
Server

Gitlab Runner

Network Services

GitLab CI parallel
build and testing for
Zynq SoC designs

Kareen Arutjunjan
EP-CMD | CMS DAQ group

Acknowledgements:
P. Žejdl & M. Dobson

Board X

Board Y

Parallel node 1

1

Parallel node 2

● Introduction

○ Portfolio

○ The problem

● Gitlab CI

○ The basics of Gitlab CI

● Zynq-BuildSystem CI

○ About Zynq-Buildsystem

● Network-Services

○ Containerized-Network-Services

● Demo

○ Adding a new board to

Zynq-Buildsystem CI

Summary

2

Introduction

3

Introduction: Portfolio

The CMS DAQ is currently in the development phase, and therefore needs to support different

types of boards at all times.

List of boards currently used:

4

Number 1 2 3 4 5

Board Type Trenz Mezzanine ZCU-102 RTM V1 RTM V2 Kria

Introduction: Portfolio

5

RTMv2 Trenz Zynq UltraScale+ MPSoC (ZCU102)

Generating Zynq-Images: The problem

Developing and maintaining embedded systems for

Zynq boards presents several challenges:

Efficiency: Manually building firmware images, and

root-filesystems is time-consuming.

Testing and Validation: Ensuring that the integrated

system works correctly, requires manual interaction,

and supervision.

6

Zynq UltraScale+ MPSoC (ZCU102)

Generating Zynq-Images: A better solution is needed

7

Gitlab CI

8

Gitlab CI - tool that automates the process of building, testing, and deploying software applications.

Gitlab CI Job - a specific task or set of tasks defined in a CI.

Gitlab CI Stage - a logical grouping of one or more jobs within a CI pipeline.

Gitlab Pipeline - sequence of stages. Each stage can include tasks like building code, running tests, etc. Pipelines are
defined in a .gitlab-ci.yml configuration file.

Gitlab Runner - a process, which is executing jobs, that are defined in CI pipeline.

Gitlab Artifact - an output archive file or directory, which was saved from a job.

Gitlab Parallel Matrix - a process of running a job in parallel with different variable values for each instance of the job.

Gitlab CI: What is it?

9

Gitlab CI: Hello world!

stages:

- build # CI Stage

hello-world: # CI Job

 stage: build

 script:

 - echo "Hello world!"

.gitlab-ci.yml

10

 CI Pipeline

CI Job: Output

Gitlab CI: Parallel-Matrix - Hello world!

stages:
- parallel-build

parallel-job:
 stage: parallel-build
 parallel:
 matrix: # Parallel:Matrix
 - TARGET:
 - "audience"
 - "world"
 script:
 - echo "Hello ${TARGET}!"

.gitlab-ci.yml

Gitlab CI

11

Enhanced Flexibility

Parallel matrix can be configured to build a project and run tests with

variable configuration.

Faster Execution

Parallel matrix enables concurrent execution of multiple jobs,

significantly reducing the overall pipeline execution time.

Gitlab CI: Parallel-Matrix - Conclusion

12

Originally designed by Vasileios Amoiridis.

Features added by me (Kareen Arutjunjan):

● Multi-board support

● Parallel build

Zynq-BuildSystem CI

13

Maestro Pipeline

Acts as an orchestrator to trigger downstream

pipelines.

● Sequential Execution

● Dependency Chain

Zynq-BuildSystem CI: Maestro Pipeline

Maestro Petalinux

Linux Filesystem

Boot

Store Images

14

Petalinux Pipeline

Main responsibility is to Generate Images for

Zynq, by using Petalinux framework.

PetaLinux is used for building Linux-based
systems for Zynq boards.

Zynq-BuildSystem CI: Petalinux Pipeline

Maestro Petalinux

Linux Filesystem

Boot

Store Images

15

Zynq-BuildSystem CI: Petalinux Pipeline
The pipeline is utilizing Petalinux-Template, which comes with scripts, and layers for

configuring Petalinux Project.

The template was developed by ATLAS Team. Dhcp_clientid layer was built by Petr Zejdl.

 petalinux-template petalinux-pipeline CI

Generate-Images:
[Board-X]

build-petalinux.sh

tar -czf
zynq-images.tar.gz

Generate-Images:
[Board-Y]

build-petalinux.sh

tar -czf
zynq-images.tar.gz

artifacts

Generate-Images:
[Board-X]

zynq-images.tar.gz

Generate-Images:
[Board-Y]

zynq-images.tar.gz

Board_type_x/

16

Board_type_y/

Scripts Layers

Vivado Project
XSA & bitfile

Petalinux Project
device-tree

Vivado Project
XSA & bitfile

Petalinux Project
device-tree

apply-config.sh

build-petalinux.sh

SIPL

dhcp_clientid

Hardware Developer

Linux Filesystem

Linux Filesystem Pipeline is responsible for

generating sysroot (rootfs) for the Zynq.

Zynq-BuildSystem CI: Linux Filesystem Pipeline

Maestro Petalinux

Linux Filesystem

Boot

Store Images

17

Zynq-BuildSystem CI: Linux Filesystem Pipeline

Linux Filesystem Pipeline

Linux Filesystem Pipeline

A python script runs dnf to install the

rootfs.

The kernel modules are added later in

Boot Pipeline. Meanwhile the generic

rootfs is saved on the web-server.

The pipeline currently supports:

● Alma Linux 8

● CentOS Stream

artifacts

sysroot.tar.gz
Web

Server

18

Docker Container

QEMU emulator

mkrootfs.py

Zynq-BuildSystem CI: Linux Filesystem Pipeline

19

Screenshot of the rootfs directory, on the web-server.

Boot Pipeline

Boot Pipeline is responsible of:

● Building board specific rootfs

● Configuring & running network

services

● Testing boot images in action

Zynq-BuildSystem CI: Boot Pipeline

Maestro Petalinux

Linux Filesystem

Boot

Store Images

20

zynq-images

Artifacts

sysroot

Web server

Zynq-BuildSystem CI: Boot Pipeline Stages

21

Boot Pipeline

Build Images Start Services Boot Export Artifacts

Import zynq-images and
sysroot

Build board-specific rootfs
by including kernel modules
to the sysroot

Build docker images

Build configuration files for
network-services

Start network-services
(DHCP, NFS, TFTP)

Update BOOT.BIN on SD
card

Boot the board

Check boot output

Only in case of successful
boot:

Save board-specific rootfs
and zynq-images as artifacts
to Gitlab.

Zynq-BuildSystem CI: Boot Test Setup
Boot Test Setup

Diagram visualizes the current lab environment (it doesn't

contain the build machines).

● Board and Server are connected via serial line.

● Board is getting information of network boot from a

private network.

● Board’s power outlet is connected to the PDU (Power

Distribution Unit).

● Server is hosting Gitlab Runner, and network services.

In the future we will switch to IPMC for both power cycling,

and serial line connection.
22

Server
Zynq
Board

Serial line

PDU

LAN

Gitlab Runner

Network Services

Zynq
Board

Serial line

Store-Images Pipeline

Responsible of storing zynq-images, and
rootfs on a webserver.

● Download artifacts from Boot

pipeline

● Tag each file with a reference to the

Petalinux Version, XSA, and sysroot

type

● Upload files to a Web Server

Zynq-BuildSystem CI: Store-Images Pipeline

Maestro Petalinux

Linux Filesystem

Boot

Store Images

23

zynq-images

Artifacts

sysroot

Web Server

Zynq-BuildSystem CI: Store-Images pipeline

24

Screenshot of the board images directory, on the web-server.

Network Services

25

Network Services: What is needed in the lab?

26

Required services:

● DHCP (Dynamic Host Configuration Protocol) for

network services. Dnsmasq, used in our case.

● TFTP (Trivial File Transfer Protocol) server for

providing boot images.

● NFS (Network File System) for serving Linux File

System.

● NTP (Network Time Protocol) for time

synchronization. Chronyd, used in our case.

Zynq
Board

Server

DHCP
TFTP
NFS
NTP

DHCP response

+ IP-Address
+ next-server

+ filename

DHCP request

TFTP request

TFTP response

NFS request

NFS response

+ boot-images

+ sysroot

Network Services: Containerization

27

Why containers?

Containerized network services were developed to provide easily

deployable services for network boot in the lab environment.

Zynq-buildsystem CI is using these network services. However,

they are also available to be used independently.

Server

NFS TFTP

DHCP NTP

Host network

Demo

28

Demo: Zynq-Buildsystem Repository

29https://gitlab.cern.ch/hardware/zynq/zynq-buildsystem

https://gitlab.cern.ch/hardware/zynq/zynq-buildsystem

Demo: Adding a new board to Zynq-Buildsystem CI

30

Trenz RTMv2

Let’s add a new board to the CI:

● board-type: Trenz-RTM-V2-2021_2
● boot-volume: mmcblk1p1
● testing-host: ATCA-LAB40-R02-01-02-ctrl-1

Demo: Adding a new board to Zynq-Buildsystem CI
In order to add a new board to the Zynq-Buildsystem Pipeline, there are several things which are needed to be done:

● Prepare hardware description file (XSA), and bitfile from board’s Vivado project

● Prepare device-tree (system-user.dtsi), from board’s Petalinux project

Petalinux Pipeline

 1. Create a new folder in `petalinux-template/boards/$BOARD_NAME`

 2. Copy the default layers.conf file from `petalinux-template/boards/example/conf/layer.conf` to board directory

 3. Symlink boards/$BOARD_NAME/xsa to the xsa file, and boards/$BOARD_NAME/bitfile to the bitfile of the board

Maestro Pipeline

 4. Add board type information to: `maestro/parallel-matrix.yml`

 5. Add board host information to: `maestro/boot-config.yml`

 6. Add board option to the `maestro/variables.yml`

31

Board_type_x/

Vivado Project
XSA & bitfile

Petalinux Project
device-tree

Demo: Check prepared files (Step 1)

Check that the XSA, bitfile, and system-user.dtsi files have been prepared.

32

Demo: Clone Petalinux Pipeline (Step 2)

33

Clone the Petalinux Pipeline repository:

$ git clone ssh://git@gitlab.cern.ch:7999/hardware/zynq/zynq-buildsystem/petalinux-template.git

mailto:git@gitlab.cern.ch

Demo: Add new board type to Petalinux Pipeline (Step 3)

Import prepared files

$ cd petalinux-template
$ mkdir petalinux-template/boards/Trenz-RTM-V2-2021_2
$ cp prepared_files/*
petalinux-template/boards/Trenz-RTM-V2-2021_2/
$ cd petalinux-template/boards/Trenz-RTM-V2-2021_2/

Add new board info

$ mkdir -p recipes-bsp/device-tree/files/
$ mv system-user.dtsi recipes-bsp/device-tree/files/
$ ln -s top.04.00.0000.xsa xsa
$ ln -s top.bit bitfile
$ cp -r ../example/conf/ .
$ git add . && git commit -m “Update for Demo”
$ git push origin master

34

Expected result:

Demo: Configure parallel-matrix.yml (Step 4)

Add board information to `variables.yml`:

 # Zynq-buildsystem CI: Pick a board
 BOARD_TYPE_OPT:
 description: "Pick a single board type from the dropdown list or choose ALL to run the pipeline for
all boards in parallel"
 value: "NO"
 options:
 - "NO"
 - "zcu-102"
 - "Trenz-RTM-V2-2021_2"
 - "ALL"

35

https://gitlab.cern.ch/hardware/zynq/zynq-buildsystem/maestro/-/blob/master/variables.yml

Demo: Configure parallel-matrix.yml (Step 5)

Add board information to `parallel-matrix.yml`:

● BOARD_TYPE: Trenz-RTM-V2-2021_2

● XSA: top.04.00.0000.xsa

● BOOT_VOLUME: mmcblk1p1
● TESTING_HOST: ATCA-LAB40-R02-01-02-ctrl-1

36

https://gitlab.cern.ch/hardware/zynq/zynq-buildsystem/maestro/-/blob/master/parallel-matrix.yml

Demo: Configure parallel-matrix.yml (Step 6)

Add board information to `boot-config.yml`:

● hostname: ATCA-LAB40-R02-01-02-ctrl-1
● alias: rtm2-lab40-r02-board05

● dhcp_client_id:
ff:00:00:00:04:00:02:00:00:31:5a:48:50:4d:2e:33:2d:31:d4:41:54:43:41:2d:34:30:2d:32:42:2d:30:31:2d:52:30:31

:2d:31:36:00:00:07:c0:02

● tty_usb: ACM0

● pdu_outlet: 3
● ip: 172.0.0.3

37

https://gitlab.cern.ch/hardware/zynq/zynq-buildsystem/maestro/-/blob/master/boot-config.yml

Demo: Trigger Zynq-Buildsystem CI (Step 7)

38
https://gitlab.cern.ch/hardware/zynq/zynq-buildsystem/maestro/-/pipelines/new

https://gitlab.cern.ch/hardware/zynq/zynq-buildsystem/maestro/-/pipelines/new

Demo: Trigger Zynq-Buildsystem CI (Step 7)

39

Demo: Trigger Zynq-Buildsystem CI (Step 7)

40

Demo: Check results (Step 8)

41

Demo: Check results - Petalinux (Step 9)

42

Demo: Check results - Linux Filesystem (Step 10)

43

Demo: Check results - Boot (Step 11)

44

Demo: Check results -Store Images (Step 11)

45

Demo: Collect images (Step 12)

46

Screenshot of the zynq-images, on the web-server.

End notes

47

Goals accomplished

We have successfully built a Pipeline for building and testing software of SoC.

Future work

The goal is to extend the project to support deploying software for extended number of boards. For

example, fill the crate with 10 boards of same type, and deploy software for all of them with a

Pipeline.

End notes: Goals accomplished

48

Network Services: Public repository

49

Network Services

The whole network-services repository, along with Dockerfiles, and

configuration files are free to use:

● https://gitlab.cern.ch/hardware/network-services/

Server

NFS TFTP

DHCP NTP

Host network

https://gitlab.cern.ch/hardware/network-services/

C'est tout

50

Questions?

