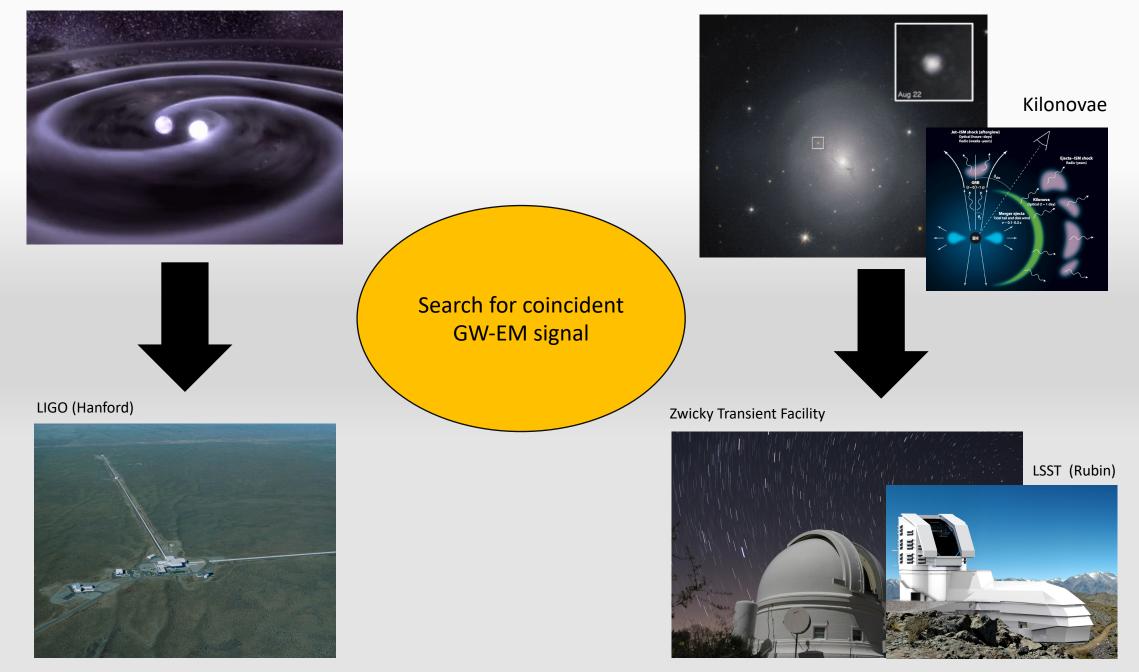
A3D3 Post-Bacc Final Presentation/Research Update

Abby Gray

PI: Prof. Michael Coughlin University of Minnesota Multi-Messenger Astrophysics

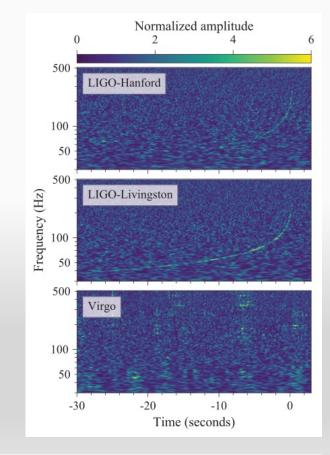
OUTLINE

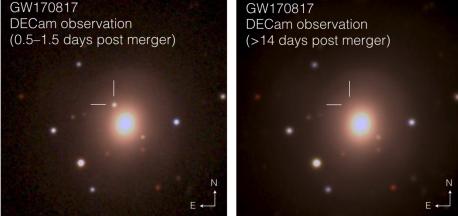

- Multi-Messenger Astrophysics Domain, science questions and Machine Learning implementation motivation
- Projects

Observing Scenarios Paper Training dataset for Low-Latency EM Follow-up

• My A3D3 experience

Gravitational Waves


Electromagnetic Waves



GW170817

- Fueled many gravitational wave (GW) follow-up campaigns (ZTF, LSST) and project efforts
- BNS follow-up science cases
 Neutron star equation of state constraints
 Hubble constant calculations
 R-process nucleosynthesis

We need to observe more GW-EM events!!

Observing Scenarios

Now on arxiv!

Weizmann Kiendrebeogo et all. : <u>https://arxiv.org/abs/2306.09234</u>

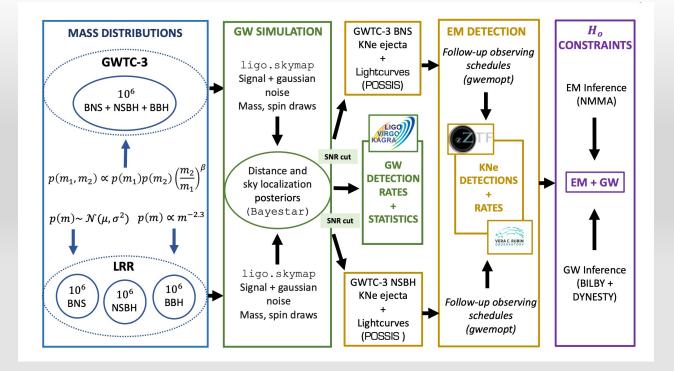
End-to-end GW-EM simulation

• Goal

1) Present updated predictions and statistics for O4 and O5 observing runs by the IGWN (LIGO/Virgo/KAGRA)

2) Provide updated analysis of physical constraints based on GW170817

• Impact


Inform the scientific community, especially EM follow-up efforts to maximize the scientific output

Observing Scenarios - Flow

- GWTC-3 Distribution
- Split populations based on mass and spin thresholds
- Draw distances and sky localizations

 (ligo.skymap code for
 LIGO/Virgo/KAGRA), and extrinsic
 parameters (lat., long., incl.)
- Apply SNR threshold of 8 (bayestar)
- Statistical predictions/calculate summary statistics

Protocol/Simulation Flow

Observing Scenarios – Tools

• Nuclear Multimessenger Astronomy (NMMA) + Bilby

Bayesian multi-messenger pipeline for GW+EM analyses

Ejecta quantities/parameter estimation

EM models (KNe: Bulla2019, POSSIS)

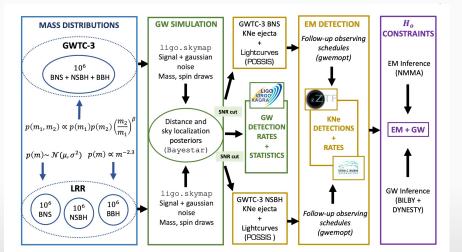
Combined analysis (Ho)

• Bayestar

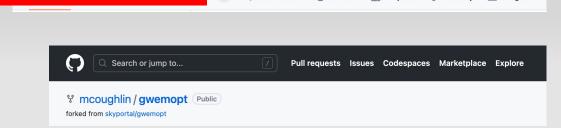
Rapid Sky localization code (used for IGWN)

• Gwemopt

Perform optical simulation campaign/ observing schedules


A lot of computational

experience was built here....


• Ligo.skymap

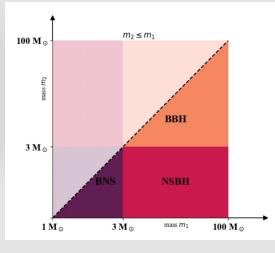
Read, write, generate, and visualize skymaps

Command-line tools

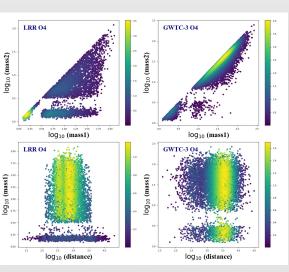
Marketplace Explore

Discussions

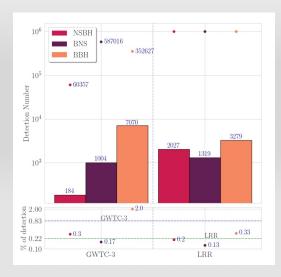
Actions


Pull requests

ny / nmma (Public



Observing Scenarios – Results



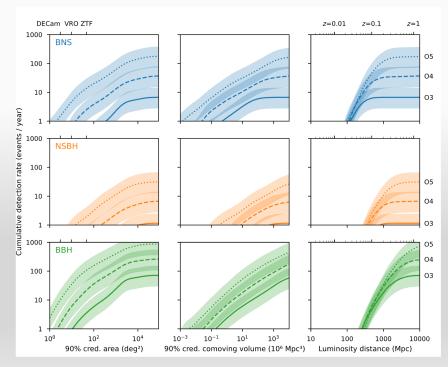
Mass distributions which survive SNR threshold (O4)

Number of events detected per distribution

Summary Statistics

Run	Dist.	BNS	NSBH	BBH			
Median 90% credible area (\deg^2)							
04	LRR	$2100\substack{+150 \\ -220}$	$2090\substack{+130 \\ -130}$	$653\substack{+53 \\ -36}$			
04	GWTC-3	1860^{+250}_{-170}	$2140\substack{+480 \\ -530}$	$1428\substack{+60 \\ -55}$			
05	LRR	$2050\substack{+100 \\ -160}$	$2110\substack{+100 \\ -100}$	682^{+25}_{-30}			
00	GWTC-3	$2050\substack{+120 \\ -120}$	$2000\substack{+350 \\ -220}$	$1256\substack{+48 \\ -53}$			
Mee	lian 90%	credible Comov	ing Volume (1	$10^3 \mathrm{Mpc}^3$)			
04	LRR	$46.5^{+6.6}_{-7.0}$	159^{+26}_{-16}	207^{+21}_{-20}			
01	GWTC-3	$67.9^{+11.3}_{-9.9}$	$232\substack{+101 \\ -50}$	$3400\substack{+310\\-240}$			
05	LRR	240^{+29}_{-26}	785^{+68}_{-62}	857^{+63}_{-60}			
00	GWTC-3	$376\substack{+36 \\ -40}$	$1350\substack{+290 \\ -300}$	$8580\substack{+600 \\ -550}$			
Median Luminosity Distance (Mpc)							
04	LRR	349^{+12}_{-14}	564^{+15}_{-13}	$1102\substack{+33 \\ -32}$			
01	GWTC-3	398^{+15}_{-14}	770^{+67}_{-70}	$2685\substack{+53 \\ -40}$			
05	LRR	619^{+15}_{-19}	1007^{+20}_{-22}	$1948\substack{+34\\-24}$			
00	GWTC-3	738^{+30}_{-25}	$1318\substack{+71 \\ -100}$	4607^{+77}_{-82}			
Sensitive volume : detection rate / merger rate: (Gpc^3)							
04	LRR	$0.1011\substack{+0.0066\\-0.0064}$	$0.403\substack{+0.021\\-0.020}$	$1.861\substack{+0.07\\-0.07}$			
01	GWTC-3	$0.172\substack{+0.013\\-0.012}$	$0.78\substack{+0.14 \\ -0.13}$	$15.15\substack{+0.42\\-0.41}$			
O 5	LRR	$0.507\substack{+0.027\\-0.026}$	$1.809\substack{+0.070\\-0.068}$	$7.62\substack{+0.19\\-0.19}$			
00	GWTC-3	$0.827\substack{+0.044\\-0.042}$	$3.65\substack{+0.47\\-0.43}$	$50.7^{+1.2}_{-1.2}$			

Spin magnitudes m < 2.5 M_{sun} , [0,.4] m >2.5 M_{sun} , [0,1]


Annual GW detection rates

Run	Distribution	BNS	NSBH	BBH			
	Annual number of detections						
04	LRR	17^{+35}_{-13}	10^{+18}_{-8}	46^{+23}_{-17}			
04	GWTC-3	$36\substack{+49 \\ -22}$	6^{+11}_{-5}	260^{+330}_{-150}			
O 5	LRR	86^{+171}_{-59}	48_{-30}^{+71}	$190\substack{+80 \\ -58}$			
03	GWTC-3	$180\substack{+220 \\ -100}$	31^{+42}_{-20}	870^{+1100}_{-480}			

Warning: Data Overload!!

- More detections than reasonable to handle by current (O3) follow-up capabilities
- Detector sensitivity increasing! Localization not so much...

Cumulative Histogram, Public Alert Rate

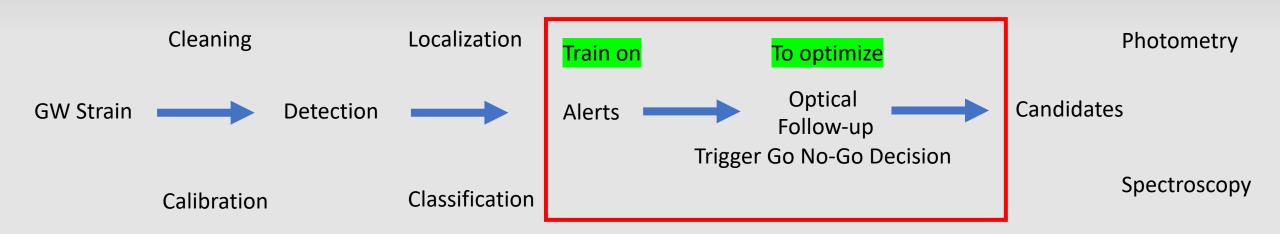
		BI	NS	NSBH			
Run	Dist.	Telescopes					
		$\mathbf{Z}\mathbf{T}\mathbf{F}$	LSST	$\mathbf{Z}\mathbf{T}\mathbf{F}$	LSST		
04	GWTC-3	10.06~%	90.34~%	2.72~%	60.87~%		
05	GWTC-3	2.6~%	69.4~%	0.28 %	30.62~%		

BNS, O4, ZTF

KNe Classification

In collaboration with Niharika Sravan and more

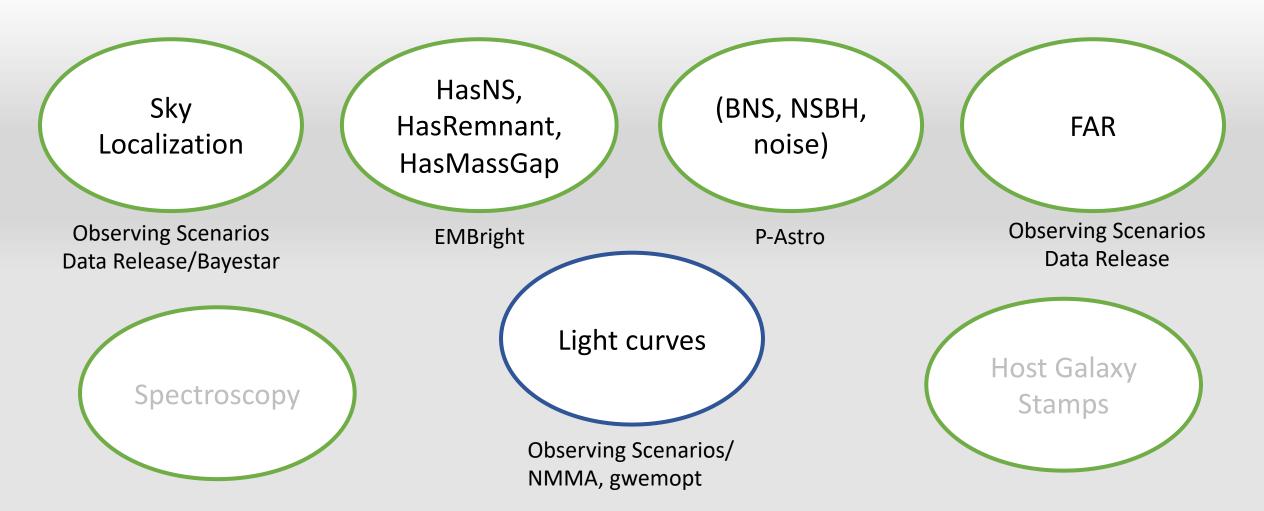
• Bottlenecks/motivations

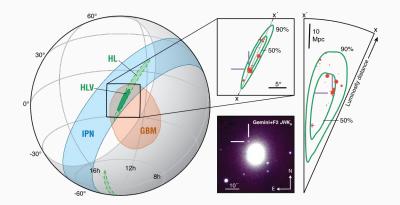

Faint transient (light curve lasting <1week in optical) Large detection rates expected in O4 and O5 observing runs Localization remains poor Images can include tens of contaminating transients

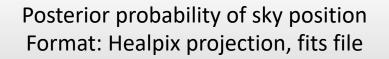
Human-run classification does not remain a reasonable method

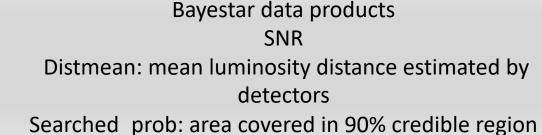
ML implementation and real-time classification is crucial to maximize observational resources and scientific return

Comprehensive Low Latency Dataset

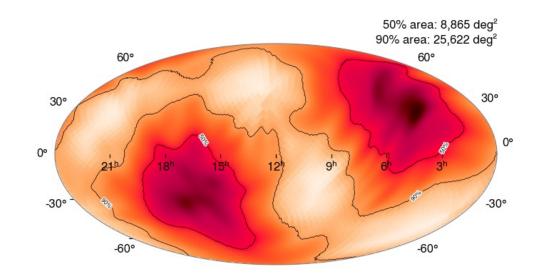

- Train Machine Learning classifiers on low-latency GCN Alert data
- Help pipelines meet realistic demand for follow-up observations
- Autonomous Real-Time Decision-Making, algorithms aimed at followup strategy and classification – already interest, more to be explored
- Current KNe focus, expanding to SNe


Low-Latency Alert Products (GCN)

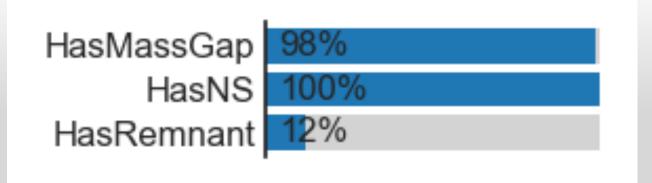

LIGO/Virgo/KAGRA Observing Capabilities: Simulated Detections and Localization for O4 and O5 (October 2022 edition)


https://zenodo.org/record/7026209

Sky Location SupereventID: S230529ay



before finding injection (assuming searched first)


coinc_event_id simulation_id far snr searched_area searched_prob_searched_prob_dist searched_vol searched_prob_vol offset runtime distmean diststd log_bci=log_bsn area(20) area(50) dist(20) dist(50) dist(90) vol(20) vol(50) vol(90) 1 - 0 0 0 8.83118857554092 - 15.789211700533065 0.0386027619277975 0.0035339761755607857 - 7983258.690038086 0.5119537334598179 3.69803221043959 144,4915667869496 490.3362239542748 139.6659058949126 9.788480355142108 3.54449932564645 98.90036380380806 - 0.5119537334598179

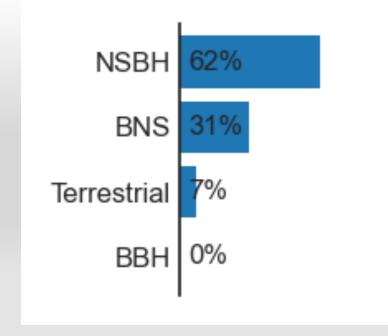
353.65121453419886 -+ 1424.9431334204862 -+ 71.39436340219095 -- + 189.8870588920691 -- + 460.1931040594944 -- + 1861164.2409447683 -- 7638120.3179158475 -- + 41770604.09901262

18 = 16 = 0.0 + 8.394219043945947 = 349.9854500530138 = 0.48016130003938906 = 0.28022615949048946 = 6333620.543831693 = 0.33742110237083284 = 5.326999310771009 = 95.5668057780154 = 598.8145325893807 = 170.376934193808 = 9.03101536214273 = 2.28662577654379 = 82.1377108834828 = 376.75316280920146 = 2134.2254368103595 = 87.01994869601049 = 231.45296412622474 = 561.081816638032 = 2546351.552001068 = 13558413.36225862 = 109804961.19157445 = 2.486537080154 = 2.486537680154 = 2.48653863 = 2.48653863 = 2.48654 = 0.582157356003654 = 0.582157356003654 = 0.58215735600367680 = 2.4867699326783 = 2.486654 = 0.5821573560033768003378680336768 = 2.486654 = 0.586567480032767803378 = 2.486645803367680 = 2.4866589368834 = 5.4867699326783 = 2.486654 = 0.5821573560033786803378680337868033786803378680337868033786803378 = 2.586636378603378680337868033786803378680337868033786803378 = 2.5866367780537780533786803778053

EMBright SupereventID: S230529ay

HasNS = Probability (assuming source is not noise) that at least one of the compact objects was a neutron star

HasMassGap = probability that at least one source's mass falls between 3 and 5 solar masses


HasRemnant = Probability that the system ejected a nonzero amount of neutron star matter/tidal disruption occurred

simulation id HasNS HasRemnant 1 2 0 0.0 0.0 1 1.0 1.0 3 2 0.0 0.0 4 3 0.0 0.0 5 6 4 0.0 0.0 5 0.0 0.0 7 6 0.0 0.0 8 9 7 0.0 0.0 8 0.0 0.0 10 11 9 0.0 0.0 12 10 0.0 0.0

> 1 = 100% 0 = 0%

Inputs: mass, spin, snr

P-Astro SupereventID: S230529ay

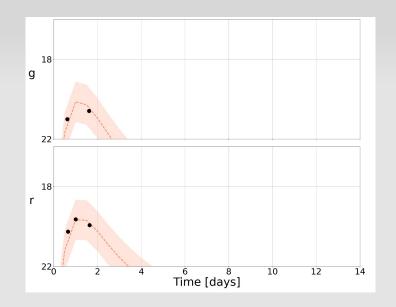
Observing scenarios Bayestar skymap data

Alert Rate, FAR, and SNR dependent

Probability that the GW source is a BNS, NSBH, BBH, or Terrestrial (noise)

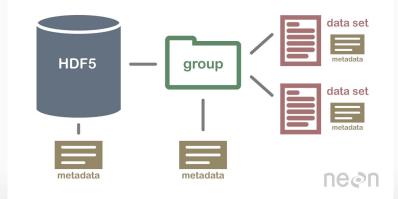
Light curves/simulated follow-up

Population
 Observing scenarios injections (passed SNR)

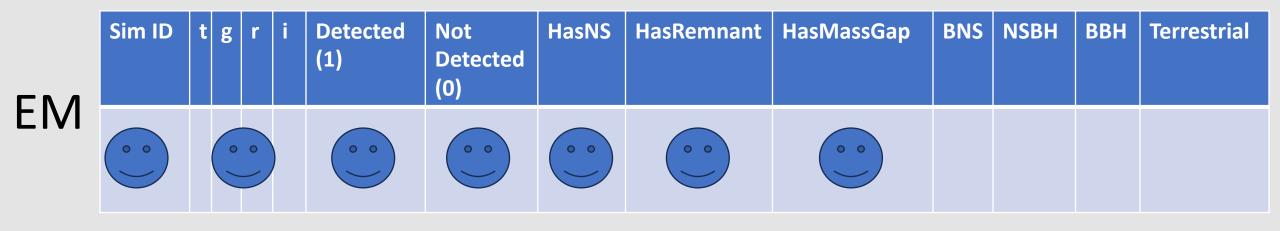

O4 1004 injected BNS \rightarrow 236 detected 184 injected NSBH \rightarrow 4 detected

O5 2003 injected BNS \rightarrow 118 detected 356 injected NSBH \rightarrow 0-1 detected

	mjd	passband	ToO	mag	mag_err	tc
1	44244.614889651326	g	True	21.00126996361575	0.05495515122451153	44244.00021990741
2	44244.652459151366	r	True	20.263716172349007	0.11220276878191449	44244.00021990741
3	44245.001764473775	r	False	19.643648404791723	0.03818148217968515	44244.00021990741
4	44245.614889651326	g	True	20.585681425741832	0.09314624604855593	44244.00021990741
5	44245.63454235138	r	True	19.93323099006488	0.05341985343762061	44244.00021990741


• Triggering criteria

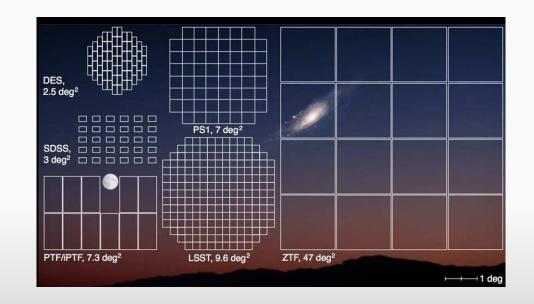
ZTF: g,r,i bands, 21.7, 21.4, 20.9 mag respectfully
180s and 300s exposure during first and second day



Status

Data products and (some) codebase uploaded to Github Officially record pipeline and workflow

GW	Sim ID	Skymap metadata	Skymap fits file	Probability Contour	Location of true KNe	Observable Coverage
			•••		•••	


Looking Forward...

- Implement data!
- Finalize Pipeline, easy to use, sustainable

Which KNe is the true KNe?

Speed up inference by isolating KNe from SN, gamma-ray bursts, etc.

- Generate fixed-grid of KNe light curves
- Spectra
- Host-Galaxy Images (especially for poorly localized sources)
- Expand Observing Scenario's sky localization data products based on GWTC-3

My Experience as an A3D3 Post-bacc

Invaluable experience in a highly active research field

Able to interact with and observe graduate students and postdocs

Real-world computational experience

• Thoughts

More structured initial few months would have added value

Initial meet with fellow post-baccs

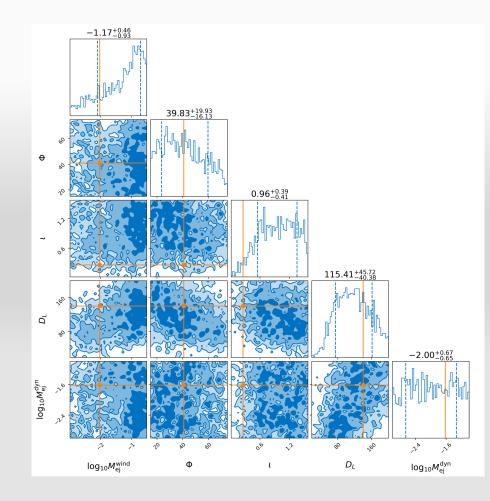
ML Intro in each domain, intentional exposure to important research questions, literature review

Github and similar organizational resources

Goals/expectations

Thank you to the entire A3D3 committee for this experience, and to Michael Coughlin for his guidance

THANK YOU!


BACKUP SLIDES

Parameter	Go-deep	eep Go-wide Deliberate		No Go
Strategy	300 sec	30 sec		
Strategy	Push distance	Push localization	Action Item: human interaction	
Frequency of triggers	1 per month	2 per month		
riequency of triggers	3 nights	5 nights		
FAR min(FAR) - 'Best'	< 1 per century	< 1 per decade	1 per year - century	> 1 per year
FAR mm(FAR) - Dest	Any pipeline	Any pipeline		All pipelines
$\max(p-astro)$	> 0.9	> 0.9	0.1 - 0.9	< 0.1
HasNS	> 0.9	> 0.9	0.1 - 0.9	< 0.1
$\log(\mathrm{BCI})$	> 4	> 4	-1 - 4	< -1
HasRemnant?	> 0	> 0	-	= 0
pBNS/pNSBH	> 0	> 0	-	= 0

 Table 6. Triggering based on GW candidate event properties

Table 5. Annual detection rate of EM counterparts thatwe expect for ZTF and Rubin Observatory during the RunO4 and O5.

Run	Telescope	BNS	NSBH			
	EM annual number of detections					
04	ZTF	$0.43\substack{+0.58 \\ -0.26}$	$0.13\substack{+0.24 \\ -0.11}$			
04	Rubin	$1.97\substack{+2.68 \\ -1.2}$	$0.03\substack{+0.06 \\ -0.03}$			
O 5	ZTF	$0.43\substack{+0.44 \\ -0.2}$	$0.09\substack{+0.12 \\ -0.06}$			
00	Rubin	$5.39\substack{+6.59 \\ -2.99}$	$0.43\substack{+0.59\\-0.28}$			

- v root: v injections: __dataframe__: true v content: ▶ simulation_id: [] 1004 items ▶ mass_1: [] 1004 items ▶ mass_2: [] 1004 items ▶ luminosity_distance: [] 1004 items ▶ psi: [] 1004 items ▶ phase: [] 1004 items ▶ geocent_time: [] 1004 items ▶ ra: [] 1004 items ▶ dec: [] 1004 items ▶ theta_jn: [] 1004 items ▶ a 1: [] 1004 items ▶ a_2: [] 1004 items ▶ tilt_1: [] 1004 items ▶ tilt 2: [] 1004 items ▶ phi_12: [] 1004 items ▶ phi_jl: [] 1004 items ▶ KNphi: [] 1004 items ▶ inclination_EM: [] 1004 items ▶ KNtimeshift: [] 1004 items
 - ▶ log10_mej_dyn: [] 1004 items
 - ▶ log10_mej_wind: [] 1004 items