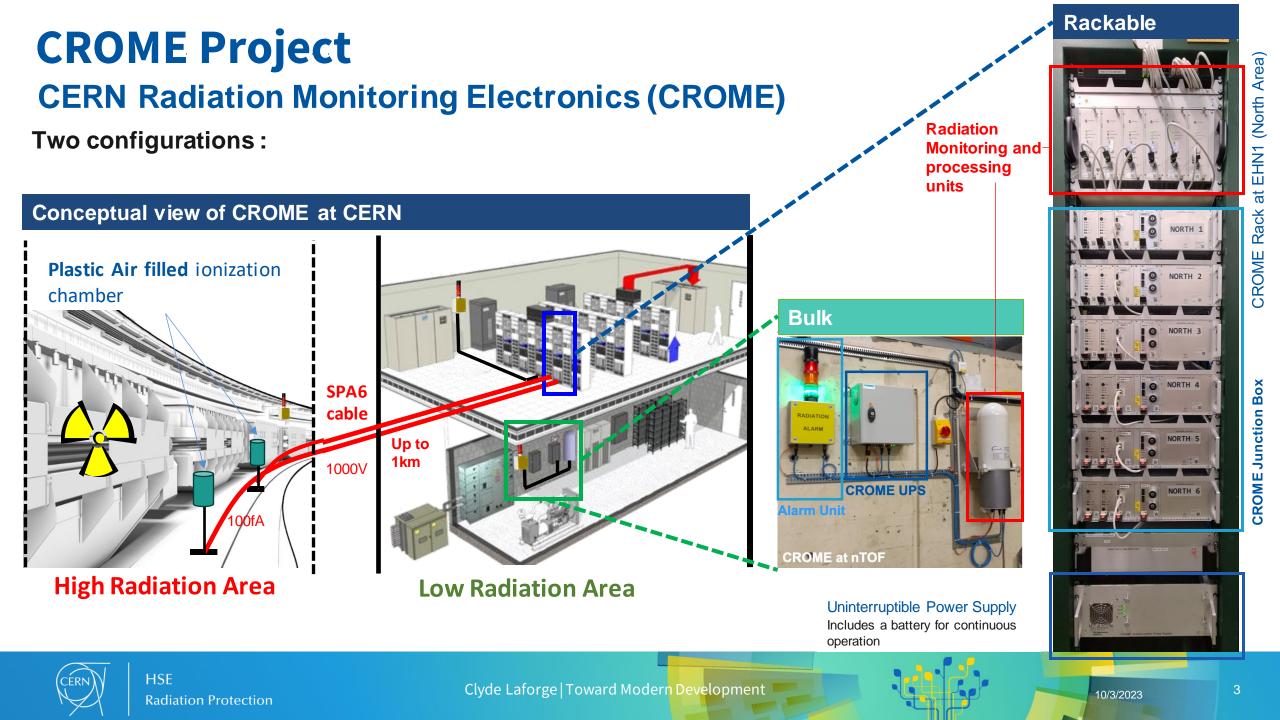
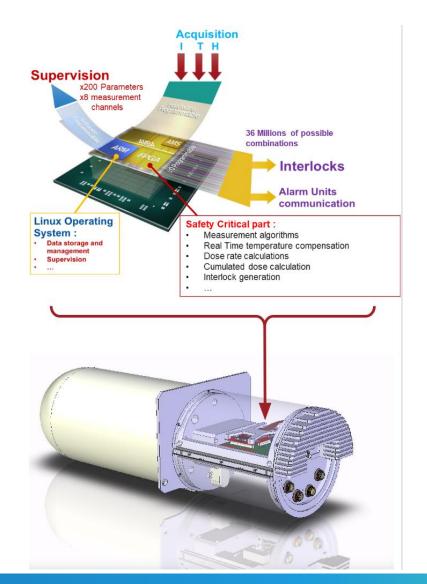


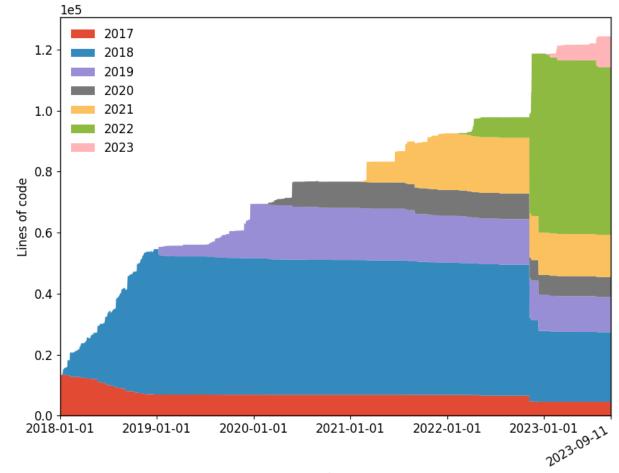
HSE Radiation Protection


Towards Modern Heterogenous Code Development for SoC : Application to CROME System

Clyde Laforge, Hamza Boukabache, CROME Team 3 October 2023


About me

- Electronic Engineer
- Joined CERN as Fellow in July 2022
- Working in HSE-RP-IL
 - CERN Radiation Monitoring Electronics (CROME)
- Previous talks at SoC Interest Group Meetings:
 - Paying off technical debt of SoC code-bases through standards and good practices
 - <u>Containerization as a means of extending the lifetime of HDL development tools</u>
- Don't hesitate to ask questions: clyde.laforge@cern.ch



CROME Project

SoC Number of Lines of Code (Without CROMiX)

Time

Radiation Protection

HSE

Development Goals

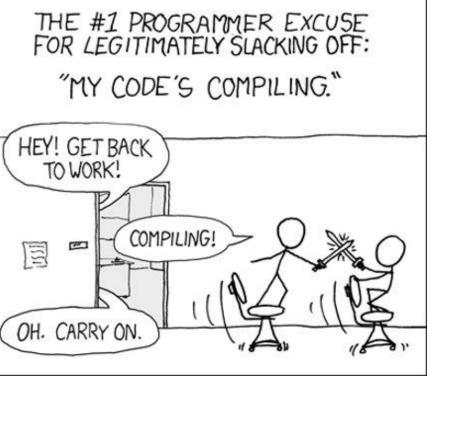
Fast

- Number of compilations
- Avoid debug in hardware

Straightforward / Low entry

- Accessible, up-to-date documentation
- Simple setup
- Minimal fear driven development

Reliable


- Minimize regressions
- Effective code review

Robust

• Positive contributions must not be bound by the developer's contract time

Main question

How can testing and continuous integration help with our development goals?

Outline:

- Technical Debt
- Testing

HSE

Continuous Integration

Technical Debt


Radiation Protection

HSE

Clyde Laforge | Toward Modern Development

Technical Debt

In software development, technical debt [...] is the implied cost of additional rework caused by choosing an easy (limited) solution now instead of using a better approach that would take longer.

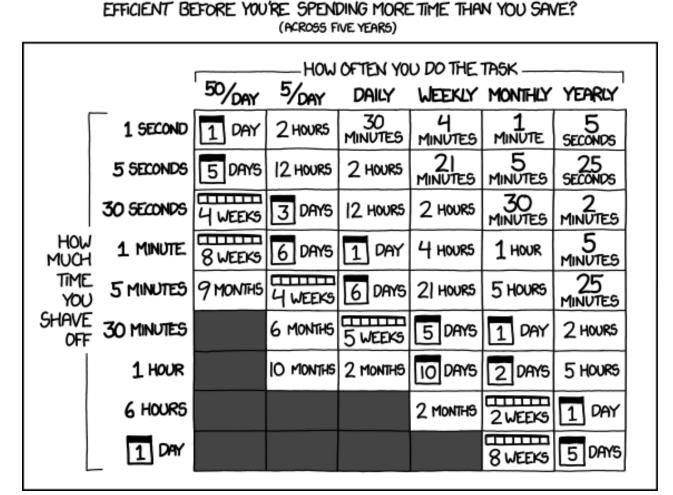
©xkcd

HSE

Clyde Laforge | Toward Modern Development

Technical Debt is not star wars

- Neither good nor bad
- Must align with your goals


- **Re-evaluation:**
- New direction

HSE

New functionality

Radiation Protection

New tools/technology

HOW LONG CAN YOU WORK ON MAKING A ROUTINE TASK MORE

©xkcd

Testing

Radiation Protection

HSE

lf You Didn't Test It, It Doesn't Work

Bob Colwell

- It is much easier than not to write code with bugs
- Any configuration that is not tested is likely to fail in practice

If it's not tested, it doesn't work

- Tests are what allow the design to safely evolve
- Simulation is always cheaper than hardware debugging
- Simulation is more versatile than hardware testing

HSE

If it's not tested, it doesn't work

• Test driven development

In our project:1) All (new) code must be tested2) All tests must be added to the repository

HSE

Types of tests

- Compilation tests
- Directed tests
 - Behaviour match pre-recorded pattern
- Model tests
 - Behaviour match model
- Ground truth tests
 - Results match external metric (not always applicable)
- Formal tests
 - Mathematically prove certain properties of the design

10/3/2023

Types of tests

- Compilation tests
- Directed tests
 - Behaviour match pre-recorded pattern
- Model tests
 - Behaviour match model
- Ground truth tests
 - Results match external metric (not always applicable)
- Formal tests
 - Mathematically prove certain properties of the design

Pure VHDL Cocotb+GHDL

Questa Property

10/3/2023

Checking

Testing guidelines

- Test results "must" be digital
 - Helps review process
- Tests should not peek inside the module
 - Helps future development
- Tests should be quick
 - Quick feedback while developing

Development Goals

Fast

- Number of compilations
- Avoid debug in hardware

Straightforward / Low entry

- Accessible, up-to-date documentation
- Simple setup
- Minimal fear driven development

Reliable

- Minimize regressions
- Effective code review

Robust

• Positive contributions must not be bound by the developer's contract time

Development Goals

Fast

- 🔗 Number of compilations
- 🔗 Avoid debug in hardware

Straightforward / Low entry

- Accessible, up-to-date documentation
- Simple setup
- 🔗 Minimize fear driven development

Reliable

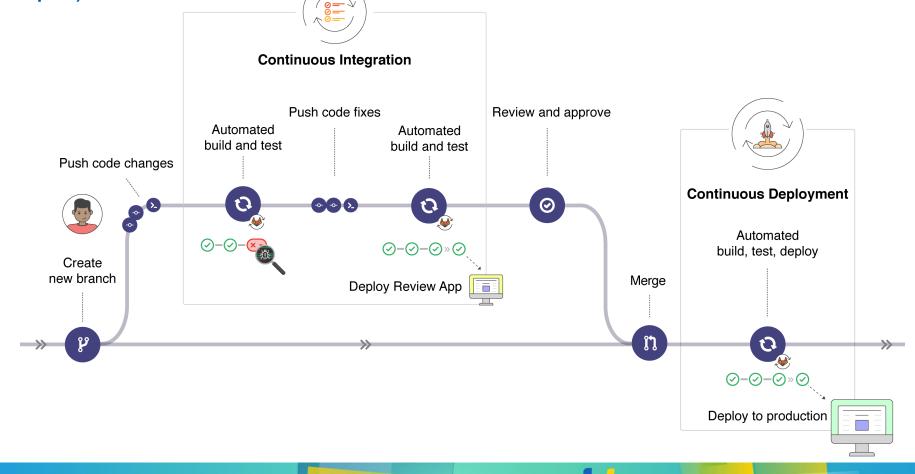
- 🔗 Minimize regressions
- Solution Effective code review

Robust

Positive contributions must not be bound by the developer's contract time

Continuous Integration through gitlab CI

More hands on approach at https://indico.cern.ch/event/1208190/


Radiation Protection

HSE

Gitlab Cl

For each proposed code change, automatically run a pipeline (= set of scripts)

- Testing
- Build
- Deployment
- Etc...

Gitlab Cl

Advantages:

- Centralization
- Unsupervised build/tests
- Lowers barrier to entry
- Saves results (artifacts) for later inspection
- Simplifies code review

HSE

Gitlab CI – Minimal Example

stages:

- build

simple build: stage: build image: vivado:2018.1 script: - make artifacts: paths:

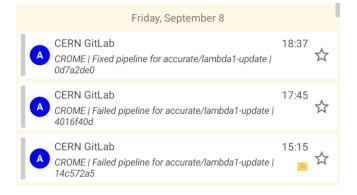
- output.hdf

Gitlab CI – Uses in CROME Project

What we use gitlab CI for:

- VHDL cocotb tests
- VHDL style check
- Vivado build
- Documentation build
- SW build
- Petalinux build

What we would like to add:


- SW test suite
- SW style check
- VHDL formal tests
- VHDL UVM tests
- Target multiple hardware revisions
- On-device tests

HSE

. . .

Gitlab CI

Pipeline Needs Jobs 15 Tests 94 Code Quality

Summary

94 tests 0	failures	ailures 0 errors		100% success rate			
Jobs							
Job	Duration		Failed	Errors	Skipped	Passed	Total
check cocotb compi	le 15.58s		0	0	0	13	13
check_linting	0.00ms		0	0	0	67	67
check cocotb quick	16.52s		0	0	0	14	14

build check buildReports buildImage (\mathbf{C}) (\mathbf{C}) (\mathbf{C}) (\mathbf{C}) build ROMULUSlib doc build CROMiX Check cocotb compile \checkmark build hw report usage (\mathbf{C}) (\mathbf{C}) Check cocotb quick build cromeSuite doc \bigcirc check cocotb slow build hw doc G C build_hw check_linting C C check_vhdl_syntax build_sw

Gitlab CI – What I wish was easier

- Making containers for all the tools
 - Shout-out to Adrian Byszuk (SY-EPC-CCE)
- Setting up runners/VM configuration
 - IT support soon?
- Integrating with current HDL development tools
 - More machine readable formats
- Licenses
 - Shout-out to GHDL and cocotb!

HSE

Development Goals

Fast

- 😥 💯 Number of compilations
- 🔗 Avoid debug in hardware

Straightforward / Low entry

- 19 Accessible, up-to-date documentation
- 19 Simple setup
- 🔗 Minimize fear driven development

Reliable

- 🔗 Minimize regressions
- 😥 1 Effective code review

Robust

• 19 Positive contributions must not be bound by the developer's contract time

Conclusion

Radiation Protection

HSE

Development Goals

Fast

- 😥 💯 Number of compilations
- 🔗 Avoid debug in hardware

Straightforward / Low entry

- 19 Accessible, up-to-date documentation
- 19 Simple setup
- 🔗 Minimize fear driven development

Reliable

- 🔗 Minimize regressions
- 😥 1 Effective code review

Robust

• 19 Positive contributions must not be bound by the developer's contract time

Conclusion

- Strict testing guidelines are a requirement
- Investing time in gitlab CI paid off quickly
- Gitlab CI is an invaluable tool for our project

Thank you!

Radiation Protection

HSE

Questions?

Radiation Protection

HSE