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Neuro-data-science



Volumetric calcium imaging
thousands of neurons 
across multiple cortical layers
Source: [Prevedel et al. 2016]

Neuro-data-science
• Data explosion in neuroscience 



Behavioral videos of animal models
[Deeplabcut, 2019]

Neuro-data-science



How does the brain generate behavior?
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Spontaneous Behavior 

8[Higley lab]



Learned motor task

9

Novice animal Expert animal

[Schiller lab]



Imaging of large-scale networks
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Imaging of large-scale networks

11[Barson et al., 2020]



What does my lab do? Neuro-data-science

Methods
• Dimensionality reduction / 

Nonlinear manifold learning
• Multiway analysis (tensors) 
• Graph signal processing
• Deep learning

Imaging analysis 

Time                        Trials                                 learning over days

Dimensionality reduction

Learning connectivity
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Introduction

[Wikipedia, google maps]
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Introduction

[Wikipedia]
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Introduction
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What is a manifold?

• Definition: a topological space that locally resembles Euclidean 
space near each point.

• 1D:

• 2D:
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Manifold learning

● Learn manifold from data

● Non-linear representation of low-dimensional 
manifold.

● Preserve geometric properties

● Embedding with top eigenvectors of the 

○ Covariance matrix (PCA) 

○ Normalized graph Laplacian (Laplacian Eigenmaps)

○ Random-walk graph Laplacian (Diffusion maps)

○ …

[Tenenbaum et al., 2000,
Roweis and Saul, 2000,
Belkin and Niyogi, 2001,
Donoho and Grimes, 2002,
Coifman and Lafon, 2004,
van der Maaten and Hinton 2008, 
McInnes et al. 2018, ...] 
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Manifold learning frameworks



Manifold learning frameworks

Top-down

• Initial global embedding of the data  

• Optional: refine it iteratively by 
minimizing a measure of local 
distortion.

• ISOMAP, Laplacian Eigenmaps, t-SNE, 
UMAP…
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Bottom-up manifold learning
Bottom-up manifold learning: 

• Local neighborhoods in the data have their own parameterization (local views) with 
low distortion

• Local views are aligned to obtain a global embedding

[Zhang & Zha, 2004; Kohli, Cloninger & Mishne, JMLR 2021]
25



Gaps in existing manifold learning approaches

➢Some methods rely on a fixed set of global eigenvectors of the graph Laplacian

➢Embedding may not have low distortion everywhere.



Gaps in existing manifold learning approaches

➢Cannot embed closed and non-orientable manifolds into their intrinsic 
dimension.
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Distortion on the unit square



Distortion

• Translation invariant
• Scale invariant 

1

2

Elliptical disc

Elliptical disc

No Distortion

High Distortion

Higher Distortion

(2x,2y)

(2x,y)

(4x,0.5y)



Distortion

➢distortion = 1 if and only if
for all                    and constant c

1

2

Elliptical disc

Elliptical disc

No Distortion

High Distortion

Higher Distortion

(2x,2y)

(2x,y)

(4x,0.5y)





Embedding in intrinsic dimension

[Jazayeri & Ostojic, 2021]



Embedding in intrinsic dimension

[Jazayeri & Ostojic, 2021]

What if we embed in intrinsic dimension?



Embedding in intrinsic dimension

[Jazayeri & Ostojic, 2021]

What if we embed in intrinsic dimension?

Distance distortion
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Bottom-up manifold learning

Manifold

[Nieuwenhuis*, Kohli*, Cloninger, Mishne# & Narain #, in prep]



Bottom-up manifold learning

Local neighborhoods

[Nieuwenhuis*, Kohli*, Cloninger, Mishne# & Narain #, in prep]



Bottom-up manifold learning

Local views

[Nieuwenhuis*, Kohli*, Cloninger, Mishne# & Narain #, in prep]



Bottom-up manifold learning

Global embedding

Alignment 

[Nieuwenhuis*, Kohli*, Cloninger, Mishne# & Narain #, in prep]

Local views



Global Alignment
• Goal: find a rigid transformation for each view to obtain global embedding 

min
(𝑆𝑖)𝑖=1

𝑚 ⊆𝕆(𝑑)

(𝑡𝑖)𝑖=1
𝑚 ⊆ℝ𝑑



𝑥𝑘∈෩𝑈𝑖∩෩𝑈𝑗

𝑆𝑖
𝑇(𝑥𝑘,𝑖+𝑡𝑖 − 𝑆𝑗

𝑇(𝑥𝑘,𝑗+𝑡𝑗)ԡ2
2

Local views in ambient dimension Local views in embedding Aligned local views in global embedding
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Tearing manifolds

• Main Idea: Start with an over torn embedding laid down in intrinsic dimension
and adequately stitch it back together in an iterative manner.

• In each iteration only align views who are neighbors in both the ambient space 
and embedding

• End goal: for closed and non-orientable manifolds, a tear must be retained 
while for other manifolds the tear will vanish automatically.

min
(𝑆𝑖)𝑖=1

𝑚 ⊆𝕆(𝑑)

(𝑡𝑖)𝑖=1
𝑚 ⊆ℝ𝑑



𝑥𝑘∈෩𝑈𝑖∩෩𝑈𝑗
𝑥𝑘∈𝑈𝑖∩𝑈𝑗

𝑆𝑖
𝑇(𝑥𝑘,𝑖+𝑡𝑖 − 𝑆𝑗

𝑇(𝑥𝑘,𝑗+𝑡𝑗)ԡ2
2
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- Neighbors in ambient space

- Neighbors in embedding space 



Tear-aware Riemannian Alignment 
Iteration

t-SNE



Tear-aware Riemannian Alignment 
Iteration

Tear-aware “teleportation” distance



Global distortion 

𝒢 = max
𝑗≠𝑘

𝑙( 𝑝𝑘𝑗)

ሚ𝑙( 𝑝𝑘𝑗)
max
𝑗≠𝑘

ሚ𝑙( 𝑝𝑘𝑗)

𝑙( 𝑝𝑘𝑗)

[Kohli, Cloninger & Mishne, in prep]

Shortest path in the ambient space Shortest path in the embedding space 



Bounds on global distortion

• Intuitively, if the local distortions are low and the alignment error is 
low then the global distortion should be low too

[Kohli, Cloninger & Mishne, in prep]
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Manifolds with 
boundary



Manifolds with boundary – high-dim example

Ambient dim = 42



Manifolds without
boundary

Ambient dim = 4



Non-orientable
manifolds

Ambient dim = 4



Neural Manifolds

[Cunningham and Yu 2014, 
Gao and Ganguli 2015,
Remington et al. 2018,
Chaudhuri et al. 2019,
Rubin et al. 2019,
Nieh at al. 2021,
…]



Motor timing

[Wang*, Narain*, Hosseini & Jazayeri, 2018] 

[Nieuwenhuis*, Kohli*, Cloninger, Mishne# & Narain #, in prep]



Motor timing

[Wang*, Narain*, Hosseini & Jazayeri, 2018] 

[Nieuwenhuis*, Kohli*, Cloninger, Mishne# & Narain #, in prep]



Interval reproduction

[Nieuwenhuis*, Kohli*, Cloninger, Mishne# & Narain #, in prep]

We trained an RNN that recapitulates dMFC population dynamics

Ready-Set-Go task: time reproduction
[Sohn*, Narain*, Meirhaeghe* & Jazayeri (2019)]



Interval reproduction

[Nieuwenhuis*, Kohli*, Cloninger, Mishne# & Narain #, in prep]

Interval    



Trace conditioning

[Nieuwenhuis*, Kohli*, Cloninger, Mishne# & Narain #, in prep]

Associative learning of time elapsed between two brief sensory cues



Toroidal manifolds

[Nieuwenhuis*, Kohli*, Cloninger, Mishne# & Narain #, in prep]

Ideal torus
t-SNE                             UMAP                               ISOMAP                                 RATS



Toroidal manifolds

[Nieuwenhuis*, Kohli*, Cloninger, Mishne# & Narain #, in prep]

Grid cell population activity [Gardner et. al ]

Ideal torus
t-SNE                             UMAP                               ISOMAP                                 RATS



Head direction 

[Nieuwenhuis*, Kohli*, Cloninger, Mishne# & Narain #, in prep]

Circuit that uses external and internal cues to estimate the direction 
the animal is heading with respect to the external world

[Chaudhuri et al. 2019]



Alex Cloninger Devika NarainDhruv Kohli Bas Nieuwenhuis



Thank You!
arXiv:2101.11055

67https://pyldle2.readthedocs.io/en/latest/
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