Discovering Ultracool Dwarfs in Deep Surveys using Machine Learning Methods

Malina Desai

Overview

What are Ultracool Dwarfs?

- Spectral class M6 and later (M, L, T, Y)
- Late L, T, & Y form
 below the hydrogen
 burning mass limit
 (brown dwarfs)
- Radiate in the infrared
- Common objects

 $T_{eff} \leq 3000^{\circ} \text{K}$ Mass $\leq 0.1 \text{ M}\odot$

Image Credit: Jupiter: NASA, ESA, A. Simon (NASA, GSFC); Sun and Low-Mass Star: NASA, SDO; Brown Dwarf: NASA, ESA, JPL-Caltech; Earth: NASA; Infographic: NASA, E. Wheatley (STScI).

Why do we want to find them?

- Understanding differences between star and planet formation
- Improve current stellar models
- Increase known sources at further distances (> 100 parsecs)
- Improve measurement of Milky
 Way parameters such as thin
 disk scaleheight

Milky Way with thin disk highlighted

Wide-Field Surveys

- PanSTARRS, Sloan Digital
 Sky Survey (SDSS), and
 ATLAS in the optical
- 2-Micron All Sky Survey (2MASS) in the near-infrared
- Wide-field Infrared Survey
 Explorer (WISE) catalogue

Coverage of Pan-STARRS in yellow, DES in purple, VHS in blue (Shanks 2016)

Deep Sky Surveys

Dark Energy Survey (DES)

- Search for galaxies and aims to constrain dark energy
- Depth: 21.7 in mags in near-infrared Y band
- 5,000 deg² coverage in South

VISTA Hemisphere Survey (VHS)

 Search for high-redshift quasars, low mass-stars

- 30 x deeper than 2MASS
- 21,000 deg² coverage in South

CatWISE2020 Catalogue

Known for discovering brown dwarfs

- Depth: W1 = 17.7 mag and W2 = 17.5 mag

Photometric Bands

- PanSTARRS and DES survey use grizY bands
- VHS has many sources in J and K_s bands, analogous to 2MASS J and K_s
- CatWISE has W1, W2 bands

In order of highlights: g, r, i, z, Y, J, H, K_s, W1, and W2 bands overlaid on a T3 Spectrum

Previous Research

- Carnero Rosell et al. 2019
 created a catalogue of 11,745
 brown dwarfs of type L0 to T9
 using DES, VHS, and WISE
 photometry
- Used photometric color selection to identify possible candidates
- Spectral classification based on color templates
- Measured thin disk scale height to be 450 pc

Color cut displaying UCDs and quasars

Color Selection

- Color: magnitudes in two photometric bands subtracted from each other
- The color-color plot shows some overlap between UCDs and our contaminant sample
- ML can help find patterns of all color combinations to identify UCDs

Limitations

Color cut

Have to pre-determine expected color

01

Large data

Time–consuming to test several cuts on large datasets

Limited photometry

Hard to incorporate many bands and quickly add new photometry

Contaminants

Can improve on methods used to extract contaminants

What is Machine Learning?

What is Machine Learning?

Artificial Intelligence

Machine Learning

- Set of algorithms and statistical models that identify patterns in data
- Includes Random Forests

A set of decision trees that is built on "features" and outputs "labels"

> Subset of pre-classified data used to identify most accurate decision trees

Training

Test

separate subset of pre-classified data used to determine tree performance

UC San Diego

Image Credit: https://www.tibco.com/reference-center/what-is-a-random-forest

Inputs and Outputs

Measuring RF Performance

Why RFs?

Multiple Data Points

Can investigate all colors to identify objects and rank their importance

02

Efficiency

ML methods can sort through millions of sources at a time

Contaminants

Filter galactic and high-redshift objects

Previous Research

RFs can identify brown dwarf candidates based on photometric colors and indices (Aganze et al. 2022, Gong et al. 2022)

Photometric Correction

Photometric Correction

Correction of DES z-band magnitudes

- All photometry in the Ultracool Sheet is photometrically corrected to deep sky surveys using linear regression based on color
- MSE of fits: 0.0083 0.0019

Binary Classification Models

- Training/testing data for UCDs are from the UltracoolSheet
- "Contaminants" are queried to represent a standard sample of sky
- 864 UCDs (label: 1) and 796 Contaminants (label: 0) form the training set

Model 1	Model 2	Model 3
Uses optical and infrared (rizYJK _s W1W2) magnitudes and proper motions	Removes proper motions, only has rizYJK _s W1W2 magnitudes	Based only on color from r-i to W1-W2

Results: Binary Models

- Slight dip in performance from Model 1 to Model 2 when proper motions are removed
- Proper motions were the least important feature - included as close UCDs have larger motions
- Training just on colors still performs well

Results: Binary Models

Model 1

Model 2

Model 3

Brightness Bias

Adjusting VHS J-band photometry of sources to prevent brightness from biasing the classification

Results: Magnitude Adjustment

- All sources in the training set are oversampled to 1000 using photometric uncertainty as noise for RF model testing
- Separated into bins 1 magnitude wide and tested through RF model 2

UC San Diego

Spectral Type

- The UltracoolSheet has very few
 T dwarfs with photometry, only 1
 T9
- Oversampling with noise based on spectral type to increase T dwarf population
- Balanced all types to 1000 each

Spectral Classification

- RF regression model trained on photometric colors from UltracoolSheet using z, Y, J, K_s, W1 and W2 bands
- Classification from M6 to T6

Summary

- RF methods work accurately and quickly
- Still have limitations: need full photometry, potential for overfitting
- Broadly applicable to color-based/photometric selection of any type of source
- Can aid in creating a robust method of classification

Future Work

- Further contaminant search of possible galactic sources
- RF parameter optimization
- Search for candidates in DES and running sources through our RF models
- Use population simulation models to measure Milky Way structure parameters

Acknowledgements

I would like to thank Professor Adam Burgasser and Dr. Chris Theissen for their direct input into this project, as well as the Cool Star Lab. This work relies on a large set of data made possible through Astro Data Lab and their query service.

UC San Diego

References

Abbott, T. M. C., Adamów, M., Aguena, M., et al. 2021, ApJS, 255, 20, doi: 10.3847/1538-4365/ac00b3

Aganze, C., Burgasser, A. J., Malkan, M., et al. 2022a, ApJ, 934, 73, doi: 10.3847/1538-4357/ac7053

—. 2022b, ApJ, 924, 114, doi: 10.3847/1538-4357/ac35ea

Best, W. M. J., Dupuy, T. J., Liu, M. C., Siverd, R. J., & Zhang, Z. 2020, The UltracoolSheet: Photometry, Astrometry, Spectroscopy, and Multiplicity for 3000+ Ultracool Dwarfs and Imaged Exoplanets, 1.0.0, Zenodo, doi: 10.5281/zenodo.4169085

Breiman, L. 2001, Machine Learning, 45, 5, doi: 10.1023/A:1010933404324

Carnero Rosell, A., Santiago, B., dalPonte, M., et al. 2019, MNRAS, 489, 5301, doi: 10.1093/mnras/stz2398

Gong, Z., Nava Vega, A., Gauna Gutierrez, E., et al. 2022, Research Notes of the American Astronomical Society, 6, 74, doi: 10.3847/2515-5172/ac6521

Gutierrez, E. G., Maytorena, A. M., Gong, Z., et al. 2022, Research Notes of the American Astronomical Society, 6, 75, doi: 10.3847/2515-5172/ac6522

Joergens, V. 2014, in Astrophysics and Space Science Library, Vol. 401, 50 Years of Brown Dwarfs, ed. V. Joergens, 1, doi: 10.1007/978-3-319-01162-2_1

References

Lawrence, A., Warren, S. J., Almaini, O., et al. 2007, MNRAS, 379, 1599, doi: 10.1111/j.1365-2966.2007.12040.x Marocco, F., Caselden, D., Meisner, A. M., et al. 2019, ApJ, 881, 17, doi: 10.3847/1538-4357/ab2bf0 McMahon, R. G., Banerji, M., Gonzalez, E., et al. 2021, VizieR Online Data Catalog, II/367 Pedregosa, F., Varoguaux, G., Gramfort, A., et al. 2011, Journal of Machine Learning Research, 12, 2825, doi: 10.48550/arXiv.1201.0490 Ryan, R. E., Thorman, P. A., Yan, H., et al. 2011, ApJ, 739, 83, doi: 10.1088/0004-637X/739/2/83 Skrutskie, M. F., Cutri, R. M., Stiening, R., et al. 2006, AJ, 131, 1163, doi: 10.1086/498708 The Dark Energy Survey Collaboration. 2005, arXiv e-prints, astro, doi: 10.48550/arXiv.astro-ph/0510346 Wright, E. L., Eisenhardt, P. R. M., Mainzer, A. K., et al. 2010, AJ, 140, 1868, doi: 10.1088/0004-6256/140/6/1868 York, D. G., Adelman, J., Anderson, John E., J., et al. 2000, AJ, 120, 1579, doi: 10.1086/301513

Contact: mmdesai@ucsd.edu

