

Foundation Model

Renato Cardoso, Sofia Vallecorsa

Work realized in collaboration with IBM

Foundation Models

- A model trained on broad data and adaptable to a range of different downstream tasks, zero-shot, few-shot learning.
- Foundation Models concepts:
 - self/semi-supervised learning + transfer learning but at scale:
 - · Billions of parameters and gigabytes of data
 - Large and diverse datasets \rightarrow powerful representations
- Examples:
 - BERT (340M params.), GPT-2, GPT-3 (175B params.) Generative language models
 - CLIP Language-Image pre-training
 - DALL-E, DALL-E 2, Imagen Text to Image models
 - GATO Sequence to sequence model

Image obtained from: On the Opportunities and Risks of Foundation Models

Stanford CRFM (2021) : On the Opportunities and Risks of Foundation Models [arxiv.2108.07258]

Foundation Models

Why use Foundation Models:

- ML is computational expensive
 - Train once. Then, adapt to new detector geometries, quickly.
- Transformers as building block in foundation models:
 - · A generalized architecture without any inductive bias
 - Model long-range dependencies (Attention mechanism)
 - Permutation invariant
 - [arXiv:1706.03762]

Figure 1: The Transformer - model architecture.

Our Objective:

- Foundation model trained on MC data to perform different physics related tasks
 - · Simulations one lengthy training, then fast adaptation to different detector geometries
 - Reconstruction one base model adaptable to different tasks (particle identification, regression on phys. variables, etc.)
- Understand how foundation model concept apply to our use case:
 - Understand the minimal scale of the model for reaching meaningful results (No need to reach BERT / GPT-3 scale)

Work done

Dataset: High Granularity Electromagnetic Calorimeter Shower Images

Our first task Foundation model for fast and accurate calorimetry simulation

Single dataset training multiple model architectures:

- Vision Transformer (ViT) based architecture [arXiv:2010.11929]
 - Masked Model
- VAE-like learning model with transformers
- Graph neural network
- VQ-VAE model [arXiv:1711.00937]
- DDPM model [arXiv:2006.11239]
- Other tests:
 - Preprocessing
 - Sinkhorn Loss
 - Regression Loss
 - Etc.

Dataset

Results Obtained from ViT based architecture model

Infrastructure

Why do we need computational infrastructure for this project:

- Models with a high number of parameters
 - High parallelizable but take time to train
- Multiple test being realized simultaneously
 - Multiple people working in the same project
 - Optimization of a single model takes a lot of time with minimal resources
- Memory requirements
 - Big models not only take time to train they need GPUs with a high amount of memory

Renato Cardoso | Foundation Model