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         What are Ultracool Dwarfs?
- Spectral class M6 and 

later (M, L, T, Y)
- Late L, T, & Y form 

below the hydrogen 
burning mass limit 
(brown dwarfs)

- Radiate in the infrared
- Common objects

Teff ≤ 3000°K
Mass ≤ 0.1 M⊙Artist rendition of relative size of a brown dwarf to the Sun, a low-mass star, 

Jupiter, and Earth with sizes to scale. 

Image Credit: Jupiter: NASA, ESA, A. Simon (NASA, GSFC); Sun and Low-Mass Star: NASA, SDO; Brown Dwarf: NASA, ESA, JPL-Caltech; Earth: NASA; Infographic: NASA,  E. Wheatley (STScI).
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         Why do we want to find them?
- Understanding differences 

between star and planet 
formation

- Improve current stellar models
- Increase known sources at 

further distances (> 100 
parsecs)

- Improve measurement of Milky 
Way parameters such as thin 
disk scaleheight

Milky Way with thin disk highlighted

Image Credit: © Dirk Hoppe



         Wide-Field Surveys

- PanSTARRS, Sloan Digital 
Sky Survey (SDSS), and 
ATLAS in the optical

- 2-Micron All Sky Survey 
(2MASS) in the 
near-infrared

- Wide-field Infrared Survey 
Explorer (WISE) catalogue

Coverage of Pan-STARRS in yellow, DES in purple, 
VHS in blue (Shanks 2016)



         Deep Sky Surveys

Dark Energy Survey 
(DES)

- Search for galaxies 
and aims to constrain 
dark energy

- Depth: 21.7 in mags 
in near-infrared Y 
band

- 5,000 deg2 coverage 
in South

VISTA Hemisphere 
Survey (VHS)

- Search for 
high-redshift quasars, 
low mass-stars

- 30 x deeper than 
2MASS

- 21,000 deg2 
coverage in South

CatWISE2020 
Catalogue

- Known for 
discovering brown 
dwarfs

- Depth: W1 = 17.7 
mag and W2 = 17.5 
mag 



         Photometric Bands

- PanSTARRS and DES survey 
use grizY bands

- VHS has many sources in J 
and Ks bands,  analogous to 
2MASS J and Ks

- CatWISE has W1, W2 bands

In order of highlights: g, r, i, z, Y, J, H, Ks, W1, and W2 
bands overlaid on a T3 Spectrum



         Previous Research

- Carnero Rosell et al. 2019 
created a catalogue of 11,745 
brown dwarfs of type L0 to T9 
using DES, VHS, and WISE 
photometry

- Used photometric color selection 
to identify possible candidates

- Spectral classification based on 
color templates

-  Measured thin disk scale height 
to be 450 pc Color cut displaying UCDs and quasars



         Color Selection

- Color: magnitudes in two 
photometric bands subtracted 
from each other

- The color-color plot shows 
some overlap between UCDs 
and our contaminant sample

- ML can help find patterns of 
all color combinations to 
identify UCDs

z-Y color plotted against i-z color for UCDs and 
contaminants



         Limitations

010 02

03
Time–consuming to test 
several cuts on large 
datasets

Hard to incorporate many 
bands and quickly add new 
photometry

Have to pre-determine 
expected color

Large data

Limited photometryColor cut01 01003

01002 02
Can improve on methods 
used to extract 
contaminants

 Contaminants01004



         What is Machine Learning?

Artificial 
Intelligence

Machine 
Learning

Deep
Learning



         What is Machine Learning?

Artificial 
Intelligence

Machine 
Learning

- Set of algorithms 
and statistical 
models that 
identify patterns 
in data

- Includes Random 
Forests



         What are Random Forests (RF)?

A set of decision trees that is 
built on “features” and outputs 

“labels”

Image Credit: https://www.tibco.com/reference-center/what-is-a-random-forest

Test

Training

Subset of pre-classified 
data used to identify 
most accurate decision 
trees

separate subset of 
pre-classified data 
used to determine tree 
performance



         Inputs and Outputs
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         Measuring RF Performance

True 
Positives 

(TP)

False 
Positives 

(FP)

False 
Negatives 

(FN)

True 
Negatives 

(TN)

Precision

F1 Score

Measure of 
misclassified 

objects of one 
class

Balanced 
measure of 

model 
performance

TP

TP + FP

TP

TP + ½( FP + FN)



         Why RFs?
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ML methods can sort 
through millions of sources 
at a time

Filter galactic and 
high-redshift objects

RFs can identify brown 
dwarf candidates based on 
photometric colors and 
indices (Aganze et al. 2022, 
Gong et al. 2022)

Can investigate all colors to 
identify objects and rank 
their importance

Efficiency

Contaminants

Previous Research
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         Photometric Correction

DES
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         Photometric Correction

- All photometry in the 
Ultracool Sheet is 
photometrically corrected 
to deep sky surveys using 
linear regression based on 
color

- MSE of fits: 0.0083 - 
0.0019

Correction of DES z-band magnitudes



         Binary Classification Models
- Training/testing data for UCDs are from the UltracoolSheet
- “Contaminants” are queried to represent a standard sample of sky
- 864 UCDs (label: 1) and 796 Contaminants (label: 0) form the training set

Model 1

Uses optical and 
infrared 

(rizYJKsW1W2) 
magnitudes and 
proper motions

Model 2

Removes proper 
motions, only has 

rizYJKsW1W2 
magnitudes 

Model 3

Based only on color 
from r-i to W1-W2



         Results: Binary Models

- Slight dip in performance from 
Model 1 to Model 2 when proper 
motions are removed

- Proper motions were the least 
important feature - included as 
close UCDs have larger motions

- Training just on colors still 
performs well



         Results: Binary Models

    Model 1                              Model 2                             Model 3



         Brightness Bias

Adjusting VHS J-band photometry of sources to prevent brightness from biasing 
the classification



         Results: Magnitude Adjustment

- All sources in the training set are oversampled to 1000 using photometric 
uncertainty as noise for RF model testing

- Separated into bins 1 magnitude wide and tested through RF model 2



         Spectral Type

- The UltracoolSheet has very few 
T dwarfs with photometry, only 1 
T9

- Oversampling with noise based 
on spectral type to increase T 
dwarf population

- Balanced all types to 1000 each



         Spectral Classification
- RF regression model trained on photometric colors from UltracoolSheet 

using z, Y, J, Ks, W1 and W2 bands
- Classification from M6 to T6 



         Summary

- RF methods work accurately and quickly
- Still have limitations: need full photometry, potential for overfitting
- Broadly applicable to color-based/photometric selection of any type of 

source
- Can aid in creating a robust method of classification



         Future Work

- Further contaminant search of possible galactic sources
- RF parameter optimization
- Search for candidates in DES and running sources through our RF models
- Use population simulation models to measure Milky Way structure 

parameters
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Contact:
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