

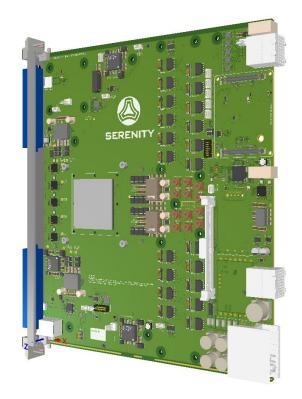
Split Boot v2

Simple and Reliable Network-Based Booting for Serenity-S1 and other Boards with ZynqMPs Devices

Marvin Fuchs (KIT) on behalf of the Serenity Consortium

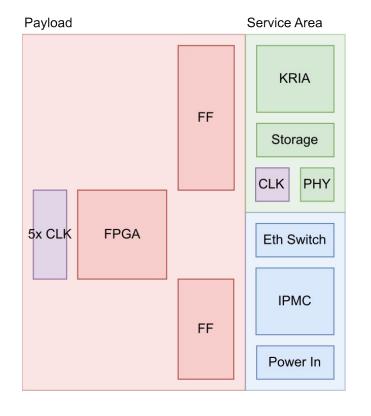
3rd CERN System-on-Chip Workshop

marvin.fuchs@kit.edu


Thursday, October 5, 2023

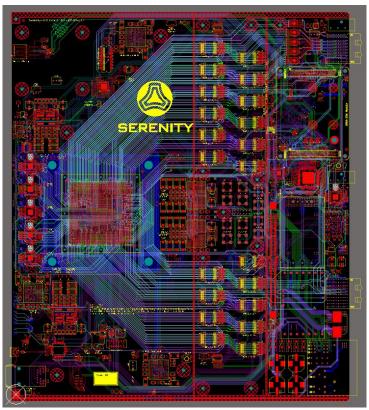
Serenity-S1 ATCA Card

Serenity-S1 is the successor of Serenity-Z1.2 and Serenity-A1


- Will be used in HL-LHC upgrade
- More than 700 cards will be used in various CMS systems
- Derived from successfully tested and evaluated Serenity-Z and Serenity-A boards
- Developed in git-controlled Altium project in a collaboration of multiple institutes led by the Imperial College London and KIT

3

Serenity-S1 ATCA Card

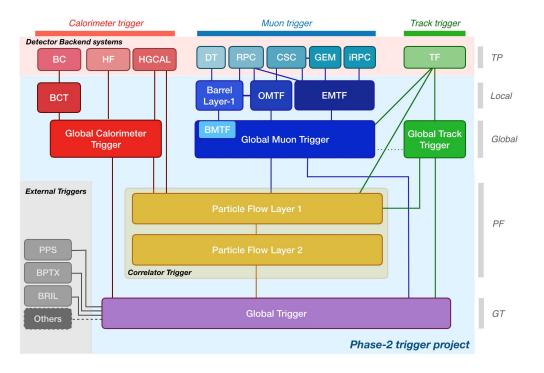


Board Infrastructure Xilinx KRIA K26 SoM Clock, Power, Ethernet PHY SD card, SSD **ATCA Infrastructure Backplane Connectors** 0 IPMC (OpenIPMC DIMM Module) 0 **Power Input** 0 **Ethernet Switch** 0 Payload Samtec FireFly Optical Transceivers 0 AMD Xilinx VU13P FPGA 0 Clocks 0

Pilot Production

- We are still waiting for the first 12 PCBs
 - 2 PCBs will be assembled at KIT with FPGA socket
- Initial tests will be run at KIT
 - Power supply test
 - Slow control test
 - Copper SerDes loopback test
- Extended tests will be run at CERN and Imperial College London
 - Temperature cycle test
 - Optical tests
 - SerDes lane performance characterization

Serenity in CMS HL-LHC Level-1 Trigger

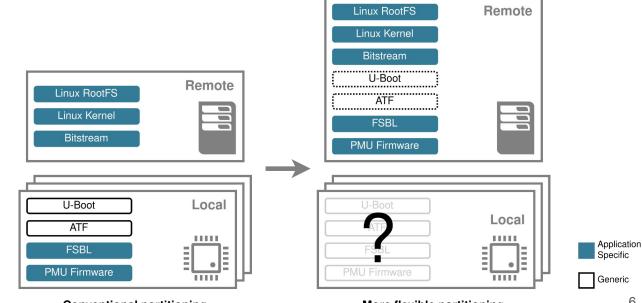

Four complementary trigger types

- Calorimeter Trigger
- Muon Trigger
- Track Trigger
- Particle Flow Trigger

Serenity boards intended to be used in

- HGCAL
- DTC, GTT
- Correlator L1, Correlator L2
- GT
- MTD, BRIL

More than 700 cards in total



Why Split Boot?

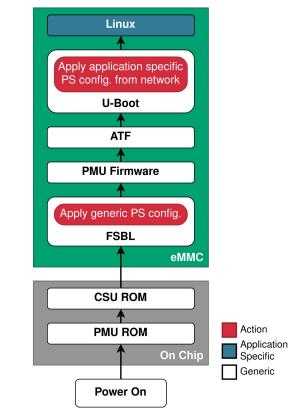
Challenge: Distributed systems with many ZyngMP devices are difficult to deploy and update due to application-specific boot code in PMU Firmware and FSBL

Idea: Move project specific settings (e.g. PS / PL interface) to remote. Base configuration comparable to BIOS / UEFI on desktop PC (fundamental boot capabilities to enable network boot)

Conventional partitioning

More flexible partitioning

Recap: Split Boot v1


Idea: Load a generic PS-configuration in the FSBL and expand it with **application-specific** information from the network in **U-Boot**.

Advantages:

- Fully network based booting
- Easy and quick to update application specific files and configurations, potentially for many boards, in a single location
- Easy and quick to replace broken boards

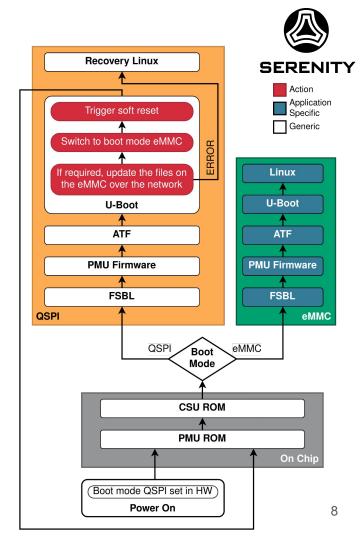
Limitations:

- Not everything can be reconfigured (RAM, network interface, ...)
- Custom files mean additional effort when switching toolset versions
- Usually the PMU Firmware is not created independent of a project

https://gitlab.cern.ch/split-boot/split-boot-example-zcu102

https://indico.cern.ch/event/1139381/contributions/4788797/attachments/2436369/4172790/2022-05-03_SoC_Interest_Group_Meeting_Update_ZynqMP_activities.pdf

New: Split Boot v2


Idea: Use a generic software stack (QSPI) to **synchronize** the main software stack (eMMC) with the network at boot time. Then, trigger a **soft reset** and boot the main software stack.

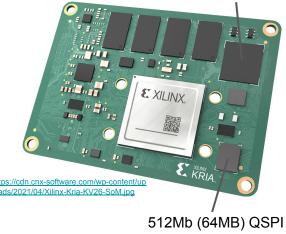
Advantages:

- Same advantages as with Split Boot v1
- More reliable and stable
- No custom files, tools or workflow needed
- No additional difficulties when changing Vivado versions
- Always recoverable (Recovery Linux)

Limitations:

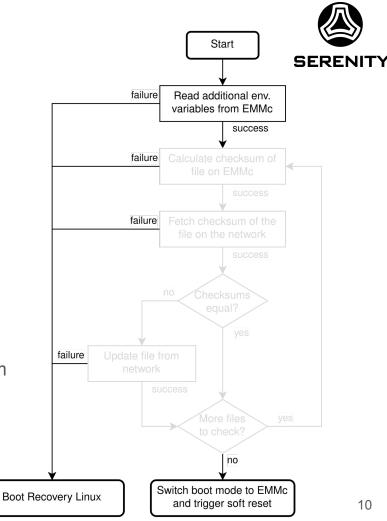
- Two boot media are needed
- About 17 seconds longer boot (incl. 2 sec. for user interrupt)

Split Boot v2 on Kria K26 SoM


The Kria SoM meets all requirements, but Split Boot v2 works **on all ZynqMP** devices with two sufficiently large boot media

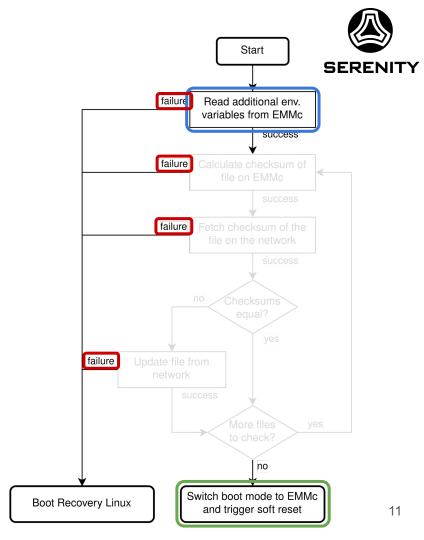
- Kria K26 SoM has QSPI flash and eMMC storage on board
- Full software stack fits in QSPI flash, despite relatively small size
- External boot media such as an SD card can also be used

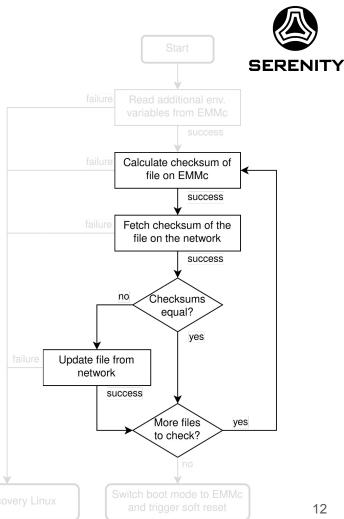
Example eMMC Usage									
boot.bin	~ 9.1M								
boot.scr	~ 2.8K								
uboot_rt_env_init.cfg	~ 155								
uboot_rt_env_main.cfg	~ 47								
CentOS File System	~ 3.3G								
total	~ 3.4G (~20%)								


Example QSPI Usage										
FSBL	~ 500K									
PMU Firmware	~ 500K									
ATF	~ 150K									
U-Boot	~ 9.0M									
Devicetree Blob	~ 50K									
boot.scr	~ 3K									
Linux Kernel + INITRAMFS	~ 29M									
Bitfile	~ 7.5M									
total (boot.bin)	~ 38M (~60%)									

16GB eMMC

Integration into U-Boot


- U-Boot is the first stage in the boot process, which allows easy loading of files from the network
- Procedure implementable in U-Boot script
 - custom boot.scr
- U-Boot environment is extended with a configuration file
 - e.g. IP address of the TFTP server
- The EEMI interface of the PMU Firmware is extended so that it can be instructed to switch the boot mode
- The system boots into recovery Linux if any step fails
- If errors occur, they are recorded in a shared memory from where they can be read out with the Recovery Linux



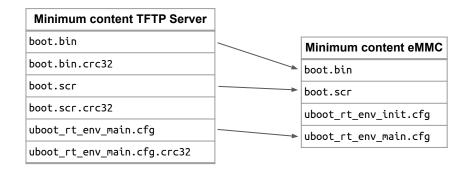
Integration into U-Boot

Three custom U-Boot commands

- file2env
 - To add environment variables from file
- print2mem
 - To pass error messages to the Recovery Linux
- switchbm
 - To switch the boot mode and trigger a soft reset

The Automatic Update Mechanism

Idea: Only update files that are not up to date anymore


- DHCP and TFTP capabilities of U-Boot are used to download files
- Checksums are used to save bandwidth when validating files
- Download of complete files only it the checksums differ
- For each file to be checked for actuality, the server holds the pre-calculated CRC32 checksum in a file
 - E.g. boot.bin and boot.bin.crc32

The Automatic Update Mechanism

To prevent the system from entering a state from which it cannot be recovered without physical access, **not all files** should be automatically updated

- The file uboot_rt_env_init.cfg is used to configure the QSPI based U-Boot
 - If it is corrupted, it may be impossible to boot the recovery Linux
 - Updates to this file should be very rare
- It is possible to update all files on QSPI and eMMC manually from Linux

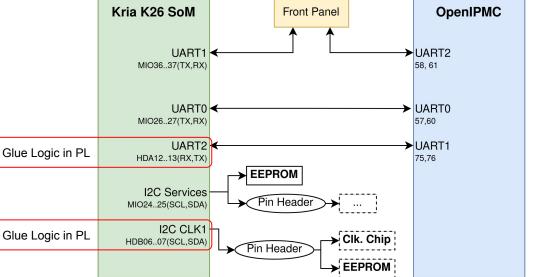
Only the minimum required files are listed here. Additional files can easily be added.

Recovery Linux

A minimal PetaLinux is used to provide the easiest and most comprehensive access to the system in case of problems

- Stored entirely in the QSPI Flash
 - \circ ~~ ~30MB in size
- Temporary INITRAMFS as Rootfs
- Access to QSPI and eMMC is possible
- SSH access
- Can be booted manually from U-Boot
 - ZynqMP> bootm \${kernel_addr_r}

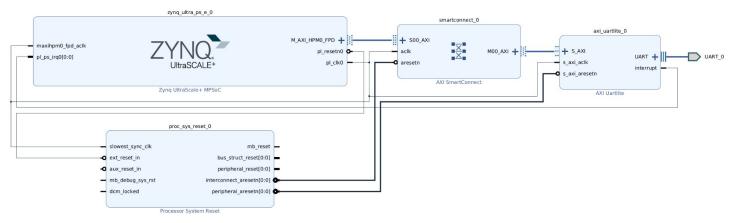
This image can also be customized if some specific drivers etc. are needed


F	mfuchs@ipesdr-pc15:~												Q					8				
split-boo 40000010 40000020 40000030 40000050 40000050 400000070 40000080 40000080 55plit-boo	53 73 64 73 5f 62 2e 20 00	70 3a 20 75 65 6f 73 00	6c 20 74 6d 6f 65 65 00	69 23 6f 20 76 74 67 72 00	74 45 20 66 5f 5f 2e 76 00	20 52 66 6f 6d 72 63 65	42 52 65 72 61 74 72 72	6f 4f 74 20 69 5f	6f 52 63 75 6e 65 33 00	74 23 68 62 2e 6e 32 00	20 20 6f 63 76 29 00	73 46 63 6f 66 5f 20 00	74 61 68 74 67 6d	61 69 5f 20 61 72 00	74 6c 63 72 28 69 6f 00	75 65 6b 74 75 6e 6d 00	Spl s: a d to sum _env boot .cfg se	it B #ERR for /_ma t_rt g.cr	oot OR# tch ubc in.c _env c32)	Fail chec oot_r	Le =k =t (u Ln Dm	

Reading an error message from U-Boot in the shared memory

Usage of the PL in the Initial QSPI Boot Phase

- Early access to devices sometimes necessary
 - Configuring clock chips
 - Reading / Writing EEPROMs
 - 0 ...
- Glue Logic
- Example: Serenity-S1
 - UART connection to request information from IPMC
 - PL-I2C to e.g. configure clock chip or read EEPROM



Kria SoM and IPMC connections on the Serenity-S1

Usage of the PL in the Initial QSPI Boot Phase

- Dedicated PL configuration can be used in the first phase of the boot process (QSPI boot)
- Stored e.g. in QSPI image
- Loaded e.g. by the FSBL
 - Usable by FSBL and U-Boot
- Temporarily usable until soft reset

Example: Temporary PL configuration to communicate with the IPMC module via UART on Serenity-S1

Conclusion

Serenity-S1

- Developed mainly for CMS HL-LHC Level-1 Trigger
- More than 700 units expected to be produced in the long term
- PCB currently in production (pilot production run)
- Tests planned and prepared but not yet executed

Split Boot v2

- New development that takes a different approach than Split Boot v1
- More reliable and stable
- ZynqMP always recoverable
- Easier to update Vivado toolset version

Feel free to browse our Split Boot v2 example Project: https://gitlab.cern.ch/split-boot/split-boot-v2-example-kv260

Thank you for your interest!