
SoC to DAQ communication library
status of the prototype

ATLAS TDAQ phase-II upgrade project

Andrei Kazarov

University of Johannesburg, SA

History of the project
• Sep 2020 - TDAQ week: User Requirement (UR) Document status update

• May 2021 - UR doc presented on TDAQ Phase-II TC meeting

• Jun 2021 - User Requirements presented on 2nd SoC Workshop at CERN

• Oct 2021 - UR document finalized

• Feb 2022 - UR document approved and published in EDMS https://edms.cern.ch/document/2437729/1

• Nov 2022 - The prototype developed and presented at the SoC interest group meeting

• May 2023 - Prototype specification (PS) document released

• Jun 2023 - PS review board

• Aug 2023 - PS doc finalized and published in EDMS https://edms.cern.ch/document/2909134/1

• Now: testing of the prototype on a real SoC

• Next: the Design document: Nov 2023

10/04/2023 2

https://edms.cern.ch/document/2437729/1
https://edms.cern.ch/document/2909134/1
https://edms.cern.ch/document/2909134/1
https://edms.cern.ch/document/2909134/1

10/04/2023 SoC Workshop CERN A.Kazarov – ATLAS DAQ2SoC prototype update 3

Use cases overview and high-level design
• An implementation of a protocol to communicate commands

(and more generally, to exchange information) to a SoC system:
DAQ-to-SoC Interface (DAQ2SoC)

• A DAQ application serves as a gateway between DAQ services
and SoC eco-system
• replaces a “monolitic” DAQ RC application on every SoC by one DAQ RC

application running on a DAQ node controlling a number of SoC systems in
(possibly) an isolated network and running (possibly) a non-standard OS

Examples:

• DAQ application regularly gets a status from SoC(s) and
publishes it in DAQ (RunControl) IS, or in case of an reported
error, issues an ERS message

• DAQ application receives Run Control transition command from
its parent and distributes it (when necessary) to the controlled
SoC systems

• DAQ application passes configuration data (e.g. a JSON string) to
SoCs

10/04/2023 3

10/04/2023 SoC Workshop CERN A.Kazarov – ATLAS DAQ2SoC prototype update 4

Prototype idea: HTTP + nginx server
• Goal: provide a simple, portable, open communication layer for developing a DAQ application distributed

across x86_64 and aarch64 SoCs: not a “replacement” of the DAQ s/w but an extension

• No dependencies on TDAQ/LCG s/w
• allows to avoid issues related to long-term evolution of SoC s/w, h/w, OS
• no constraints on DAQ or external s/w coming from ARM
• allows isolation of SoC systems in a private network

• use HTTP(S) as a transport layer, wrapping user requests into standard POST and GET requests
• any payload can be passed as part of a request and returned back
• easy to access (standard reverse-proxy) SoC in isolated network

• use of nginx http server (pre-built binary) as the server-side application (framework), offloading to it all
networking, connection, security, threading functionality
• a de-facto industry standard, lightweight and performant web server
• no process management, the nginx “mother” process is started by system and always running, waiting for HTTP requests to spawn

worker processes
• no HTTP details exposed to the user level (user-oriented C++ API)

• client-side: any HTTP client (a helper library available in C++), e.g. JavaScript in web page (payload can be
serialized into JSON)

10/04/2023 4

10/04/2023 SoC Workshop CERN A.Kazarov – ATLAS DAQ2SoC prototype update 5

Package content
• Prototype is in gitlab

• https://gitlab.cern.ch/akazarov/daq2soc
• https://daq2soc.docs.cern.ch/index.html

• client: C++ API files: header file, implementation, example and a Makefile to
compile it

• server:
• nginx-module: sources and Makefile for compiling a user code into a dynamic

daq2soc library loaded by nginx at runtime
• nginx-server: precompiled binaries for aarch64 and x86_64 nginx http server and

dynamic module
• very few runtime dependencies, runs on a variety of Linux distributions

• common: a single-header file for JSON <-> C++ conversions: used in both client
and server for parsing the payload

• quemu: how to run aarch64 CC8/9 linux on x86_64 host and test the binaries

10/04/2023 5

https://gitlab.cern.ch/akazarov/daq2soc
https://daq2soc.docs.cern.ch/index.html
https://daq2soc.docs.cern.ch/index.html
https://daq2soc.docs.cern.ch/index.html

10/04/2023 SoC Workshop CERN A.Kazarov – ATLAS DAQ2SoC prototype update 6

Prototype server implementation: nginx module

• SoC user code is executed in a nginx request handler context (in dynamically loaded module)
• loaded from a .so library compiled with a simple Makefile: user implements a function of a class with a predefined

signature

• Minimal runtime and OS dependencies (libpthread, libcrypto, libpcre, libz)

• The distribution: only 3 binary files and one config file

• User code is a single C++ file with one class and two or three functions to implement

• No build-time dependencies (extra to linux glibc headers)

• payload (can be passed as part of request and returned back): JSON string, handy conversion to and from
standard C++ objects and containers (header only)

10/04/2023 6

10/04/2023 SoC Workshop CERN A.Kazarov – ATLAS DAQ2SoC prototype update 7

Server-side API
• User needs to implement UserData::daq_request_function and process the client request

• you can have some payload passed in and can prepare a payload to return
• UserData class holds user attributes persisting across requests

• a dedicated thread_function allows to implement code and data structures which run
independently on the user requests

10/04/2023 7

10/04/2023 SoC Workshop CERN A.Kazarov – ATLAS DAQ2SoC prototype update 8

Client-side API

10/04/2023 8

10/04/2023 SoC Workshop CERN A.Kazarov – ATLAS DAQ2SoC prototype update 9

API: C++ to JSON serialization (and back to C++)
• To convert C++ tuples into a JSON string and back, allows passing C++ objects around (JSON is payload in HTTP

request)

• Example is a Histogram class (a tuple of a string and array https://daq2soc.docs.cern.ch/_histo_8hpp_source.html)

10/04/2023 9

tdaq::soc::Sender mysender { std::string(host) } ;

std::map<std::string, std::string> parameters { {"partition", "ATLAS"} } ;

tdaq::soc::Data res = sender.SendCommandSync(“get_histogram”, parameters) ;

auto const& data = std::get<1>(res) ;

std::string myhist(data.begin(), data.end()) ; // payload to JSON string

Histogram<10> hist = tdaq::daq2soc::json2data<Histogram<10>>(myhist) ; // Histogram from JSON

example::Histogram<10> hist { "random historgram", {} } ;

// fill with random numbers

…

std::string json = tdaq::daq2soc::data2json(hist) ; // Histogram to JSON

std::vector<uint8_t> ret_data(std::begin(json), std::end(json)) ;

std::get<1>(ret) = ret_data ; // return to the requester

https://daq2soc.docs.cern.ch/_histo_8hpp_source.html

10/04/2023 SoC Workshop CERN A.Kazarov – ATLAS DAQ2SoC prototype update 10

Performance tests on a real SoC
• few simple tests (so far) performed on a Xilinx Zync UScale SoC four-core 1.5GHz Cortex A53 ARM

processor, nginx running 4 forked worker processes

• Histogram is returned in JSON format

10/04/2023 10

10/04/2023 SoC Workshop CERN A.Kazarov – ATLAS DAQ2SoC prototype update 11

Summary
• Prototype is ready

• Review panel passed

• Implementation is being tested on a real SoC

• Design document being prepared for review

10/04/2023 11

	Slide 1
	History of the project
	Use cases overview and high-level design
	Prototype idea: HTTP + nginx server
	Package content
	Prototype server implementation: nginx module
	Server-side API
	Client-side API
	API: C++ to JSON serialization (and back to C++)
	Performance tests on a real SoC
	Summary

