

- 1 A few definitions
 - Metrology
 - Interferometry
- 2 A few use cases
 - Virgo for very big things
 - Interferometric encoders for very small things
 - Spectrometry : DESIRS beamline
 - Mirror topography

- 1 A few definitions
 - Metrology
 - Interferometry

- Virgo for very big things
- Interferometric encoders for very small things
- Spectrometry : DESIRS beamline
- Mirror topography

Metrology in 3 questions

- What do I measure? (Length, slopes, electrical currents, ...?)
- How do I measure it ? (What steps do I take from alignement to climate control...)
- How sure am I that my measurement is what I wanted to measure? (What's the uncertainty of each measurement step and how do they combine?)

2 / 15

Do I really?

Metrology in 3 answers

- What do I measure? Norms, ISO standards, Unit system...
- How do I measure it? Procedures, procedures, procedures...
- How sure am I that my measurement is what I wanted to measure?
 Uncertainty analysis (methode, manpower, environment, instuments, sample)

- 1 A few definitions
 - Metrology
 - Interferometry

- Virgo for very big things
- Interferometric encoders for very small things
- Spectrometry : DESIRS beamline
- Mirror topography

What is interferometry?

Principle - interference

Say you have two things that behave like waves and are similar:

What is interferometry?

Principle - wavefront splitting

One way to get things to be similar is to split something:

What is interferometry?

Principle - Michelson interferometer

If the mirrors are perfect and parallel: flat field with I depending on $(A-B)/\lambda$

VIRGO!

1 A few definitions

- Metrology
- Interferometry

- Virgo for very big things
- Interferometric encoders for very small things
- Spectrometry : DESIRS beamline
- Mirror topography

A Michelson interferometer: VIRGO

A few alignement systems and feedback loops ... and 3 km arms!

- 1 A few definitions
 - Metrology
 - Interferometry
- 2 A few use cases
 - Virgo for very big things
 - Interferometric encoders for very small things
 - Spectrometry : DESIRS beamline
 - Mirror topography

Another Michelson interferometer: renishaw encoders

A variation of the same thing:

Cube corners send light back 180° in an orientation

1 A few definitions

- Metrology
- Interferometry

- Virgo for very big things
- Interferometric encoders for very small things
- Spectrometry : DESIRS beamline
- Mirror topography

White light Michelson

Fourier spectrometry

A few things to note:

- Sample under study is not in a given arm!
- Each step gives a structured spectrum
- Absorption computed in reciprocal space: very high resolutions can be obtained (R = 1 000 000 at 20 eV)

Interferometry everywhere

They are everywhere...

The displacement is controled by an interferometric encoder!

1 A few definitions

- Metrology
- Interferometry

- Virgo for very big things
- Interferometric encoders for very small things
- Spectrometry : DESIRS beamline
- Mirror topography

Mirror topography

Principle - relative fringes

Say the mirrors aren't perfectly aligned, source isn't perfectly collimated, mirrors aren't perfectly parallel :

Not a Michelson interferometer!

Fizeau interferometer

The reference is moved in front of the analyzed mirror:

This allows for beam shaping before the interferometer for zoom capability

Mirror topography

Principle - phase shift

Each pixel gets its own shifted sinewave

Come to the lab

(and see what's on the slab)

Thank you for your attention!

