

Increase Development Efficiency and Quality using System-on-Modules with SOC Technology

3 October 2023 - Dirk van den Heuvel

We are TOPIC.

- ▲ Real Embedded company
- ▲ Founded in 1996
 - ▲ Since 2023 proud member of the T&S Group, France

- ▲ Based in the Netherlands; Europe
- ▲ 5 Business Lines:

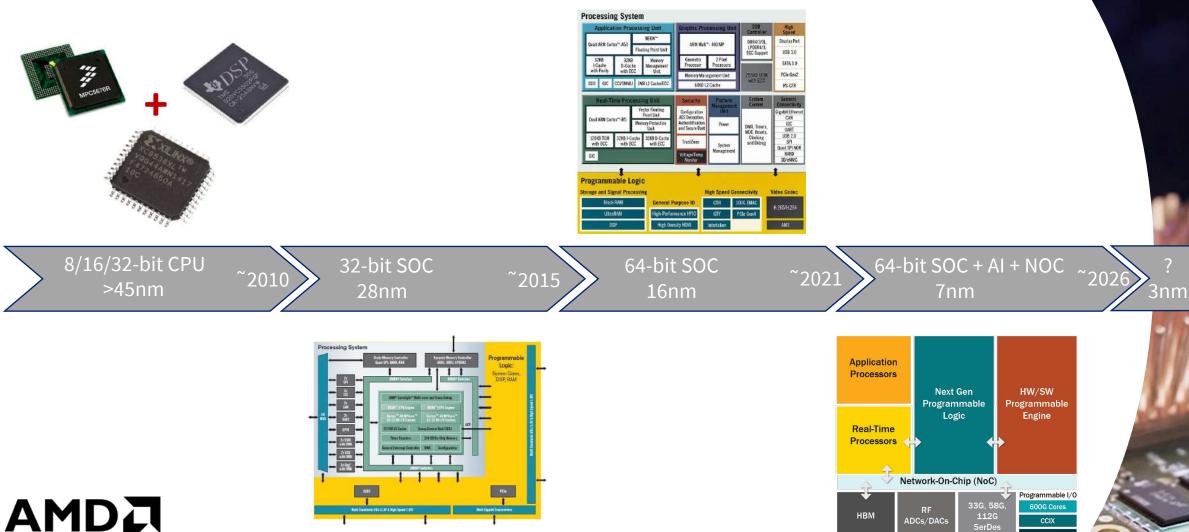
 - Consultancy: The Netherlands
 Turn-key Projects: Europe and North America
 Farm-out Projects: Europe and North America
 Embedded Product Development and Sales: Worldwide
 Healthcare Solutions: Worldwide

TOPIC

PREMIER

▲ Miami System-on-Modules portfolio

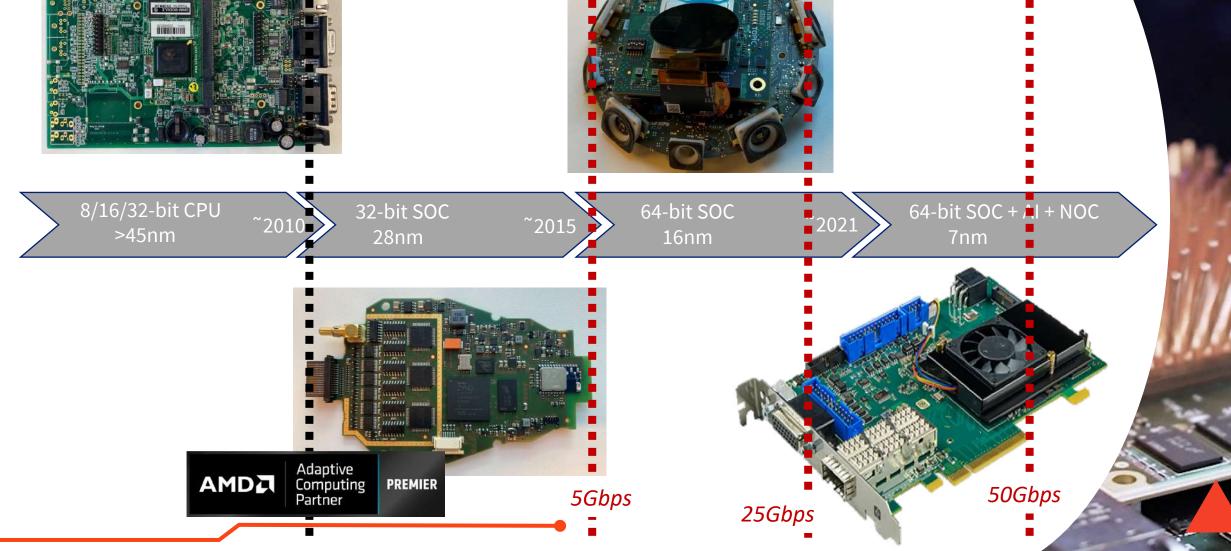
▲New member of the family: Miami Versal

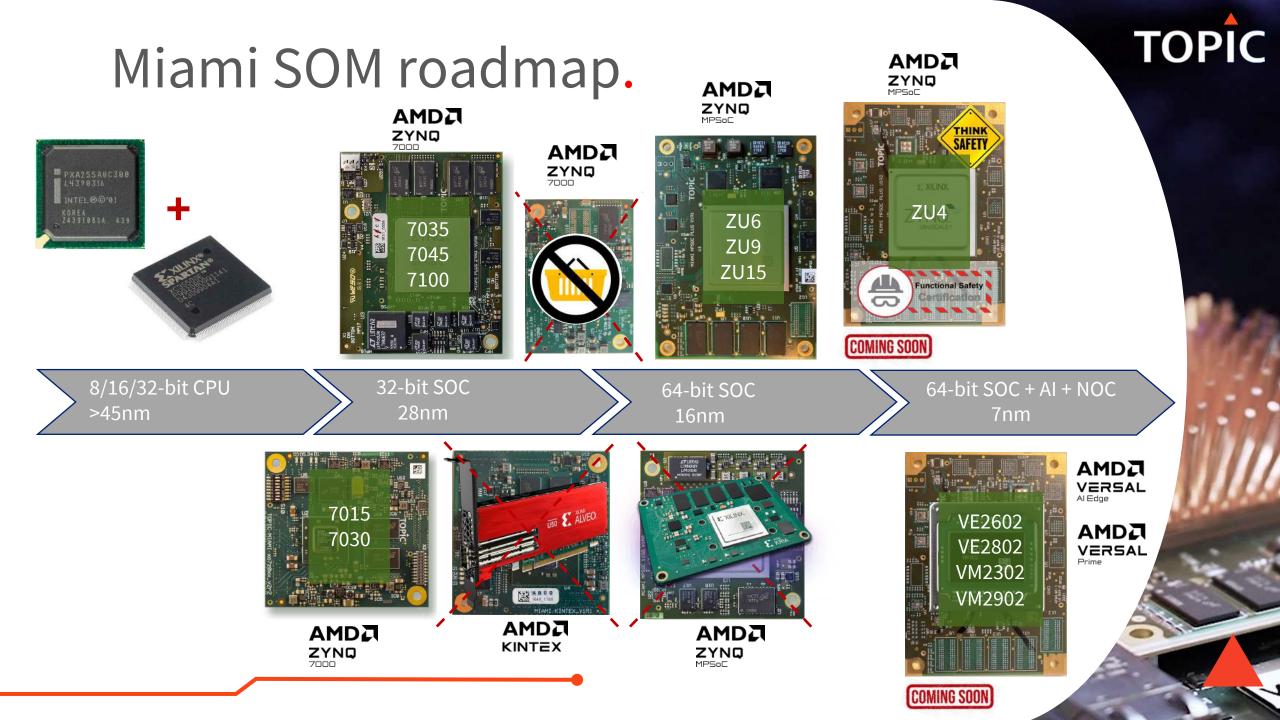

▲Some example projects

▲ Precision Timing, White Rabbit & TOPIC

Miami System-on-Modules portfolio

Embedded technology evolution.

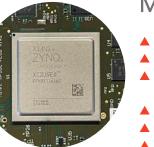



TOPIC

DDR

Embedded development evolution.

Miami SOM product family in a glance.



- Miami ZYNQ
- AMD SOC technology:
- Technology node:
- Processors:
- Logic density:
 - Connectors:
 - Gigabit transceivers:
- DDR-SDR memory:
- Introduction date:

- Zyng 7000 (7012S, 7015, 7030) 28 nm Single or dual core ARM Cortex A9
- 55k-125k cells

- 2x 120 pins 4x GTH (PL)
- 1GB 32b DDR3 (PS) 2014

- Miami Plus MPSoC
- ▲ AMD SOC technology:
- ▲ Technology node:
- ▲ Processors:
- ▲ Logic density:
- Connectors:
- Gigabit transceivers:
- DDR-SDR memory:
- Introduction date:

ZYNQ

Zyng Ultrascale+ (ZU6, ZU9, ZU15) 16 nm

TOPIC

Quad core ARM Cortex A53, dual core ARM Cortex R7, ARM Mali-400 GPU 469k-747k cells 2x 120 pins, 1x 180 pins 3x GTP (PS), 16x GTH (PL) 2GB 72b DDR4 (PS) 2020

YNQ.

- Miami Plus ZYNQ
- ▲ AMD SOC technology:
 - Zyng 7000 (7035, 7045, 7100) Technology node: 28 nm

1GB 32b DDR3 (PS)

1GB 32b DDR3 (PL)

Dual core ARM Cortex A9

2016

- ▲ Logic density: 275k-444k cells
 - 2x 120 pins, 1x 180 pins 16x GTH (PL)
- ▲ Gigabit transceivers:
- ▲ DDR-SDR memory:
- ▲ Introduction date:

Processors:

▲ Connectors:

Miami Plus

- ▲ AMD SOC technology:
- ▲ Technology node:
- ▲ Processors:
- ▲ Logic density:
- Connectors:
- Gigabit transceivers:
- DDR-SDR memory:
- ▲ Introduction date:

VERSAL

Prime Versal ACAP (VE2602, VE2802,

VM2302, VM2902)

7 nm

Dual core ARM Cortex A72, Dual core ARM Cortex R5F, AI Engine-ML Tiles 820k – 2233k cells Highspeed Samtec Mezzanine 24x GTYP (PL) 8GB 72b DDR4 (PS) Under development

Development trends.

▲ Signal bandwidths >10Gbps more common than exception

- ▲ Bundles of Gigabit transceivers
- Number of independent clocks on the board
- ▲BGA package pitch smaller and smaller
 - ▲ 1.0mm → 0.8mm → 0.35 mm (info packages)
- ▲ Supply voltages lower and lower
 - ▲ Currents going up \rightarrow 25A-100A per supply rails of 0.7V-0.9V
 - ▲ Static power supply increasing → Logic partitioning, use of power regions

▲ Safety and security impact

- ▲ Logic isolation
- Functional isolation

Boards design consequences.

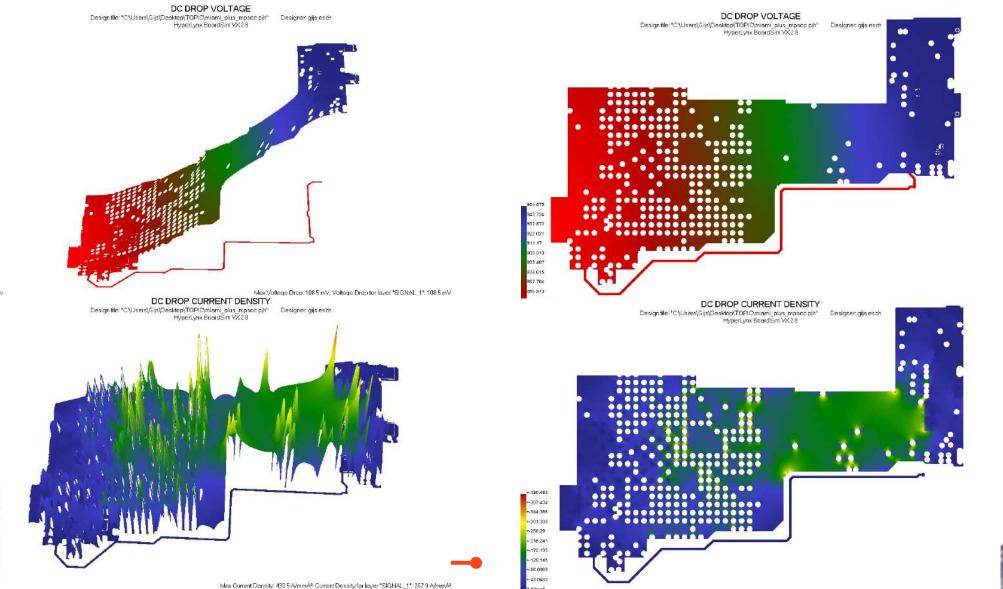
- ▲Wider and faster memory
- ▲ High-speed serialized interfaces
- ▲ Larger supply currents, lower voltages, more supply rails
- ▲ More complex board peripherals
- ▲ Higher demands to your PCB technology
 - ▲ High Density Interconnect (HDI)
 - Stackup and materials

→ Board design has become a critical design factor
 → Circuit design AND (!) FPGA design can have a significant influence on the board design quality

ΓΟΡΙΟ

Power distribution consequences.

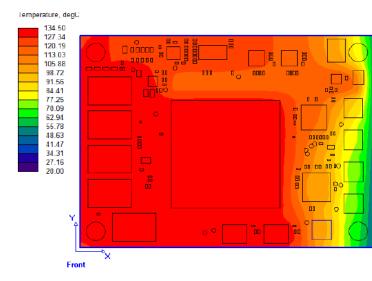
~150W max. total power consumption 0.85V/120A core supply Liquid cooling solution Must support full device utilization



45W limited power consumption 0.85V/24A core supply Passive cooling capabilities Limited device utilization

5W peak power consumption Battery powered Passive cooling capabilities Optimized device utilization

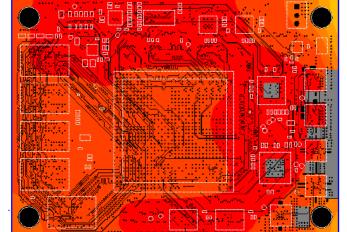
Current and voltage distribution.

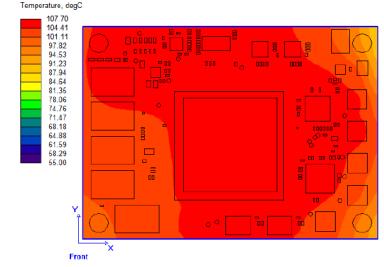

TOPIC

954.675 943.724 932 872 922.021 911:17 900.219 889 467 978.615 997.784 955 913 948 081 m

> +-430,483 +-987.434 +344.386 +-301.338 +-258.29 +215.241 +-172.193 +-129.145 +-86.0965 43 0493

Thermal enhancements.


TOPIC



Logic core supply: 0.85V, 24A

Thermal via's

Edge plating Mounting hole conductance Covering heatsink

What makes a SOM a SOM?

Software support e.g. Linux distribution maintenance e.g. software eco-system

Reference designs (carrier board, FPGA, processors, ...)

Development support

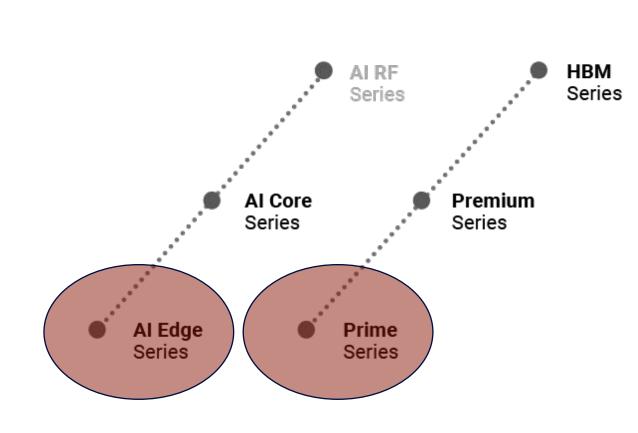
Functional safety

Reliability

Integrated functionality

Environment qualification (shock, vibration, climate, EMC)

> Life-cycle-management (obsolescence, long levity)


Heat dissipation distribution

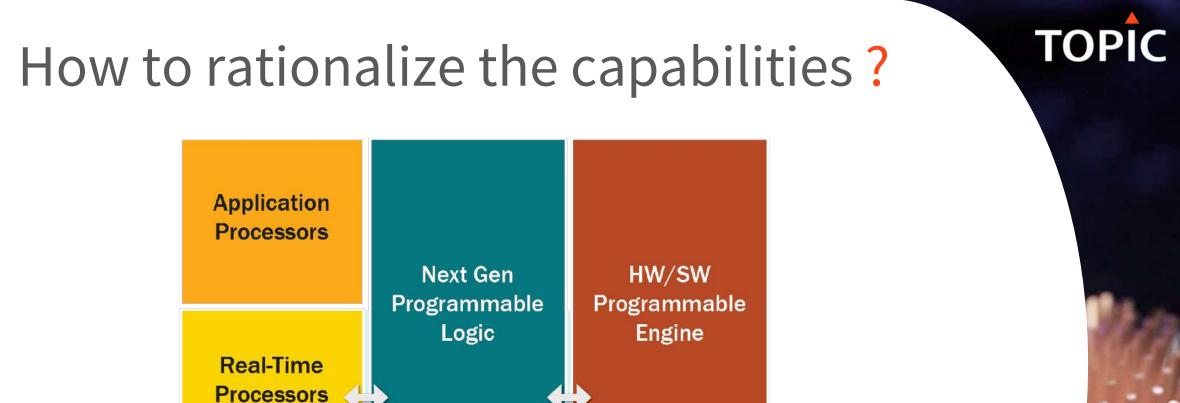
Signal integrity

Tooling and engineering support

Certifiability

Versal Apdative SOC SOM

Identified applications.


Embedded AI solutions

▲ Super-smart cameras with video pre-processing and AI on-the-edge

ΤΟΡ

- ▲ AI engines used for beam-forming/correlation functionality
 - ▲ Ultrasound, Radar, Lidar, SDR
- Photonic interface coupling
- Autonomous Mobile Robotics
- ▲ High-performance computing
 - ▲ Loads of programmable gates
 - Edge processing and offloading
 - ▲ 4K/8K video processing, AVoIP

▲

 Processors
 Image: Constraint of the second seco

Product details Miami Versal

TOPIC

Miami type	Miami Versal	Miami Versal	Miami Versal	Miami Versal
Order number	miav-ve26-1-7-4-2	miav-ve28-1-7-4-2	miav-vm23-1-7-4-2	miav-ve29-1-7-4-2
FPGA				
Device	XCVE2602-2MSIVFVH1760	XCVE2802-2MSIVFVH1760	XCVM2302-2MSIVFVF1760	XCVM2902-2MSIVEVE1760
Technology	Versal [®]	Versal®	Versal®	Versal®
Logic cells	820K	1139K	1575K	2233K
Flip Flops				
Block RAM	16.7Mbit	21.1Mbit	49Mbit	70Mbit
UltraRAM	63.0Mbit	74.3Mbit	127Mbit	181Mbit
DSP slices	984	1312	1904	2672
GTx (PL controlled)	24x (32 Gbit/s each)	24x (32 Gbit/seach)	24x (56 Gbit/s each)	24x (56 Gbit/seach)
Processor System				
Application Processor (cores)	ARM Cortex-A72 (dual)	ARM Cortex-A72 (dual)	ARM Cortex-A72 (dual)	ARM Cortex-A72 (dual)
CPU Performance	2x 1.5GHz	2x 1.5GHz	2x 1.5GHz	2x 1.5GHz
Co-Processor	2x ARM NEON™	2x ARM NEON™	2x ARM NEON™	2x ARM NEON™
Real-Time Processor (cores)	ARM Cortex R5F (dual)	ARM Cortex R5F (dual)	ARM Cortex R5F (dual)	ARM Cortex R5F (dual)
Al Engine-ML Tiles	152	304	0	0
Network-on-Chip M/S ports	21	21	30	42
Graphics Processor	542	2	1	2
GTx (PS controlled)	•		1. T	-8
Memory				
Cache (application processor)	L1: 32KB I / D per core, L2: 1MB, on chip memory 256 KByte			
Cache (real-time processor)	L1: 32KB I / D per core, tightly coupled memory 128 KByte per core			
Cache (GPU)	*			
SDRAM (PS/PL controlled)	2,4 or 8 GByte DDR4 with/without ECC (assembly option 32, 64 or 72 bits wide)			
SDRAM (PL only controlled)				
NOR	Quad-speed SPI, (128 MByte, 256 MByte)			
NAND	0, 8, 16, 32 or 64 GByte pseudo-SLC or MLC			
EEPROM	32 Kbit I2C EEPROM storage			
User programmable/configurable	e interfaces on SoM connector			
PS connected I/O		PS connected 1.8V GPIO, n	nultiplexed peripherals (MIO))
PL connected HR I/O				
PL connected HP I/O	HP and HD GPIO, 100 Ohm impedance controlled and length matched within guads			

Dedicated interfaces on SoM connector			
Network	10/100/1000Mbps Ethernet, (PHY included), IEEE 1588 and SyncE support		
USB	2x USB 3.0, including on-board ULPI media		
CAN	UART, I2C, SPI, I2S, CAN (user configurable/selectable)		
Gigabit transceivers	e.g. FPD link, SDI, TFT, HDMI (PL), DisplayPort (PS)		
PCI-Express (end-point/root-complex)	yes, GEN4 yes, GEN5		
GTx (PS controlled)			
GTx (PL controlled)	16x (PCIe, 100Gb/40Gb Ethernet, USB 3.0, CoaXPress, HDMI, DisplayPort)		
Miscellaneous	GPIOs, SD/SDIO 2.0/MMC 3.31 compliant controllers		
JTAG	PL and PS JTAG chain for shared debugging		
Debug	Debug UART, console, PS JTAG, PL JTAG, 4 pins		
Supply			
Power supply input	9.0- 16.0 Vdc via carrier board connector, 50[W] maximum. On-board voltage regulation		
Logic I/O supply output	Selectable I/O standards and voltages for I/O banks		
Software support			
Bootloader / BSP	U-Boot		
Boot resources	JTAG, QSPI-NOR, eMMC, SD-Card, USB		
Operating System	TOPIC managed/maintained PetaLinux distribution		
FPGA reference design	Vivado BSP and module configuration		
Carrier board (order number)	Florida Versal (flo_versal)		
Mechanical and environmental			
Dimensions	100mm x 75mm		
Connectors	Samtec high performance mezzanine carrier board connectors		
Temperature	Industrial grade		
Temperature and humidity	IEC 60068-2-1 (Cold), IEC 60068-2-2 (Dry heat), IEC 60068-2-78 (Damp heat)		
EMC/EMI	EN 55032, IEC 61132, EN 61326, IEC 55024		
Shock and vibration	MIL-STD-202G (method 204D), MIL-STD-202G (method 213B)		

PRELIMINARY

When is a Versal SOM the right SOM?

What is the connector strategy?

Join a standard in the SOM world?

Is there a standard around facilitating the required performance?

What interfaces are required to build a proper system with this kind of performance?

For what applications is this needed?

What are typical use-cases?

Native White Rabbit support

Maximum power consumption 75W? 100W?

Maximum load step (up & down) 25%? 50%? 100%?

TOPIC

Required transceiver rates Is ~30Gbps enough or is >50Gbps useful?

Memory bandwidth should match communication bandwidth?

What if you have 4 banks of 4 transceivers each running at 50Gbps per transceiver?

What are the environmental conditions?

Is it worthwhile considering an OHW-route?

Your thoughts are appreciated.

- ▲ Are you considering an AMD Versal as a SOM?
- ▲ Do you have particular requirements for you application?
- ▲ Can you/are you willing to share this with us?
- ▲ Contact us:
 - E-mail me at <u>dirk.van.den.heuvel@topic.nl</u>
 - Leave a message at <u>https://topicembedded.com/products/system-on-modules/miami-versal</u>

- ▲ Think with us by responding to our questionnaire we will share.
- ▲ No strings attached. Just looking for application context.
- ▲ However, when a suitable SOM materializes, we will make it commercially attractive for you.

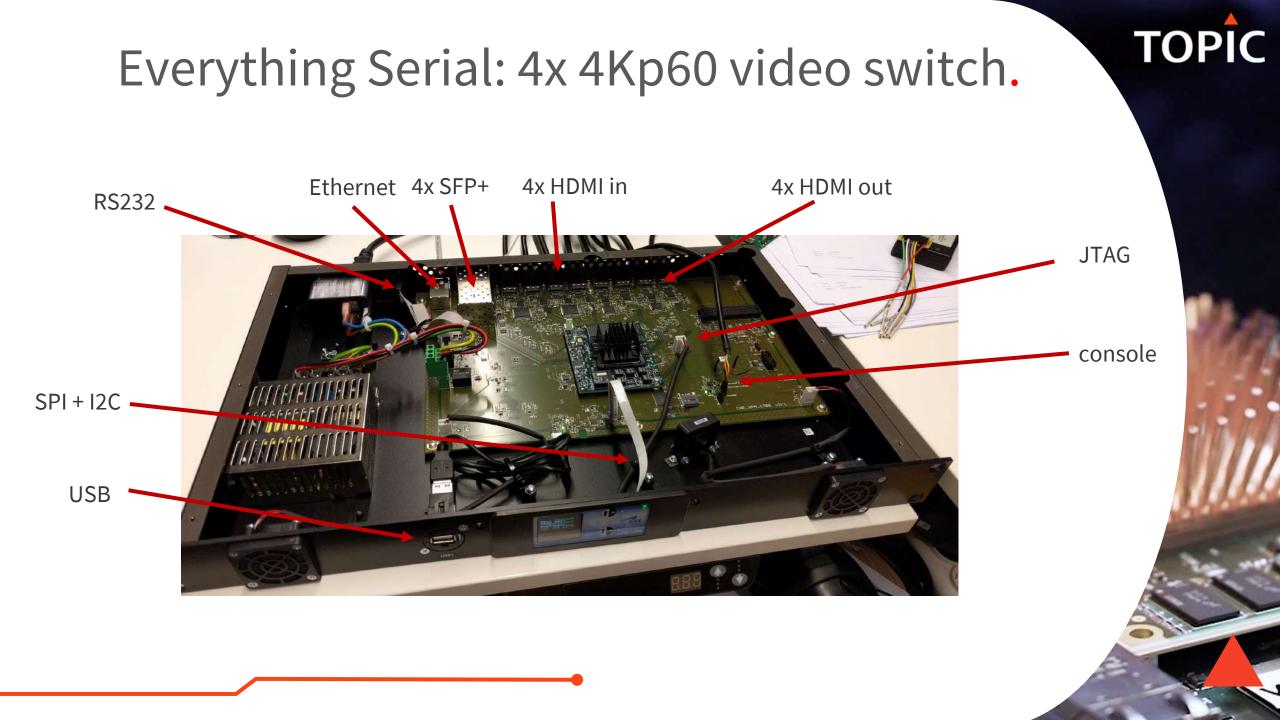
Miami SOM design-in examples

ΤΟΡΙĊ

Video processing & multiplexing.

▲ Application field

- ▲ Real-time, low-latency video projection of cockpit video streams
- ▲ Box-2-Box video time synchronization
- ▲ Functionality
 - ▲ Support for multiple video sources and sinks up to 4Kp60 video resolution
 - ▲ 4x HDMI input + 4x HDMI outputs + 4x high-speed SFP+ communication links
 - ▲ Programmable video processing pipeline
 - ▲ Picture-in-picture, overlay creation, color space conversion
 - ▲ Video stream synchronization (GenLock), scaling, cropping, moving, etc.
 - ▲ Ethernet based system control interface for remote control and updates

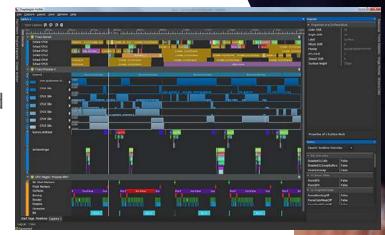

Platform

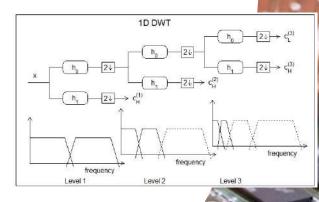
- ▲ Miami Zynq Plus System-on-Module (SOM) + dedicated carrier board
- ▲ Custom box/enclosure design including EMC, safety and CB-Scheme certification
- ▲ Embedded Linux with Video-for-Linux (V4L2) for the video pipe-line
- ▲ 3^{de} party IP block integration in FPGA pipeline (HDMI, 10G Ethernet)

Delirium monitor.

▲ Safe and accurate delirium monitoring in routine hospital care

- ▲ Acute brain failure → long-term cognitive impairment (dementia)
- ▲ Replaces labor intensive patient questionnaires
- ▲ Significant improvement in qualitative delirium measurement
- ▲ Brain activity measurement using disposable EEG electrode patch
- ▲ Algorithmic detection of delirium by EEG signal processing
 - ▲ Algorithm development and validation based on Matlab models
 - Research model executes 30 seconds of recordings in 20 minutes on an Intel i7 8 cores machine
 - ▲ Target is a battery-operated device to process 30 seconds of recordings in maximum 30 seconds
 - ▲ Algorithm implementation uses both FPGA fabric and dual-core Cortex A9 CPU
 - Manual translation from batch-oriented Matlab model into streaming C++ model





Power-aware architecture design.

▲ Approach:

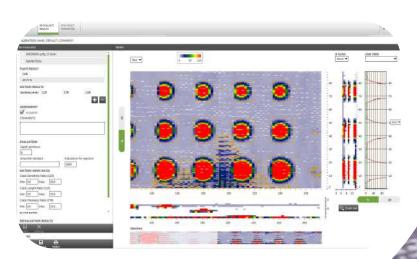
- ▲ CPU centric application using FPGA based accelerators
- ▲ Profiler to determine critical processes → the wavelet transform >80% load
- ▲ WT applied 5x and 1x iWT , implemented double precision floating point
- ▲ High-level synthesis applied for WT implementation as accelerator
- ▲ Datatype casting effects analyzed in Matlab environment
- ▲ Observations:
 - ▲ Double precision floating point implementation @ 200MHz data path speed
 - ▲ Execution time: too long, battery lifetime: way to short, enclosure gets hot
 - ▲ Transformation to single precision floating point @ 200MHz data path speed
 - ▲ Execution time: ok, battery lifetime: still to short, algorithm quality still fine
 - Transformation to fixed-point implementation
 - ▲ Data path speed reduced to 100MHz
 - ▲ Execution time: ok, battery lifetime: ok, algorithm quality still fine after a twist
 - ▲ Application on CPU hardly touched
 - ▲ Possible application running on FPGA fabric more power consuming
 - ▲ Power performance improved by factor of ~10

Ultrasound steel plate inspection.

▲ Application field

- ▲ Steel plate inspection system based on ultrasound technology
- In-line detection of cracks and bubbles in metal plates during production
- ▲ Software application for visualization, management and controls

▲ Functionality

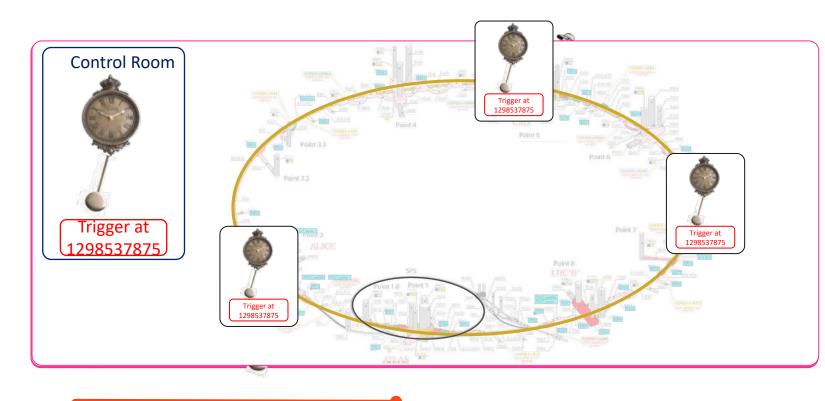

- ▲ Data acquisition, pre-processing and communication
- ERP integrated system software
- ▲ Integration with steel factory shop floor control

Platform

- Ultrasound sensor array
- ▲ Carrier board design based on TOPIC SOM (Miami Zynq Plus)
- ▲ 96 channels analog ultrasound signal acquisition
- ▲ FPGA based signal processing/gigabit communication
- ▲ Linux supported data and communication management

ΤΟΡΙΟ

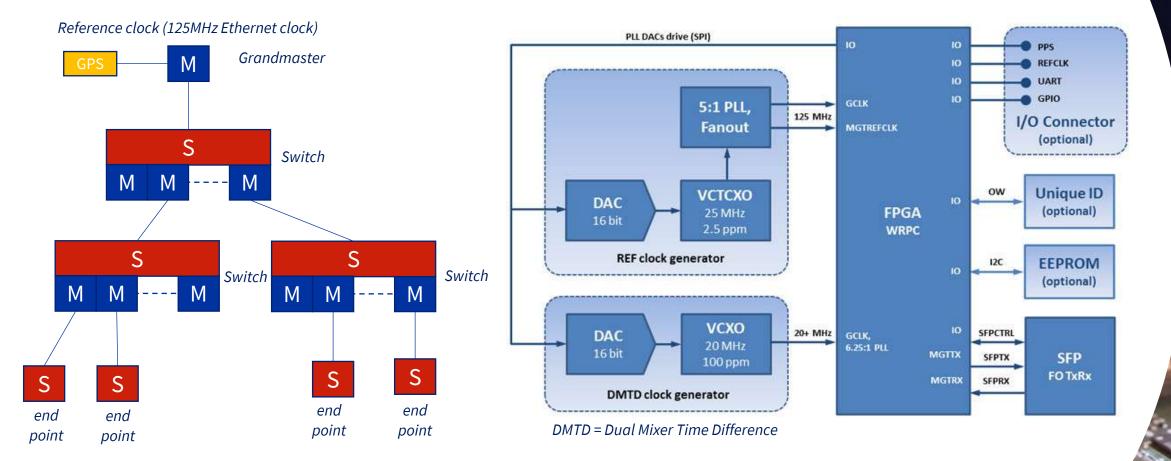
Precision timing



Distributed Real Time Systems.

▲ Systems need to execute operations with ever tighter time constraints

- ▲ Larger distances between nodes give longer transmission delays
- ▲ Management/calibration of changes to the number of nodes is not easy

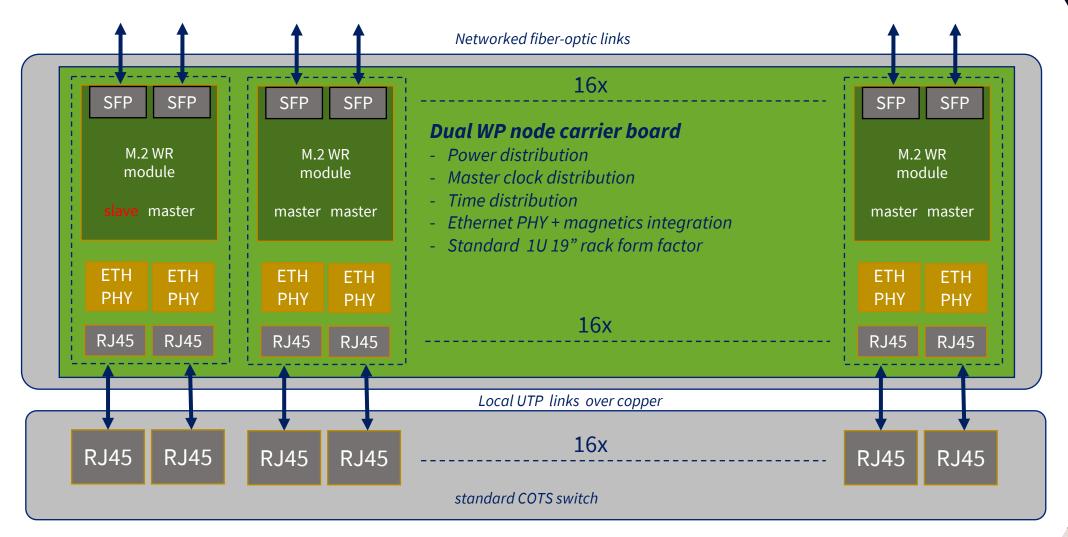

Precision Timing.

▲ Synchronizes time between network connected devices within a specific time resolution

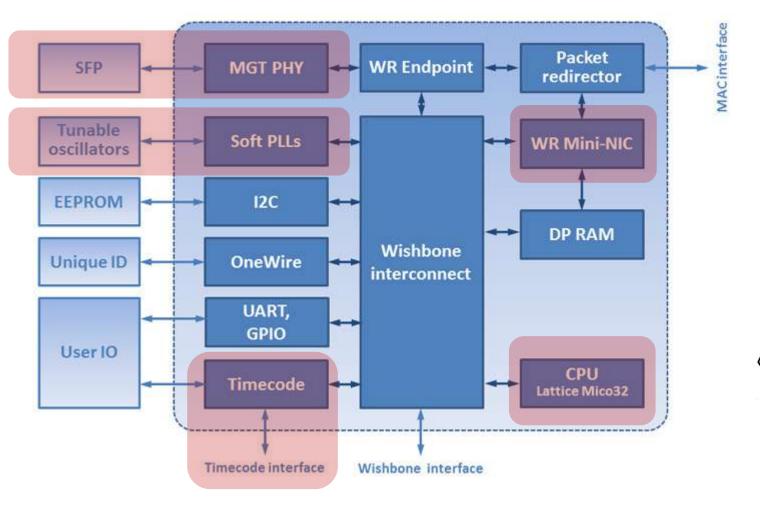
- ▲ PTP = Precision Time Protocol IEEE 1588-2019
 - See "tenart-timestamping-and-ptp-in-linux.pdf" for details on the integration in the Linux kernel
 - ▲ Support for both HW and SW based PTP synchronization
- ▲ SyncE = Synchronous Ethernet ITU-T Rec. G.8261/8262/8264
 - ▲ Based on ITU-T G.813 clocks
 - ▲ Key: accuracy, noise transfer, holdover performance, noise tolerance/generation
- ▲ White Rabbit = IEEE 1588 HA default PTP implementation
 - ▲ Common notion of time in the entire network
 - ▲ Synchronous Ethernet (SyncE) limited resolution and precision
 - ▲ PTP (enhanced PTP or White Rabbit PTP) base principal technology
 - ▲ Digital Dual-Mixer Time Difference (DDMTD) phase detection (unknown link symmetry compensation)
 - See "HighAccuracyDefaultPTPProfile.pdf" for a general context
 - ▲ See "WR_Maciej_ALBA.v0.3.pdf" for more depth

Embedding White Rabbit.

#1: Low-cost White Rabbit node.


TOPIC

▲ M.2 form factor NIC


- ▲ Target = 30mm x 110mm (V1R0 **not** yet compliant to this form)
- Alternative SYZYGY connector under investigation
- ▲ Next variant: without FPGA as add-on for exiting SOMs
- ▲ Based 100% on CERN WR
- ▲ Uses latest AMD low-cost FPGA technology

В	bard functionality
SFP(+) cage	FPGA functionality - Grandmaster mode - Master mode
SFP(+) cage (optional)	- Slave mode M.2
	iguration Power Debug mory(s) supplies infrastructure

#2: White Rabbit switch converter.

WR IP core building blocks.

#3: Precision Timing and Miami SOMs.

programmable TCXO

accurate PLL

4x EMAC with IEEE1588 support

4x4 transceiver banks for SFP support

> Ethernet PHY with SyncE capabilities

Dual core RT processor

Quad core CPU + Linux

External clock sync (SyncE)

Ethernet PHY with SyncE capabilities

Conclusion and take-away.

▲ The value of using System-on-Modules is not in the cost of it

- ▲ Reduction of development time
- ▲ Focus of what really matters for your application
- ▲ Key drivers for SOM design-ins
 - ▲A good means to design-reuse
 - Reducing board/application design complexity
 - ▲ Simplified product life-cycle-management
 - ▲ Focus on functionality instead of design complexity
 - ▲ Follow technology advancements more easy

Contact us.

Materiaalweg 4, 5681 RJ BEST, The Netherlands

+31 499 336979

www.topicembedded.com

contact@topic.nl, dirk.van.den.heuvel@topic.nl

www.linkedin.com/company/topic-embedded-systems