

CERN, March 2023

QCD+QED simulations with C* boundary conditions

RCXON collaboration

Agostino Patella Humboldt-Universität zu Berlin, DESY Zeuthen

Motivations and introduction

- Isospin transformations (i.e. unitary transformations of the up/down doublet) are are approximated symmetries of Nature.
- lsospin symmetry is broken by $m_u \neq m_d$ and $q_u \neq q_d$.
- lsospin-breaking effects are typically of order 1% on hadronic observables.
- In order to calculate hadronic observables at the percent or subpercent precision level, one needs to consider QCD+QED.
- ► The RC* collaboration is exploring (not only!) the possibility to generate QCD+QED configurations with C-periodic boundary conditions. A brief account in this talk, for more:
 A. Altherr et al. [RC*], "First results on QCD+QED with C* boundary conditions," JHEP 03 (2023), 012, 1452-1455.

Humboldt-Universität Berlin

Agostino Patella Alessandro Cotellucci Jens Lücke

ETH Zürich

Anian Altherr Tim Harris Javad Komijani Joao Pinto Letizia Parato Marina Marinković Marco Catillo Paola Tavella Roman Gruber

Università di Roma Tor Vergata

Alessandro De Santis Madelaine Dale Nazario Tantalo

Trinity College Doublin

Lucius Bushnaq Patrick Fritzsch

Instituto de Física de Cantabria

Gaurav Sinharay Isabel Campos Sara Rosso

University of Southern Denmark

Sofie Martins

Theoretical intro

1. RM123 method

G. M. de Divitiis et al. [RM123], "Leading isospin breaking effects...," Phys.Rev.D 87 (2013) 11, 114505.

Expand action and observables in powers of e, $\delta\beta = O(e^2)$, $\delta m_f = O(e^2)$, e.g.

$$\begin{split} S_{\text{QCD+QED}} = & S_{\text{QCD}} + S_{\gamma} + \frac{\delta \beta}{\beta} S_{\text{gluon}} + \sum_{xf} \delta m_f \, \bar{\psi}_f \psi_f(x) \\ & + e \sum_{x\mu} A_{\mu}(x) \mathcal{J}_{\mu}(x) + e^2 \sum_{x\mu} A_{\mu}(x)^2 \mathcal{T}_{\mu}(x) + O(e^3) \end{split}$$

Pros:

- ▶ Calculate directly isospin-breaking and radiative correction to QCD (10% precision is enough).
- ▶ Reuse QCD configurations (careful with the finite-volume effects).
- Tuning is trivial: QED counterterms are calculated by solving linear equations.

- ► Complicated observables, quark-disconnected pieces, expensive variance-reduction techniques.
- ▶ Correction-to-QCD noise ratio diverges with $V^{1/2}$ and some power of a^{-1} . Bad scaling with V can be killed with coordinate-space techniques, bad scaling with a is irreducible.

1. RM123 method

G. M. de Divitiis et al. [RM123], "Leading isospin breaking effects...," Phys.Rev.D 87 (2013) 11, 114505.

Expand action and observables in powers of e, $\delta\beta=O(e^2)$, $\delta m_f=O(e^2)$. Used in:

S. Borsanyi et al. [BMW], "Leading hadronic contribution to the muon magnetic moment from lattice QCD," Nature 593 (2021) 7857, 51-55.

Any other work uses the *electroquenched approximation*, i.e. sea quarks are considered electrically neutral (unjustified big simplification).

Pros:

- Calculate directly isospin-breaking and radiative correction to QCD (10% precision is enough).
- Reuse QCD configurations (careful with the finite-volume effects).
- Tuning is trivial: QED counterterms are calculated by solving linear equations.

- ► Complicated observables, quark-disconnected pieces, expensive variance-reduction techniques.
- Correction-to-QCD noise ratio diverges with $V^{1/2}$ and some power of a^{-1} . Bad scaling with V can be killed with coordinate-space techniques, bad scaling with a is irreducible.

2. QCD+QED simulations

Gluon and photon fields are treated on equal footing. Fully interacting $SU(3) \times U(1)$ configurations are generated. Used in:

S. Borsanyi et al. [BMW], "Ab initio calculation of the neutron-proton mass difference," Science 347 (2015), 1452-1455.

R. Horsley *et al.* [QCD-SF], "QED effects in the pseudoscalar meson sector," JHEP 04 (2016), 093. R. Horsley *et al.* [QCD-SF], "Isospin splittings of meson and baryon masses from three-flavor lattice QCD + QED," J.Phys.G 43 (2016) 10, 10LT02.

A. Altherr *et al.* [RC*], "First results on QCD+QED with C* boundary conditions," JHEP 03 (2023), 012, 1452-1455.

Pros:

- Standard algorithms can be used.
- Simpler observables.
- ▶ The scaling of the noise in QCD+QED with V and a is like in QCD.

- Expensive simulations.
- Observables need to be calculated at the permille precision level.
- Up and down quark masses need to be tuned independently.

3. Reweighting on QCD

Reweight observables with $e^{-S_{QCD+QED}+S_{QCD}}$.

S. Aoki et al. [PACS-CS] "1+1+1 flavor QCD + QED simulation at the physical point," Phys.Rev.D 86 (2012), 034507.

T. Ishikawa *et al.* "Full QED+QCD low-energy constants through reweighting," Phys.Rev.Lett. 109 (2012), 072002.

Notice: RM123 is nothing but an expansion of the reweighting factor.

Pros:

- Reuse QCD configurations (careful with the finite-volume effects).
- Use correlations to calculate isospin-breaking and radiative correction to QCD.
- Relatively simple to implement.

- Tuning is more complicated than RM123, but simpler than full simulations.
- ▶ Correction-to-QCD noise ratio diverges with $V^{1/2}$ and some power of a^{-1} .

Charged states

The Gauss's law forbids charged states with periodic boundary conditions:

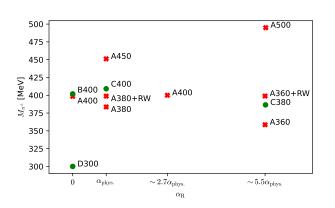
$$Q = \int_0^L d^3x \, \rho(\mathbf{x}) = \int_0^L d^3x \, \nabla \cdot \mathbf{E}(\mathbf{x}) = 0.$$

Some popular solutions:

- ▶ QED₁: non-local constraint $\int d^3x A_{\mu}(t, \mathbf{x}) = 0$.
- ► QED_m: massive photon.
- QED_∞: (only with RM123) reconstruct infinite-volume QCD n-point functions and integrate them with infinite-volume photon propagators.
- ▶ QED_C: C-periodic boundary conditions in space $\phi(t, \mathbf{x} + L\mathbf{e}_k) = \phi^{C}(t, \mathbf{x})$.

Some properties of QED_C:

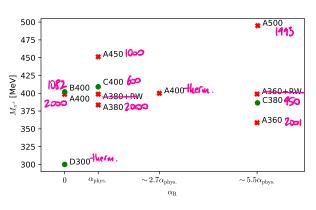
- Continuum limit described by Symanzik effective theory (like QED_m).
- ▶ Leading finite-volume effects dominated by low-energy states (like QED_m).
- ▶ Power-like finite-volume effects to single-particle masses and matrix elements (like QED_L).
- Incompatible with θ -periodic boundary conditions.
- Partially-broken flavour symmetry.


openQ*D code

Campos, Fritzsch, Hansen, Marinkovic, Patella, Ramos, Tantalo + Lücke https://gitlab.com/rcstar/openQxD

- Extension of openQCD-1.6
- ► Simulation of QCD and QCD+QED
- C* boundary conditions in space
- Compact photon action
- Wilson flow for photon field

- Fourier acceleration for photon field
- Multiple deflation subspaces
- U(1)-invariant quark propagators
- Sign of determinant/Pfaffian (soon)
- Mass reweighting (soon)

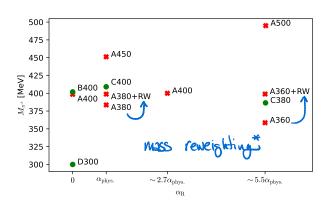


$$a \simeq 0.05 \text{ fm}$$

u+d+s+c quarks

$$A = 64 \times 32^{3} \\ B = 80 \times 48^{3} \\ C = 96 \times 48^{3} \\ D = 128 \times 64^{3}$$

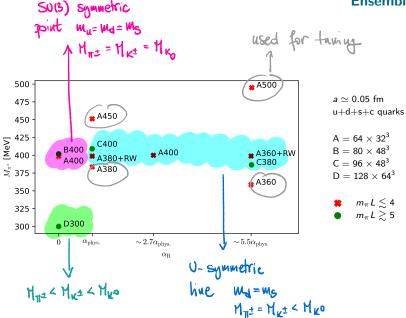
$$\begin{array}{cc} & m_{\pi} L \lesssim 4 \\ \bullet & m_{\pi} L \gtrsim 5 \end{array}$$

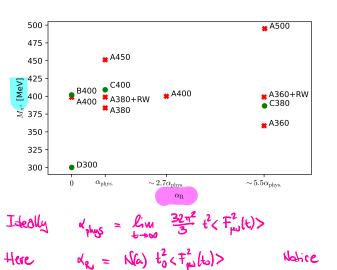


 $a \simeq 0.05 \text{ fm}$ u+d+s+c quarks

 $A = 64 \times 32^{3}$ $B = 80 \times 48^{3}$ $C = 96 \times 48^{3}$ $D = 128 \times 64^{3}$

 $\begin{array}{ll} \begin{tabular}{ll} \begin{tabular}{ll$




$$a \simeq 0.05 \text{ fm}$$

u+d+s+c quarks

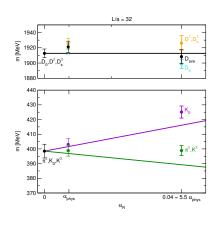
$$A = 64 \times 32^{3}$$
 $B = 80 \times 48^{3}$
 $C = 96 \times 48^{3}$
 $D = 128 \times 64^{3}$

$$m_{\pi}L \lesssim 4$$

$$m_{\pi}L \gtrsim 5$$

 $a \simeq 0.05 \text{ fm}$ u+d+s+c quarks

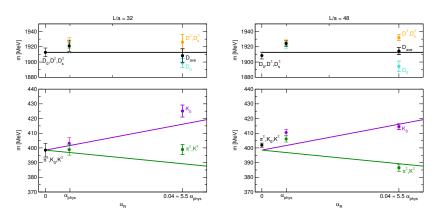
$$A = 64 \times 32^{3}$$
 $B = 80 \times 48^{3}$
 $C = 96 \times 48^{3}$
 $D = 128 \times 64^{3}$


 $m_{\pi}L \lesssim 4$ $m_{\pi}L \gtrsim 5$

masses are tuned by choosing Re Hose Pro Mot + Hot + Hb TELO HKE , TELO HKO , 500 # A500 $a \simeq 0.05 \text{ fm}$ 475 u+d+s+c quarks **A450** 450 -[¥ek] 400 - $A = 64 \times 32^{3}$ $B = 80 \times 48^{3}$ ▲ A400 ▲ A360+RW C380 $C = 96 \times 48^{3}$ ₹ 375 ⋅ 88A * $\mathsf{D} = 128 \times 64^3$ **A**360 350 $m_{\pi}L \lesssim 4$ 325 $m_{\pi}L \gtrsim 5$ **D**300 300 - $\alpha_{
m phys}$ $\sim 2.7\alpha_{\rm phys}$ $\sim 5.5\alpha_{\rm phys}$ $\alpha_{\rm R}$ keeping toppes constant as de is "Trajectories" defined by 4 = 8 (M2 - M12) φ2 = 3 (H/2 - H/2)

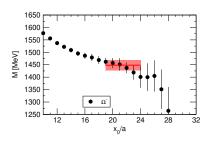
4 = 18to (Hos + Hos + Hos)

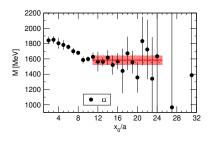
d = 86 (HEZ + HZ + HZ)


Meson masses

$$\begin{split} \phi_0 &= 8t_0 (M_{K^\pm}^2 - M_{\pi^\pm}^2) = 0 \\ \phi_1 &= 8t_0 (M_{\pi^\pm}^2 + M_{K^\pm}^2 + M_{K_0}^2) \simeq \phi_1^{\text{phys}} \end{split}$$

$$\begin{split} \phi_2 &= 8t_0\alpha_R^{-1}(M_{K_0}^2 - M_{K^\pm}^2) \simeq \phi_2^{\text{phys}} \\ \phi_3 &= \sqrt{8t_0}(M_{D_0} + M_{D^\pm} + M_{D^\pm_s}^+) \simeq \phi_3^{\text{phys}} \end{split}$$


Meson masses



$$M(L) = M(\infty) - \frac{\alpha_R q^2 c_1}{2L} - \frac{\alpha_R q^2 c_2}{2ML^2} + O\left(\frac{1}{L^4}\right)$$

Universal FV correction for K $^\pm$ at $\alpha_R \simeq 5.6 \alpha_{\rm phys}$ L/a = 32:~1.09(1)% + 0.308(8)% L/a = 48:~0.751(4)% + 0.145(2)%

Omega mass

Summary and possible points for discussion

- Simulations run as well/bad as QCD ones. More expensive because of C* boundary conditions and RHMC for all guarks.
- We calculate the sign of the quark Pfaffian on all configurations. We have a faster algorithm that can be useful for QCD as well.
- ▶ Tuning of quark masses is difficult but not hopeless. Which precision do we need?
- Meson effective masses are obtained with a statistical precision similar to QCD. Finite-volume effects need to be quantified better.
- ▶ Correlations are essential in order to calculate isospin-breaking effects (e.g. mass splittings).
- We calculated p, n, Ξ^- , Λ_0 , Ω^- masses. Too noisy for now. We are neglecting extra Wick contractions due to C^* boundary conditions.
- We are calculating HVP contribution to muon g-2 on QCD+QED configurations.