LHCb’s Allen Framework

HSF Frameworks meeting

Roel Aaij
February 22nd, 2023

Nik|hef

LHCb Detector

Side View ECAL HCAI

Magnet SciFi RICH2
Tracker

By

' /RICHI
foin UT,

Vertex
Locator

upgrade

LHCb Upgrade Physics in a Single Slide

Partially reconstructed signals

—
T . LHCb Simulation
S i
~r 3 LY
:000.....="
()] 1L A "fpagee
107E A .I.....
.:‘-'U : 4 ...I
= A
102 .
a- =« BEAUTY i,
s CHARM I
3 1
10 = STRANGE TTTfT%
T (r>0.2ps)
4
10 §| PR TN TN TN AN ST ST S NSO S S ST SO S R
0 2 4 6 8 10

pt cut (GeV/c)

30 MHz (4 TB/s) of input contains a MHz of signal,
while we can only store 10 GB/s long-term

LHCb Upgrade Dataflow

REAL-TIME
ALIGNMENT &
CALIBRATION

4 TB/s
30 MHz non-empty pp

0.5-1.5
FULL T4B), [PArTAL DETECTOR > FULL DETECTOR
S
RECONSTRUCTION RECONSTRUCTION
';z%cggf P | & seiecTions > P (" serecTions ; 0’
(HLT1) 70-200 (HLT2)
GB/s

All numbers related to the dataflow are
taken from the LHCb

Upgrade Trigger and Online TDR

Upgrade Computing Model TDR

HLT1 challenge: reduce ~4 TB/s to 70-200 GB/s in
real-time with high physics efficiency

32To/s

32Tols

1Tb/s

1Tb/s

LHCb Upgrade Trigger and DAQ

S S O S s e e 1 f—ﬁw
= e = =1

[T LLT L L]] [] ~2000 full-duplex

s L.....

Event Builder)«
Network
(InfiniBand 200G)

~160 servers: DAO + event builder + event filter first pass (on GPGPUs)

~40 TB disk storage

Event filter second pass (~4000 servers)

LHCb HLT1

Inclusive trigger
Reduce rate from 30 MHz to 1 MHz
Need to reconstruct:
o Velo tracks
o Primary Vertices
o “Long” tracks (Velo->UT->SciFi)
o Muon ID
Optional ingredients
o ECal reconstruction
Electron ID
Photons
“T-Tracks” (SciFi)
“Downstream” tracks (UT-SciFi)
o RICH PID
Avoid global event cuts if possible

@)
@)
@)
@)

HCD
TRCH

q At H&gﬁ Lol T@iggm

Technical Design Report

GPU HLT1 TDR

https://cds.cern.ch/record/2717938/

HLT1 on GPUs: Allen

HCD
YRCH

4TBIs
é‘;i""i l}} I/E s | q PU ngfu Lol nggm

Allen implements HLT1 as a GPU
application; currently 2 GPUs installed

in each event builder server

Technical Design Report

GPU HLT1 TDR

https://cds.cern.ch/record/2717938/

Allen Kernels

' ' '
' ' '
0 ' '
12 2 2

UT decoding ECal decoding Muon decoding
Velo dCCOdeg UT tracking ECal clustering Muon ID
and clustering
Find sec-
Velo tracking SciFi decoding "[‘ra,ck-l*?Cal ondary vertices
matching
Simple
remsstre 2 Select events
Kalman f lter SciFi tracking Blumbujhlu“g s
correction
¢ l
Find pri- Match SciFi
X p - Electron ID Selected events
mary vertices to Velo
T T T
\

DAQ with GPUs

400 GPUs installed in Event Builder servers
Input data copied to GPUs in EB format:
~1000 multi-fragment-packets in
multi-event-packets of 30000 events

20-25 GB/s per server

Event data memory layout “transposed” with
respect to event-by-event

Input data directly from shared memory
Output in MDF format to DAQ

Experiment Control System steers HLT1
Obtain geometry and conditions from LHCb
software on-the-fly

1-Slide Framework

gitlab: gitlab.cern.ch/lhcb/Allen

C++17, CUDA, HIP

Built with CMake and runs on CPU and GPU (NVIDIA and AMD)
Standalone builds and “stack” builds

Single precision throughout

Batches of ~1000 events (~100 kb/event)

GPUs have their own memory; framework provides functions to copy data
~10 batches in parallel using CUDA/HIP streams (1 CPU thread per stream)
No dynamic allocations

Configurable (in Python) sequence of algorithms

Asynchronous event loop

All algorithms written from scratch for good performance on GPUs
documentation: https://allen-doc.docs.cern.ch/

https://gitlab.cern.ch/lhcb/Allen
https://allen-doc.docs.cern.ch/

Philosophy

Must not interfere with event building
Do everything on the GPU: raw data in, decisions and candidates out
Maximise (GPU) algorithm performance
Start with barebones framework and write kernels in CUDA
Implement performant reconstruction algorithms,
i.e. significantly faster/$ than on CPU
Batches of ~1000 events with control flow
e Event model will evolve so keep it simple
o little to no dynamic memory allocation
o SOA containing (small structs of) PODs
o Count first, write later
e Minimise serialization of event data
e Opportunistic use of the CPU
o Prefix sums
o Monitoring
o Low IPC algorithms that require little data

Portability

No portability frameworks, just write CUDA

#ifdef and a tiny middleware (1400 LoC) to allow running on
CPU (x86, ppc64le, ARM) and AMD GPUs

Port to Intel GPUs nearly ready

Allow dispatching to architecture-specific functions for extra
performance

No performance penalty due to portability

Configuration

Database of algorithms, inputs, outputs and properties built using
code parsing with 1ibclang

Allow configuration of the sequence of algorithms/kernels

Allow properties of algorithms to be set

Multiple instances of an algorithm with separate inputs and outputs
Configuration in Python using LHCb’s PyConf package

Memory Management

Memory allocations on the GPU are very slow
Allocate memory for event data up front
Chunk of memory allocated per stream

~1 MB per event

Each algorithm proceeds in two steps:
o Request memory for outputs
o Run kernel
Strong preference for “Count First, Write Later”
Sequence uses data dependencies to track lifetime
Device Memory is released as soon as possible
Failure to reserve memory aborts the batch ->
Split in two and try again
Host memory done analogously, but not released until after data is
output from the application

Event Loop

150 kHz of events per server
20-25 GB/s per server

Low overhead

Batches of ~1000 events

Based on ZeroMQ
Initial use case was a benchmark for performance measurement
Asynchronous event processing added later
Support four data flow models:
o Benchmark with single batch of events
o Process all input in a set of files (simulation, development)
o Externally controlled, i.e. wait for data and process whatever
arrives and stop/exit when told
o Benchmark with multiple (preloaded) batches
All of this is currently mixed together in the same code
It works, but is not very pretty and needs refactoring

Integration with LHCb stack

Need geometry and conditions data
LHCb conditions change slowly (a 10 minute runs is considered short)
All required geometry and conditions data are converted to blobs that
can be memcpy’d to the device and are fast to use
Use parameterisations when possible,
e.g. currently no magnetic field map on the device
Setup a Gaudi/LHCb application with a fake event loop “on the side”
When data with a new run number arrives:
o Finish processing data of previous run
o Trigger a single event in the fake event loop to update blobs
o Copy new blobs to the device
o Restart processing
A derived Gaudi:Application handles interaction with control system
Input and output to the DAQ are Gaudi Services with an extra ABC

Commissioning

Running in production since last year
Overall good performance, Allen was rarely a bottleneck
Many moving targets
o DetDesc -> DD4hep
o Quickly changing detector conditions
o Different sets of detectors participating in data taking
o Evolving sub-detector geometries and data formats
Additional features requested and implemented with very fast turnover
o Output of short trains of bunch crossings
Minimal monitoring was a serious issue
o Slowed-down iteration between detector experts and
reconstruction experts
Performance was good, extra GPU available this year,
currently studying throughput on last year’s data
Monitoring and configuration provenance are priorities for this year

Framework Issues

Too little protection against memory errors
o Pool allocations make it worse
o Plan to move to span instead of raw pointers
o Have tools to assist with debugging
Two memory layouts of raw data supported
Event loop code is very messy
Complex application, many threads
Too tight coupling between input handling, output handling, sequence
and overarching data-flow mode
No Service equivalent, e.g. detector data store isa struct
(Physics) Monitoring is a bit minimal
o Very important during commissioning, so currently a priority
o Device-side monitoring is more important than we thought it
would be
Glue-like interface to LHCb stack is not very elegant
Need more tests

Future (IMHO)

LHCb Upgrade 2 baseline is all of HLT1 and all HLT2 reconstruction on
GPUs; particle combinatorics better done on CPUs

Amount of preprocessing and reconstruction on FPGAs to be decided
Gaudi has already solved many of the issues that Allen has
Maintaining two frameworks makes little sense

Impedance mismatch is actually rather small

Put batched input data in the TES

DeviceAlgorithm that implements the two-step approach of Allen
DeviceDataHandles to interact with the memory pool manager and
handle copying of data between host and device
DeviceConditionAccessor to manage device geometry data using
derived conditions

DeviceBatchContext to propagate the GPU stream

No need for an additional portability framework

Use LHCb’s CPU scheduler to schedule batches

Static balancing of GPU/CPU load, i.e. as different sequences/applications

BACKUP

Throughput

GeForce RTX 3090 (GPU)
RTX A6000 (GPU)

RTX A5000 (GPU)

GeForce RTX 2080 Ti (GPU)

AMD MI100 (GPU)

2 x AMD EPYC 7502 (CPU)-
LHCb: 2021

Alleniv1r7
2 x Intel Xeon E5-2630 v4 (CPU)

LHCb-FIGURE-2020-014

0 20 40 60 80 100 120 1

0 160 180 200 220
Allen throughput (kHz)

https://lhcbproject.web.cern.ch/lhcbproject/Publications/f/p/LHCb-FIGURE-2020-014.html

Reconstruction Sequence

Raw data

UT tracking

SciFi decoding

SciF'i tracking

Parameterized
Kalman filter

Muon decoding

Find

ondary v

Selected events

GPU HLT1 TDR

https://cds.cern.ch/record/2717938/

Efficiency
<}
oo [

o
=

<
'S

0.2

0.05

Reconstruction Performance

3

—e— Allen, not electron

:®i0-010.010:"
LHCb simulation
Forward tracks

pt distribution, not electron

Long from B, 2 <n< 5

e

(=]

1000

2000

L
3000

40[00
p, MeV

¢
—

[T T TR

TTTTTTTT

[

:

LHCb simulation

Forward tracks

"'-o..:"-o-f

Il
1000

|
2000

3000

40‘070
p, [MeV]

Efficiency

Muon ID Efficiency

I
0

o
=N

IS

I
S}

(=]

$— Allen Distribution MC
Distribution Allen LHCb simulation
___.,.,-.--—-—-—‘..-....-.-..-__.-u—u.--..-—.
b
-
®
®
10 20 30 40 50 60 70
number of tracks in Primary Vertex
I T ‘ T
[oare,]
F ‘... NW;"%{.WQ*;**#&**” +++ *
[& LHCb simulation™
I F—— Allen :
= 4 p distribution
L Long, p, forward track, 2 <n< 5
L { NN} I /]
0 20000 40000 60000
p [MeV]

LHCb-FIGURE-2020-014

https://lhcbproject.web.cern.ch/lhcbproject/Publications/f/p/LHCb-FIGURE-2020-014.html

