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Interpreting Anomalous Latent Spaces

1



What is Anomaly Detection? 

2



The Big Picture and Goals
• Traditionally new physics searches are 

theoretically motivated


• But what if we have been discarding 
interesting physics?


• We want theory independent algorithms 
that can detect “anomalous” signals


“Anomalous” - anything the 
algorithm DOESN’T reconstruct well


• These poorly reconstructed signals could 
be: 


New Physics :D 


Detector flaws :/

3



Preliminary Definitions
• QCD = Quantum chromodynamics


• Theory used to perform Monte Carlo (MC) 
background and signal estimations


• Theory predicts interactions between quarks


• Mediated by gluons 


• strong force carrying particle


• Bind quarks to form hadrons


• Think “Standard Model Physics”


• BSM = Beyond Standard Model Physics


• All things the standard model can’t explain


• “New physics”
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How’s It Done? 
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• Zero bias data = pileup data


• low momentum events


• occur simultaneously as high 
transverse momentum events



Network Architecture: Interaction Network (IN)
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Network Architecture: Interaction Network (IN)

• Graph input data: nodes represent physics objects w/ respective continuous features (i.e. px, py, pz)


objects are connected by directional edges


IN’s have two adjacency matrices: sender and receiver matrices
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Network Architecture: Interaction Network (IN)
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Network Architecture: Interaction Network (IN)

• Marshaling function: message passing step where node-edge projections take place


returns interaction terms 

6



Network Architecture: Interaction Network (IN)
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Network Architecture: Interaction Network (IN)

• Relation function (Edge MLP): inputs interaction array into MLP 


returns the predicted effects of the interaction
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Network Architecture: Interaction Network (IN)
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Network Architecture: Interaction Network (IN)

• Aggregation function: concatenates physics object input to the predicted effects


analogous to residual connection in ResNet


returns aggregator
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Network Architecture: Interaction Network (IN)
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Network Architecture: Interaction Network (IN)

f

• Object function (Node MLP): inputs aggregated array into MLP 


returns predicted future state in the example of simulation
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Network Architecture: Interaction Network (IN)
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Network Architecture: Interaction Network (IN)
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Network Architecture: Interaction Network (IN)
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DNN VAE 
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Learnable INVAE (Encoder) Implementation
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Learnable INVAE (Decoder) Implementation

z

• The decoder outputs (i.e. p1, p2, p3) are the reconstructed physics objects and their respective 
momenta (px, py, pz)
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INVAE Results 
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Zero Bias Reconstruction
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• Expectation: reconstruction loss should be marginal for zero bias data


• Summary: reconstruction is good across all physics objects for px but not py, or pz



QCD Reconstruction
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• Expectation: reconstruction loss to be comparable to Zero Bias data


• Result: similar quality but px and py should be symmetric across background 
and reconstruction. This is not the case for QCD or zero Bias data. 



H -> aa -> 4b Reconstruction
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• Expectation: reconstruction loss is worse than SM data reconstruction



QCD Heat Maps
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• Px reconstruction is strongly 
correlated


• Py is almost independent of input


• Expectation: If Px is strongly 
correlated to its input, so should Py


• Consequence of cylindrical 
detector symmetry 



H -> aa -> 4b Heat Maps
• The same asymmetry between Px 

and Py reconstruction occurs 


• Expectation: components for BSM 
signal would be less correlated 
than QCD

15



INVAE ROC Curves 
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DNN VAE Results

17



DNN VAE 
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QCD Object Reconstruction

• Better reconstruction across all components


• Minimal loss for QCD events as expected
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H -> aa -> 4b Reconstruction

• greater reconstruction loss 


• especially for MET 


• This was the expected behavior

20



VAE ROC Curve

• Total Loss = MSE + KLD 


•
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INVAE (left) vs DNN (right) ROC Curve Comparisons

• Result: AUC is comparable for INVAE and DNNVAE, but the quality of the reconstruction is better for the DNN
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Next Steps
• Train/test INVAE on the ADC2021 datasets


• Do one last hyperparameter search


• See if network can generalize to all components in reconstruction


• Based on results:


• write external paper on performance of INVAE and INAE compared to DNNAE 
and VAE benchmarks for AD
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Interpreting Anomalous Latent Space
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Current Project 
• We have a VAE encoder algo we are putting on L1 trigger menu!


• However, we have no way of interpreting these encodings…


That’s where I come in:


• mapping anomalous latent space


• Interpret our results 


• Distinguish between anomalous signal candidates and potential detector flaws


• Questions to answer: 


• Where do these anomalous signal candidates ‘live’ in latent space? 


• Is there clustering? Can it be interpreted/explained?


• Are components of latent space correlated? 


• What are the most important components in latent space corresponding to higher anomaly 
score?  
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Background Info
• How the anomaly score is quantified:


• mu 


• Encoded latent vector


• mu = < mu_0, mu_1, …, mu_7 >


• 8-D vector


• used to calculate the anomaly score:


• mu^2 :


• Squared sum of all components of mu-
vector


• 1-D  vector


• mu^2 >> 0 —> larger anomaly score
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Exploring Latent Variable Correlations
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mu_1 vs mu_2 Plot
• Visualizes the strong negative correlation


• Note discrete values across all signals 
are visible because smaller plot domain


• There are some other interesting 
correlations to visualize…


• But won’t provide more information 


• Hence, PCA is needed


• Conclusion: 


• There are variables that are strongly 
and weakly correlated to mu_2 and 
other comps.
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Principal Component Analysis (PCA)
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Scree Plot 
• Eigenvalues correspond to 

variances of principal comps.(PC)


• PCA’s goal is to determine:


• What PC correspond to the 
highest variance


• Helps determine how many PC 
to retain during dim. reduction
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First k Principle Components (PCs) Scatter and KDE Plots
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Summary
• The current DNNVAE out performs the INVAE at the task of anomaly 

detection


• DNNVAE encoder is being put on L1 trigger


• Final results will be written and publish externally


• Mapping latent space of DNNVAE encoder is in progress


• The results of PCA are being interpreted to:


• Determine optimal amount of PC


• Interpret what variables contribute to which PC most


• Interpret/explain clustering in reduced dim. space
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Moving Forward

• Use the results from PCA to:


• Determine optimal amount of PC


• Interpret what variables contribute to which PC most


• Interpret/explain clustering in reduced dim. space


• Continue collaborating with CU Boulder graduate and summer students:


• Complete data characterization

34



Thank you!
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