
Building Linux boot files
using templates for
multiple SoC projects

Giulio Muscarello (ATLAS L1CT)

Petalinux Yocto under the hood

Alexander Migl, CC BY-SA 4.0, via Wikimedia Commons

Petalinux Yocto under the hood

Recipes

Y0 CT0

Wikisympathisant, CC BY-SA 4.0, via Wikimedia Commons

Petalinux Yocto under the hood

You might think of Yocto as a collection of
software packages that Just Works™, and
perhaps where you drop your files into (e.g.
“run control” in the diagram)

This is mostly true. Yocto recipes are software
packages that comprise the full source code of
an application, plus the instructions for
compiling it in the BitBake language (more on
this later).

But... it’s not the whole story.

Petalinux Yocto under the hood

In a typical Petalinux project, Yocto looks more
like this.

Layers are stacked on top of each other.
Each new layer on top modifies the recipes
below – adding some files, removing others,
changing build instructions. There are layers
from the Yocto team, layers from Xilinx, and
even layers from CERN!

This means that recipes are not monolithic,
rather, they are the sum of many different
contributions.

Only at build time layers are flattened into
monolithic recipes ready for compilation.

* Simplified representation: Yocto has tens of layers,
Xilinx has ~10, and the user can have several

project-spec/meta-user

is here. Sounds familiar?

Petalinux Yocto under the hood

The advantage of this design is that layers are
decoupled: different vendors can work
independently

• The Yocto team curates generic versions of
U-Boot, Linux kernel, etc., doesn’t go mad
trying to support every SoC that exists

• Xilinx only needs to maintain patches for its
SoCs, doesn’t care about the rest of the
codebase

• Likewise, you can (mostly!) just concentrate
on your patches and not worry about U-
Boot internals, Xilinx driver details, etc.

Because layers are composable, you can also
share and reuse them across teams: more
on this later…

Tutorial goals

After this tutorial you should be able to:

• Get started writing your own Yocto layer

• Share your layer and reuse others’ in a
standalone project

• Use the SoC IG Petalinux template to
simplify layer management

This is not a full guide to Yocto:
refer to documentation!

What does
a layer
look like?

What does a layer look like?

A layer is a collection of patches with
some metadata:

• layer.conf: name, priority

• Individual recipe directories
• [recipe].bbappend: modifies build

instructions

• .patch files: modify source code

• .c, .h, … files: add source code

• .cfg files: set configuration values (can be
overridden by upper layers!)

Not all recipes have all kinds of files.

Our .bbappend
Suppose we want to add a new feature.
How would we change each step?

What does a layer look like? – .bbappend

Original recipe
Recipes are written in the BitBake
language, but for most purposes they use
a very simple set of features and
operations:

1. Fetch Clone a Git repository;
copy a list of local files (SRC_URI variable)
into the build directory

Add our C files/patches
SRC_URI += “hello.c hello.h i2c.patch”

2. Configure Prepare project for building, typically
copying files around and applying
patches

Move our files from the build directory to the
correct place:
mv hello-world.h ${S}/include/

.patch files are applied automatically!

3. Compile Call make (typically).

Yocto/BitBake does not manage the
compilation itself!

(No changes to compilation commands: if anything,
you'll want to patch the Makefile or CMakeLists.txt
in step 2)

What does a layer look like? – Patches

When modifying source code you
typically deal with .patch files

Patches:

• Describe what files and lines to modify

• Contain the modifications

• + Lines with a plus are additions

• - Lines with a minus are removals

• Other lines are context

• Are typically generated automatically

Can you think of a tool that makes it easy
to work with diffs?

Filename

Line numbers

Modifications

What does a layer look like? – Git patches

A Git commit is just a patch to which we
give a title and a parent hash

Indeed, it is much more practical to use Git
commits to represent changes:

• There are more practical tools to work
with them

• People are more used to working with
Git

You can trivially convert a git commit to a
patch (git show HASH > file.patch)
and vice versa (patch; git add; git
commit)

Filename

Line numbers

Modifications

What does a layer look like? – Git patches

In the configuration stage, Yocto will:

1. Convert raw patches to Git commits

2. Apply the commits in order

3. Copy any additional files from SRC_URI

4. Build the project

If the patches don't apply (typically because the "base" source has changed in an update),
Yocto will throw an error and warn the user

How to adapt commits/patches for new Petalinux release? We discuss this later

What does a layer look like? – Configuration

Yocto uses a simple language to describe
configuration options: Kconfig (originally used in
the Linux kernel, now used by many C projects)

1. Developers write Kconfig files to describe what
configuration options their software accepts

2. Users write .cfg files (“fragments”) to configure
their software, either using petalinux-config or
manually:

CONFIG_SIPL=y

3. Kconfig translates these values to #define
options for C code:

#define CONFIG_SIPL

How to create
a layer:

layer.conf

Watch on Indico: link

https://indico.cern.ch/event/1253805/contributions/5556283/attachments/2727290/4740064/1.%20Creating%20a%20layer.mp4

What does a
layer look like?

Git patches,
.bbappend

Watch on Indico: link

https://indico.cern.ch/event/1253805/contributions/5556283/attachments/2727290/4740052/2.%20Creating%20changes%20in%20a%20layer.mp4

What does a
layer look like?
Configuration

Watch on Indico: link

https://indico.cern.ch/event/1253805/contributions/5556283/attachments/2727290/4740053/3.%20Configuration%20with%20Kconfig%20files.mp4

Maintaining layers

Petalinux releases new versions twice a year, and sometimes
they add breaking changes

• Yocto is based on Git, so you can use familiar tools (shell,
Visual Studio Code, …) to solve a familiar problem: rebasing
git commits on a new branch and fix conflicts
Also, git is forgiving: it will try to apply a patch as long as it
can find the context, even if the line numbers changed

• You can also not use Git patches and just replace existing
files entirely using SRC_URI.
It's simpler to develop, but when updates introduce
breaking changes it will be difficult to understand what
changes are to be carried over. Tradeoff to consider!

Maintaining layers

The BitBake language rarely changes, but there was a breaking
change in the Yocto release in Petalinux 2022.1:

SRC_URI_append = … -> SRC_URI:append = …

Also, recipes may be renamed in Petalinux releases (also in
2022.1).

Moral of the story – read release notes before upgrading

Sharing layers

Sharing layers

To share a layer, simply distribute your directory, e.g. via Git.
See L1Calo layer on the right

Vice versa, you can import other people’s layers by simply
copying them on your machine and adding them from
petalinux-config:

Sharing layers:
importing

Watch on Indico: link

https://indico.cern.ch/event/1253805/contributions/5556283/attachments/2727290/4740054/4.%20Importing%20a%20layer.mp4

Sharing layers: good practices

Some good practices when creating layers for external usage:

• #1 - write documentation!
Documentation prevents software rot, speeds up the onboarding of
newcomers, and helps potential users understand your code

• Have one feature per layer
Every feature increases complexity, potential overhead, etc. often
unnecessarily. Don't package many unrelated changes in one layer

• Strongly prefer Git patches over raw patches
Git patches embed documentation and authorship, and have a clear
ordering

• Prefer patches over SRC_URI override
SRC_URI override masks what changes are actually part of the layer.
Only override empty files

Sharing layers: the SoC Interest Group

We as SoC Interest Group make available two layers:

1. soc-ig-common, adding generic Client ID to U-Boot (*:
how to retrieve it is left to you)
See previous talks on Client ID and scalable booting

2. u-boot-sipl, adding SIPL support to U-Boot

3. … your layer here? Feel free to submit proposals!

You can use them directly, but…

https://gitlab.cern.ch/soc/petalinux-template/-/tree/master/layers/0-soc-ig-common
https://indico.cern.ch/event/1277467/#12-scalable-booting-and-host-c
https://gitlab.cern.ch/soc/petalinux-template/-/tree/master/layers/1-u-boot-sipl

Sharing layers: the SoC Interest Group

We also provide a template to get started and simplify the use of layers:
just provide your .xsa and copy any additional layers in a directory

Try it out: soc/petalinux-template on CERN Gitlab

• Meant to be a starting point for your Petalinux projects

• Comes with a core set of features for Client ID

• You’re invited to fork it and add features, set up a CI workflow, etc.

• Has scripts to automate building your project

• Scales well to multiple hardware projects with a common set of
patches
(Interested? Stay around for the next tutorial on multi-board projects!)

Currently in use in the ATLAS L1CT group, kindly tested by ATLAS gFEX
and CMS

https://gitlab.cern.ch/soc/petalinux-template/-/tree/master/layers/0-soc-ig-common
https://indico.cern.ch/event/1253805/#25-tutorial-2-using-gitlabci-p

Sharing layers: the
SoC Interest Group

Watch on Indico: link

https://indico.cern.ch/event/1253805/contributions/5556283/attachments/2727290/4740055/5.%20Using%20the%20SoC%20IG%20Petalinux%20template.mp4

Conclusions

Conclusions

• The Yocto model, based on a composition of layers, lets people
cooperate and work independently on individual features

• Yocto makes clever use of git: changes are packaged in .patch files
that are easy to update

• The layers architecture makes it easy to share, reuse and
collaborate: make use of it!

• SoC IG provides some layers

• SoC IG provides a template to simplify Petalinux builds

