Section 8 of Dark matter via t-channel production REPORT OF THE LHC DARK MATTER WORKING GROUP

Top-philic composite dark matter

- Top-philic scalar DM models represent very simple, testable and viable models of WIMP DM:

[S.W. Baek, P. Ko, P. Wu (2016)],[Colucci, Fuks, Giacchino etal. (2018)]

- very few new particles and parameters (one DM scalar S and a vector-like fermion mediator T),
- renormalizable,
- simple cosmology (thermal relic, standard evolution),
- testable in DM direct detection, indirect detection (photons), and at colliders.
- VLQs which primarily couple to the SM top quark are common in many SM extensions (extra dimensions, little Higgs, twin Higgs, VLQ extensions of SUSY, Composite Higgs Models)
- If S and T are part of a UV completion with additional states/dynamics at typical scale \wedge (of a few TeV), integrating out the additional states induces higher-dimensional operators in the top-philic scalar DM Lagrangian.

$$
\mathcal{L}=\frac{i \bar{T} D D T-m_{T} \bar{T} T+\frac{1}{2} \partial_{\mu} S \partial^{\mu} S-\frac{1}{2} m_{S}^{2} S^{2}+\left[\tilde{y}_{t} S \bar{T} P_{R} t+\text { h.c. }\right]+\frac{1}{2} \lambda S^{2} \phi^{\dagger} \phi}{\text { top-philic DM }} \frac{\frac{C}{\Lambda} S S t \bar{t} .}{\text { newe! }}
$$

.. but since [Colucci, Fuks, Giacchino et al. (2018)], new searches are available so we at least update collider

Frustrated dark matter models

- All mediator fields couple both to χ and to SM fields carry SM gauge charges that preclude renormalizable gaugeinvariant interactions between the DM and any SM fermion.
- Interactions of the DM are frustrated in the sense that the specific mediator assignments preclude its tree level interaction with the SM

$$
\mathrm{SM} \longleftrightarrow \text { mediators }\left\{\begin{array}{l}
\varphi(\text { scalar }) \\
\psi(\text { Dirac })
\end{array}\right\} \longleftrightarrow \text { DM } \chi
$$

$$
\mathcal{L}=\mathcal{L}_{\mathrm{SM}}+\mathcal{L}_{\mathrm{med}}+\mathcal{L}_{\chi}
$$

$\mathcal{L}_{\text {med }}=\left(D_{\mu} \varphi\right)^{\dagger s}\left(D^{\mu} \varphi\right)_{s}-m_{\varphi}^{2} \varphi^{\dagger s} \varphi_{s}+\bar{\psi}^{s}\left(\mathrm{i} \mid \mathrm{D}-m_{\psi}\right) \psi_{s}+\mathcal{L}_{\text {decay }}$

$$
\mathcal{L}_{\chi}=\bar{\chi}\left(\mathrm{i} \not \partial-m_{\chi}\right) \chi+y_{\chi}\left(\varphi^{\dagger s} \bar{\chi} \psi_{s}+\text { H.c. }\right)
$$

Sextet Mediators

Field	Description	$\mathrm{SU}(3)_{\mathrm{c}} \times \mathrm{SU}(2)_{\mathrm{L}} \times \mathrm{U}(1)_{Y}$ representation	Couples to SM?
χ	Dark matter	$(1,1,0)$	
φ	Scalar mediator	$\left(6,1, \frac{4}{3}\right)$	\checkmark
ψ	Dirac mediator		

$$
\mathcal{L}_{\text {decay }}=\lambda_{I J} K_{s}{ }^{i j} \varphi^{\dagger s} q_{\mathrm{R} i} \overline{\mathrm{c}} q_{\mathrm{R} J j}+\text { H.c. } \quad \text { with } \quad q \in\{u, d\},
$$

T channel Single Mediator Production

$Y=4 / 3$
DM annihilation channels

Sub-section 8.3
 B-mesogenesis models

- Baryogenesis and DM are linked with baryon asymmetry directly related to B-meson observables
- This relates the $C P$ violation in the B^{0} system to Baryogenesis
- DM is then an anti-Baryon and generates an asymmetry between the two sectors thanks to the CP violating oscillations and subsequents decays of B -mesons.
- This requires a new decay mode of the B-meson into DM and a visible baryon!
- A t-channel model without a Z_{2} symmetry which yields a diquark coupling in the Lagrangian

Minimal Particle Content

Field	Spin	$Q_{E M}$	Baryon no.	\mathbb{Z}_{2}	Mass
Φ	0	0	0	+1	$11-100 \mathrm{GeV}$
Y	0	$-1 / 3$	$-2 / 3$	+1	$\mathcal{O}(\mathrm{TeV})$
ψ	$1 / 2$	0	-1	+1	$\mathcal{O}(\mathrm{GeV})$
ξ	$1 / 2$	0	0	-1	$\mathcal{O}(\mathrm{GeV})$
ϕ	0	0	-1	-1	$\mathcal{O}(\mathrm{GeV})$

The Dark Sector:

B-mesons decay into DM (missing energy) and a Baryon

ξ : Dark Stable Majorana Fermion

- Minimal Dark sector interaction $\mathcal{L} \supset-y_{d} \bar{\psi} \phi \xi \quad$ with \mathbf{Z}_{2} symmetry
- Constraints:
- $\psi \rightarrow \phi \xi$ Decay:

$$
m_{\phi}+m_{\xi}<m_{\psi}<4.3 \mathrm{GeV}
$$

- DM Stability:
$\left|m_{\xi}-m_{\phi}\right|<m_{p}+m_{e}$
- Proton Stability:

$$
m_{\psi}>m_{\phi}>m_{p}-m_{e} \simeq 0.94 \mathrm{GeV}
$$

Y: Colored Triplet Scalar

$$
\begin{aligned}
& Y \sim(3,1,-1 / 3) \\
& Y \sim(3,1,2 / 3)
\end{aligned}
$$

Same Quantum Numbers as a SUSY squark!
$\operatorname{Br}(B \rightarrow \psi+$ Baryon $+\mathcal{M}) \simeq 10^{-3}\left(\frac{m_{B}-m_{\psi}}{2 \mathrm{GeV}}\right)^{4}\left(\frac{1.6 \mathrm{TeV}}{M_{Y}} \frac{\sqrt{y_{u b} y_{\psi s}}}{0.6}\right)^{4}$

$$
\text { Perturbativity requires: } \quad\left(M_{Y}<10 \mathrm{TeV}\right.
$$

