDAQ software + L0CT specific software

• Build docker images with root file system and cross-compiler

• Build dependencies (32-bit)* or copy from LCG (64-bit)

* 32-bit support to be phased out by Phase-2

• Use ATLAS TDAQ build script (CMake) for cross compiling TDAQ software

• Could use ATLAS TDAQ build for ARM (64-bit) but need the cross-compilers,

(32-bit)* for earlier prototypes of MUCTPI and both cross-compilers for local
development

• GitLab CI uses GitLab variables to select what needs to be built: e.g. docker image,
TDAQ, or L0CT software, i.e. do not have to rebuilt everything all the time

→ Tutorial on GitLab CI Parallel Builds, THU 5-OCT 11.20 by Kareen Arutjunjan

• Nightly build for having common development basis, and on request for releases

SoC Workshop - 2-6-OCT-2023 R. Spiwoks, G. Muscarello 9

Deployment
• Deploy results (= CI artifacts) to all host PCs*:

* In phase-1: SoC modules are locally connected to a host PC due to network isolation in ATCN,
in phase-2: SoC modules will be directly connected, software installed on TDAQ servers

– Install processing FPGA bit files

– Install SoC boot files, and kernel and root file system

– Install cross-compiler for local compilation

– Install TDAQ and L0CT software

– Push approach, being replaced by running Puppet on host PCs (pull approach)

• Provide a single script that allows users to set up environment
– Select module, boot files, root files system, and software release:

• On host PC: for booting and for local compilation

• On SoC: for running L0CT software

• Use GitLab CD to run several tests on all hosts:
– Could potentially (re-)boot SoC: disruptive, only manually!

– Run local cross-compilation

– Login (ssh) to SoC

– Execute script with simple tests, e.g. read some I2C values, etc.

→ Tutorial on Test Automation, FRI 6-OCT 10.00 by. Michal Husejko

SoC Workshop - 2-6-OCT-2023 R. Spiwoks, G. Muscarello 10

Booting
Crucial aspect: identity of a module (type and instance)

Boot files and software alone are not sufficient;
need also to know which given module of a given module type

• Identity can be defined by module or by location in the installation:
– Module: e.g. MAC, read from EEPROM

– Location: e.g. shelf address and slot number,
read from IPMC (required in ATCA)

– Could use a mix of both

• Use identity to obtain boot files, several scenarios:
– Static IP address and host name

– Read from U-Boot script file

– Use DHCP with or without PXE (ATLAS)

– Can be used with UEFI and GRUB

→ ATLAS Network and Booting, FRI 6-OCT 16.35
by Quentin Duponnois

SoC Workshop - 2-6-OCT-2023 R. Spiwoks, G. Muscarello 11

Host Database
Crucial aspect: single “source of truth” for all modules identities

• Keep a base of all modules:
– Module identifier: MAC, USB (console, JTAG)

– Module type (=platform): e.g muctpi-v4, kria, lti-zcu102, etc.

– Module and host name: e.g. MUCTPI-v4-01, LTI-5, etc.

– Host PC the module is connected to (in phase-1: network isolation in ATCN)

• To start with, use a CSV file:
– Update information in git repository

– Deploy on all host PCs:

• Use for configuration of DHCP and DNS servers

• Udev rules: create /dev files for console and JTAG with information from host database

– Use for deployment of CI build results

– Use with single script to boot any system; knows which SoC is connected

• May possibly move to some other format later (LDAP?)
SoC Workshop - 2-6-OCT-2023 R. Spiwoks, G. Muscarello 12

Host Configuration
Crucial aspect: identity of the running module – host name

• Configure software and services, use systemd and Puppet

• Systemd:

→ Run daemons and tasks:

– Linux and network services

– Module initialization: bit files of processing FPGAs

• Puppet:

→ Provide configuration:

– Udev rules: create /dev files for I2C, GPIO, SPI, etc.

– Users: add/remove users

– For L0CT services: hardware monitoring (using IPMC), pmg server, run control processes

SoC Workshop - 2-6-OCT-2023 R. Spiwoks, G. Muscarello 13

Summary

• Scalable system:

– From single module to multiple modules of multiple types

• Automated system for development:

– Use firmware-software co-development

– Use GitLab CI for firmware, boot files, and user application software

– Provide local compilation for fast development cycle

• Configurable system for booting and host configuration:

– Identity from module (MAC) and/or from location (Client ID, IPMC)

– List of boot files provided from single source of information using DHCP and PXE

– Provide host configuration using systemd and Puppet

SoC Workshop - 2-6-OCT-2023 R. Spiwoks, G. Muscarello 14

Outlook
To be done:

• Continue testing Alma 9 kernel + root file system

• Further investigate booting with UEFI and GRUB

• Test integration of module into ATLAS TDAQ test bed

• Improve automated testing: more tests and a dashboard of results

• Implement user authentication using LDAP

• Alternative implementation for host database

• Maintain Phase-1 system and get ready for Phase-2 system

SoC Workshop - 2-6-OCT-2023 R. Spiwoks, G. Muscarello 15

References
• ATLAS L1CT Hardware Compiler:

https://gitlab.cern.ch/atlas-l1ct/hwcompiler

• CERN ATS Docker Files for HDL EDA Software:

https://gitlab.cern.ch/cce/docker_build

• SoC PetaLinux Template:

https://gitlab.cern.ch/soc/petalinux-template

• SoC IPMC Communication (SIPL):

https://gitlab.cern.ch/soc/u-boot-sipl

• SoC CentOS Root File System:

https://gitlab.cern.ch/soc/centos-rootfs

SoC Workshop - 2-6-OCT-2023 R. Spiwoks, G. Muscarello 16

https://gitlab.cern.ch/atlas-l1ct/hwcompiler
https://gitlab.cern.ch/cce/docker_build
https://gitlab.cern.ch/soc/petalinux-template
https://gitlab.cern.ch/soc/u-boot-sipl
https://gitlab.cern.ch/soc/centos-rootfs

