
Bare-metal Programming on Zynq UltraScale+
for the FGC4 Power Converter Controller

Martin Cejp, Dariusz Zielinski

3rd CERN SoC Workshop 2023-10-04

2023-10-04 – SoC Workshop Page 2

Agenda

Project introduction

Architecture

Our needs and constraints

Possible solutions

Bare-metal bootloader and utilities

Page 3

FGC4 project

2023-10-04 – SoC Workshop

CERN control system

Operators

FGC4

Technical Network

Power converters

FGC4 device

Controls Monitors Diagnoses

power converters

Page 4

FGC4 project – basic principle

2023-10-04 – SoC Workshop

Control system

FGC4

Command
processing

State
machine

Regulation

Voltage
regulation

Current
regulation

DAC

Measurement

ADC

Power converter Load

Page 5

FGC4 project – architecture

2023-10-04 – SoC Workshop

DI/OT crate

System Board with Zynq UltraScale SoC

Cortex-A53 CPU

Linux

FGC4 main app

CPU #1

Linux

FGC4 main app

CPU #2

Bare-metal

Voltage loop

CPU #3

Bare-metal

Current loop

CPU #4

FPGA

Hardware
interface

Memory map

Peripheral board
Peripheral board

Peripheral board

Hardware interface

Page 6

Our needs and constraints

We want to use Linux to:

• Reuse code with the FEC software.

• Take advantage of all available libraries, network stack, file system, etc.

• Make it easier to develop, debug and maintain our software.

2023-10-04 – SoC Workshop

Page 7

Our needs and constraints

We want to use Linux to:

• Reuse code with the FEC software.

• Take advantage of all available libraries, network stack, file system, etc.

• Make it easier to develop, debug and maintain our software.

2023-10-04 – SoC Workshop

But we also want to:

• Achieve around 100 kHz current regulation frequency.

• Be able to run hard-real-time code with absolute determinism.

• Be able to run lots of calculations in a short amount of time.

Page 8

Our needs and constraints

Problem type What you need Typical solution

Real-time problem Determinism Microcontrollers, DSPs - simpler
CPUs (e.g. Cortex-M, Cortex-R),
FPGAs

Tasks have to finish at the deadline.

2023-10-04 – SoC Workshop

Bare-metal, RTOS

Page 9

Our needs and constraints

Problem type What you need Typical solution

Real-time problem Determinism Microcontrollers, DSPs - simpler
CPUs (e.g. Cortex-M, Cortex-R),
FPGAs

Number-crunching problem Throughput SoCs, servers - more complex
CPUs (e.g. Cortex-A, x86-64, etc.)

Tasks have to finish at the deadline.

With margin, even if a task overruns,
it’s still the same number of tasks per unit of time.

2023-10-04 – SoC Workshop

Linux

Bare-metal, RTOS

Page 10

Our needs and constraints

Problem type What you need Typical solution

Real-time problem Determinism Microcontrollers, DSPs - simpler
CPUs (e.g. Cortex-M, Cortex-R),
FPGAs

Number-crunching problem Throughput SoCs, servers - more complex
CPUs (e.g. Cortex-A, x86-64, etc.)

Tasks have to finish at the deadline.

With margin, even if a task overruns,
it’s still the same number of tasks per unit of time.

High-frequency regulation Determinism and throughput ???

2023-10-04 – SoC Workshop

Linux

Bare-metal, RTOS

How to address these needs?

Page 12

Possible solutions - Idea #1

Idea #1

Let’s just use Linux…

2023-10-04 – SoC Workshop

Page 13

Possible solutions - Idea #1

2023-10-04 – SoC Workshop

Frequency aim for the FGC4:

10 us for an iteration

Preliminary tests showed that a regulation iteration takes:
4-6 us (depending on a case)

100 kHz

Which gives us a worst-case margin of ~4 us
(not counting FGPA communication latency yet)

Page 14

Possible solutions - Idea #1

→ Best achieved interruption time: 4 us.

2023-10-04 – SoC Workshop

Can we force Linux to be deterministic?
We tried:

• Applying real-time patch (RT patch).

• Setting CPU affinity for the process.

• Setting interrupts affinity.

• Memory locking

• Kernel tweaking (isolcpus, nohz_full, rc_nocbs, irq_affinity)

While the available margin is 4 us….

The Kernel interrupts the process around every 4ms (250 Hz) which is the “Kernel tick” – present even in the “tickless” kernels.

Conclusion

You cannot have hard real-time determinism on Linux

Page 15

Possible solutions - Idea #1

2023-10-04 – SoC Workshop

In summary we tried:

• RT patch

• Kernel config tweaking

• Isolation patch

• Xenomai project

• Jailhouse project

→ Not enough

→ Not enough

→ Not ready yet (hobby project)

→ Quite complex (Jailhouse seems better)

→ Not so popular, difficult set-up

Page 16

Possible solutions - Idea #2

Idea #2

Let’s follow Xilinx recommendation
and use Cortex-R5…

2023-10-04 – SoC Workshop

Page 17

Possible solutions - Idea #2

2023-10-04 – SoC Workshop

We run benchmarks on Cortex-A53:

Benchmarks results.

We barely achieved 100 kHz on Cortex-A53 running 1.2 GHz.

Cortex-R5 has a simpler microarchitecture and runs at ~500 MHz

Conclusion
Cortex-R5 is too slow.

Page 18

Possible solutions - Idea #3

Idea #3

Let’s run bare-metal on Cortex-A53…

2023-10-04 – SoC Workshop

Page 19

Possible solutions - Idea #3

2023-10-04 – SoC Workshop

Bare-metal approach:

• Limit the RAM memory and number CPU of cores visible in Linux (by adjusting the Device Tree).

• Compile the binary for bare-metal target.

• Load the binary at given memory address and start CPU core at this address.

Page 20

Possible solutions - Idea #3

2023-10-04 – SoC Workshop

Bare-metal approach:

• Limit the RAM memory and number CPU of cores visible in Linux (by adjusting the Device Tree).

• Compile the binary for bare-metal target.

• Load the binary at given memory address and start CPU core at this address.

Challenges:

• Proper compilation of bare-metal applications.

• Handling different Exception Level.

• Starting, interrupting, reloading and monitoring of the bare-metal program.

• Cache, MMU, and interrupts configuration.

• Inter-processor communication via shared memory.

How to run bare-metal app on Cortex-A53?

Page 22

Bare-metal apps on Cortex-A53

2023-10-04 – SoC Workshop

Naive approach:

1. Write and compile code

2. Copy it to memory (through Linux)

3. Clear reset bit of BM core

4. Celebrate your success

Cortex-A53 CPU

Linux

CPU #1

Linux

CPU #2

Bare-metal

CPU #3

Bare-metal

CPU #4

Just a few obstacles…

1. Code may be erroneous ⭢ application must be able to

restart after a crash, while protecting the rest of the

system

2. Cannot reliably stop application once started

3. Some peripherals are shared between Linux and bare

metal (interrupt controller) and must be protected

accordingly

Solution: OpenAMP?

Page 23

Bare-metal apps on Cortex-A53

2023-10-04 – SoC Workshop

Our solution: Bmboot

• A minimalist loader & monitor for bare-metal code

• Executes on a high privilege level (EL3) to protect itself from errors in user code

• Zero overhead when user code executing, but can be called upon to intervene

Cortex-A53 CPU

Linux

CPU #1

Linux

CPU #2

Bare-metal

CPU #3

Bare-metal

CPU #4

Page 24

Bmboot

2023-10-04 – SoC Workshop

How to use it?

• Write C++ code (being aware of limitations of the bare-metal environment)

• Link to the Bmboot SDK

• Launch monitor + user application from Linux (via CLI or API)

#include <bmboot/payload_runtime.hpp>

int main(int argc, char** argv)
{

bmboot::notifyPayloadStarted();

printf("Hello, world!\n");

for (;;) {}
}

root@diot:~# bmctl exec cpu3 hello_world.bin

Hello, world!

Page 25

Bmboot

2023-10-04 – SoC Workshop

Cortex-A53 CPU

CPU #1 CPU #3

Linux kernel

CPU #2

Linux kernel

CPU #4

EL0 – User mode

EL1 – Kernel mode EL1 – Kernel mode

EL0 – User mode

How does it work?

Page 26

How does it work?

2023-10-04 – SoC Workshop

Cortex-A53 CPU

CPU #1 CPU #3

Linux kernel

CPU #2

Linux kernel

CPU #4

bmctl

EL1 – Kernel mode EL1 – Kernel mode

EL0 – User mode EL0 – User mode

$ bmctl startup cpu3

Page 27

How does it work?

2023-10-04 – SoC Workshop

Cortex-A53 CPU

CPU #1 CPU #3

Linux kernel

CPU #2

Linux kernel

CPU #4

bmctl

$ bmctl startup cpu3

Bmboot monitor

EL1 – Kernel mode

EL1 – Kernel mode EL1 – Kernel mode

EL0 – User mode EL0 – User mode

EL3 – Secure Monitor mode

Page 28

How does it work?

2023-10-04 – SoC Workshop

Cortex-A53 CPU

CPU #1 CPU #3

Linux kernel

CPU #2

Linux kernel

CPU #4

bmctl

$ bmctl startup cpu3
$ bmctl exec cpu3 hello_world.bin

Bmboot monitor

EL1 – Kernel mode

EL1 – Kernel mode EL1 – Kernel mode

EL0 – User mode EL0 – User mode

EL3 – Secure Monitor mode

hello_world

Bmboot SDK

Page 29

How does it work?

2023-10-04 – SoC Workshop

Cortex-A53 CPU

CPU #1 CPU #3

Linux kernel

CPU #2

Linux kernel

CPU #4

bmctl

$ bmctl startup cpu3
$ bmctl exec cpu3 hello_world.bin
$ bmctl terminate cpu3

Bmboot monitor

EL1 – Kernel mode

EL1 – Kernel mode EL1 – Kernel mode

EL0 – User mode EL0 – User mode

EL3 – Secure Monitor mode

hello_world

Bmboot SDK

Page 30

How does it work?

2023-10-04 – SoC Workshop

Cortex-A53 CPU

CPU #1 CPU #3

Linux kernel

CPU #2

Linux kernel

CPU #4

bmctl

$ bmctl startup cpu3
$ bmctl exec cpu3 hello_world.bin
$ bmctl terminate cpu3

Bmboot monitor

EL1 – Kernel mode

EL1 – Kernel mode EL1 – Kernel mode

EL0 – User mode EL0 – User mode

EL3 – Secure Monitor mode

Page 31

How does it work?

2023-10-04 – SoC Workshop

Cortex-A53 CPU

CPU #1

Linux kernel

CPU #2

Linux kernel

CPU #4

linux_app

EL1 – Kernel mode EL1 – Kernel mode

EL0 – User mode EL0 – User mode

Lifecycle can also be managed by user application on Linux via API

Bmboot API

CPU #3

Page 32

How does it work?

2023-10-04 – SoC Workshop

Cortex-A53 CPU

CPU #1 CPU #3

Linux kernel

CPU #2

Linux kernel

CPU #4

linux_app

Bmboot monitor

EL1 – Kernel mode

EL1 – Kernel mode EL1 – Kernel mode

EL0 – User mode EL0 – User mode

EL3 – Secure Monitor mode

real_time_app

Bmboot SDK

Lifecycle can also be managed by user application on Linux via API

Bmboot API

Page 33

How does it work?

2023-10-04 – SoC Workshop

CPU #1 CPU #3

Linux kernel

linux_app

Bmboot monitor

EL1 – Kernel mode

EL1 – Kernel mode

EL0 – User mode

EL3 – Secure Monitor mode

real_time_app

Bmboot SDK

Communication via shared memory

Bmboot API

Memory

Reserved block

• Range of reserved memory

determined ahead-of-time

• Cache coherence ensured by

hardware Snoop Control Unit

(no need to “flush” cache)

• No kernel driver necessary –

access via /dev/mem special

device

Page 34

Bmboot

2023-10-04 – SoC Workshop

Other features

Crash handling (core dump)

root@diot:~# bmctl exec cpu1 real_time_app.bin

...

root@diot:~# bmctl status cpu1

crashed_payload

root@diot:~# bmctl core cpu1

Writing to core.elf

root@diot:~# gdb real_time_app.elf core.elf

➔ Inspect with GDB: registers, stack trace, memory snapshot

Useful also for post-mortems in operation

Page 35

Bmboot

2023-10-04 – SoC Workshop

The bigger picture

• We feel that other groups must be solving a similar problem

• We would be happy to elevate this to a collaborative project

• We would like to hear from you

Feature summary

• Execution environment with no run-time overhead

• Shared-memory communication

• Interrupt handler registration

• Periodic tick callback (opt-in)

• Crash handling and recovery

• API and CLI for control from Linux

Thank you!
Questions?

