Bottom-up manifold learning with low distortion

Gal Mishne Halıcıoğlu Data Science Institute UC San Diego

Joint work with Dhruv Kohli, Alex Cloninger, Bas Nieuwenhuis and Devika Narain

Neuro-data-science

Neuro-data-science

• Data explosion in neuroscience

Volumetric calcium imaging thousands of neurons across multiple cortical layers Source: [Prevedel et al. 2016]

Neuro-data-science

Behavioral videos of animal models [Deeplabcut, 2019]

How does the brain generate behavior?

Spontaneous Behavior

[Higley lab]

Learned motor task

Novice animal

Expert animal

[Schiller lab]

Imaging of large-scale networks

Imaging of large-scale networks

What does my lab do? Neuro-data-science

Learning connectivity

Imaging analysis

Trials

Time

learning over days

Methods

- Dimensionality reduction / Nonlinear manifold learning
- Multiway analysis (tensors)
- Graph signal processing
- Deep learning

Bottom-up manifold learning with low distortion

Gal Mishne Halıcıoğlu Data Science Institute UC San Diego

Joint work with Dhruv Kohli, Alex Cloninger, Bas Nieuwenhuis and Devika Narain

Outline

- Introduction
- Distortion
- Bottom-up manifold learning
- Results

Introduction

[Wikipedia, google maps]

Introduction

Eckert IV

Eckert VI

Goode homolosine

Kavrayskiy VII

Introduction

What is a manifold?

- **Definition**: a topological space that locally resembles Euclidean space near each point.
- 1D: • 2D:

Manifold learning

- Learn manifold from data
- Non-linear representation of low-dimensional manifold.
- Preserve geometric properties
- Embedding with top eigenvectors of the
 - Covariance matrix (PCA)

Ο

- Normalized graph Laplacian (Laplacian Eigenmaps)
- Random-walk graph Laplacian (Diffusion maps)

[Tenenbaum et al., 2000, Roweis and Saul, 2000, Belkin and Niyogi, 2001, Donoho and Grimes, 2002, Coifman and Lafon, 2004, van der Maaten and Hinton 2008, McInnes et al. 2018, ...]

Top-down

- Initial global embedding of the data
- Optional: refine it iteratively by minimizing a measure of local distortion.
- ISOMAP, Laplacian Eigenmaps, t-SNE, UMAP...

Top-down

- Initial global embedding of the data
- Optional: refine it iteratively by minimizing a measure of local distortion.
- ISOMAP, Laplacian Eigenmaps, t-SNE, UMAP...

Top-down

- Initial global embedding of the data
- Optional: refine it iteratively by minimizing a measure of local distortion.
- ISOMAP, Laplacian Eigenmaps, t-SNE, UMAP...

Bottom-up

- Calculate local views with low distortion
- Solve alignment problem to register views to global embedding
- LTSA, LDLE, RATS

Top-down

- Initial global embedding of the data
- Optional: refine it iteratively by minimizing a measure of local distortion.
- ISOMAP, Laplacian Eigenmaps, t-SNE, UMAP...

Bottom-up

- Calculate local views with low distortion
- Solve alignment problem to register views to global embedding
- LTSA, LDLE, RATS

Bottom-up manifold learning:

- Local neighborhoods in the data have their own parameterization (local views) with low distortion
- Local views are aligned to obtain a global embedding

Gaps in existing manifold learning approaches

Some methods rely on a fixed set of global eigenvectors of the graph Laplacian
 Embedding may not have low distortion everywhere.

Input	UMAP	t-SNE	Laplacian Eigenmaps

Gaps in existing manifold learning approaches

Cannot embed closed and non-orientable manifolds into their intrinsic dimension.

Outline

- Introduction
- Distortion
- Bottom-up manifold learning
- Results

Distortion on the unit square

Distortion

$$\operatorname{expansion}(\Psi) = \sup_{x,y \in X} \frac{\|\Psi(x) - \Psi(y)\|}{d(x,y)} \qquad \operatorname{contraction}(\Psi) = \sup_{x,y \in X} \frac{d(x,y)}{\|\Psi(x) - \Psi(y)\|}$$

distortion(Ψ) = expansion(Ψ)contraction(Ψ)

Distortion

distortion(
$$\Psi$$
) = $\sup_{x,y\in X} \frac{\|\Psi(x) - \Psi(y)\|}{d(x,y)} \sup_{x,y\in X} \frac{d(x,y)}{\|\Psi(x) - \Psi(y)\|}$

Solution = 1 if and only if $\|\Psi_k(x) - \Psi_k(y)\|_2 = cd(x, y)$ for all $x, y \in X$ and constant c

Embedding in intrinsic dimension

3

Intrinsic Dimension

1

1

2

>2

[Jazayeri & Ostojic, 2021]

Embedding in intrinsic dimension

Embedding

Dimension

2

>2

3

Intrinsic Dimension

1

1

2

[Jazayeri & Ostojic, 2021]

Embedding in intrinsic dimension

Embedding

Dimension

2

>2

3

Intrinsic Dimension

1

1

2

[Jazayeri & Ostojic, 2021]

 \mathbf{x}_{j}

 $d(\mathbf{x}_i, \mathbf{x}_j) \gg 0$

What if we embed in intrinsic dimension?

Outline

- Introduction
- Distortion
- Bottom-up manifold learning
- Results

Manifold

Local neighborhoods

Alignment

Global embedding

Global Alignment

• Goal: find a rigid transformation for each view to obtain global embedding

$$\min_{\substack{(S_i)_{i=1}^m \subseteq \mathbb{O}(d) \\ (t_i)_{i=1}^m \subseteq \mathbb{R}^d}} \sum_{\tilde{x}_k \in \tilde{U}_i \cap \tilde{U}_j} \|S_i^T(x_{k,i}+t_i) - S_j^T(x_{k,j}+t_j)\|_2^2$$

Local views in ambient dimension

Local views in embedding

Aligned local views in global embedding

Tearing manifolds

- Main Idea: Start with an over torn embedding laid down in intrinsic dimension and adequately stitch it back together in an iterative manner.
- In each iteration only align views who are neighbors in both the ambient space and embedding

$$\min_{\substack{(S_i)_{i=1}^m \subseteq \mathbb{O}(d) \\ (t_i)_{i=1}^m \subseteq \mathbb{R}^d}} \sum_{\substack{\tilde{x}_k \in \tilde{U}_i \cap \tilde{U}_j \\ x_k \in U_i \cap U_j}} \|S_i^T(x_{k,i} + t_i) - S_j^T(x_{k,j} + t_j)\|_2^2$$

• End goal: for closed and non-orientable manifolds, a tear must be retained while for other manifolds the tear will vanish automatically.

Tear-aware Riemannian Alignment

Iteration

Tear-aware Riemannian Alignment

Iteration

Tear-aware "teleportation" distance

Global distortion

Shortest path in the embedding space

Shortest path in the ambient space

$$\mathcal{G} = \max_{j \neq k} \frac{l(\tilde{p}_{kj})}{\tilde{l}(\tilde{p}_{kj})} \max_{\substack{j \neq k}} \frac{\tilde{l}(\tilde{p}_{kj})}{l(\tilde{p}_{kj})}$$

Low-Dim Embedding

 $I(p) = \sum_{j=1}^{s-1} \left\| \mathbf{x}_{i_j} - \mathbf{x}_{i_{j+1}} \right\|_2$

[Kohli, Cloninger & Mishne, in prep]

Bounds on global distortion

• Intuitively, if the local distortions are low and the alignment error is low then the global distortion should be low too

Theorem

Let κ_i be the distortion of the *i*th view. Suppose that the alignment error $F_{\Gamma}(\mathbf{S})$ is small enough then $\mathcal{G}^w \leq \frac{1}{2}\kappa[\kappa + O(\sqrt{F_{\Gamma}(\mathbf{S})})]$, where $\kappa = \max_{1}^m \kappa_i$.

Outline

- Introduction
- Distortion
- Bottom-up manifold learning
- Results

Manifolds with boundary

Manifolds with boundary – high-dim example

True floor plan	LDLE	UMAP	t-SNE	Laplacian eigenmaps

Ambient dim = 42

Manifolds without boundary

Non-orientable manifolds

Neural Manifolds

C3

-0.05

0.05

C2

0.05

C1

-0.05

-0.05

[Cunningham and Yu 2014, Gao and Ganguli 2015, Remington et al. 2018, Chaudhuri et al. 2019, Rubin et al. 2019, Nieh at al. 2021, ...]

Motor timing

[Wang*, Narain*, Hosseini & Jazayeri, 2018]

Motor timing

[Wang*, Narain*, Hosseini & Jazayeri, 2018]

Interval reproduction

Ready-Set-Go task: time reproduction [Sohn*, Narain*, Meirhaeghe* & Jazayeri (2019)]

We trained an RNN that recapitulates dMFC population dynamics

Interval reproduction

Trace conditioning

Associative learning of time elapsed between two brief sensory cues

Toroidal manifolds

Toroidal manifolds

Head direction

Circuit that uses external and internal cues to estimate the direction the animal is heading with respect to the external world

[Chaudhuri et al. 2019]

Dhruv Kohli

Alex Cloninger

Devika Narain

gmishne@ucsd.edu \square

gmishne@ucsd.edu

🈏 @gmishne 🛛 67

https://pyldle2.readthedocs.io/en/latest/

arXiv:2101.11055