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Motivations and introduction

I Isospin transformations (i.e. unitary transformations of the up/down doublet) are are
approximated symmetries of Nature.

I Isospin symmetry is broken by mu 6= md and qu 6= qd .

I Isospin-breaking e↵ects are typically of order 1% on hadronic observables.

I In order to calculate hadronic observables at the percent or subpercent precision level, one
needs to consider QCD+QED.

I The RC? collaboration is exploring (not only!) the possibility to generate QCD+QED
configurations with C-periodic boundary conditions. A brief account in this talk, for more:

A. Altherr et al. [RC*], “First results on QCD+QED with C⇤ boundary conditions,” JHEP
03 (2023), 012, 1452-1455.

https://inspirehep.net/literature/2157207
https://inspirehep.net/literature/2157207
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Theoretical intro



Three ways for QCD+QED on the lattice
1. RM123 method

G. M. de Divitiis et al. [RM123], “Leading isospin breaking e↵ects...,” Phys.Rev.D 87 (2013) 11, 114505.

Expand action and observables in powers of e, �� = O(e2), �mf = O(e2), e.g.

SQCD+QED =SQCD + S� +
��

�
Sgluon +

X

xf

�mf  ̄f  f (x)

+ e

X

xµ

Aµ(x)Jµ(x) + e
2
X

xµ

Aµ(x)
2Tµ(x) + O(e3)

Pros:

I Calculate directly isospin-breaking and radiative correction to QCD (10% precision is enough).

I Reuse QCD configurations (careful with the finite-volume e↵ects).

I Tuning is trivial: QED counterterms are calculated by solving linear equations.

Cons:

I Complicated observables, quark-disconnected pieces, expensive variance-reduction techniques.

I Correction-to-QCD noise ratio diverges with V
1/2 and some power of a�1. Bad scaling with

V can be killed with coordinate-space techniques, bad scaling with a is irreducible.

https://inspirehep.net/literature/1224545


Three ways for QCD+QED on the lattice
1. RM123 method

G. M. de Divitiis et al. [RM123], “Leading isospin breaking e↵ects...,” Phys.Rev.D 87 (2013) 11, 114505.

Expand action and observables in powers of e, �� = O(e2), �mf = O(e2). Used in:

S. Borsanyi et al. [BMW], “Leading hadronic contribution to the muon magnetic moment from
lattice QCD,” Nature 593 (2021) 7857, 51-55.

Any other work uses the electroquenched approximation, i.e. sea quarks are considered electrically
neutral (unjustified big simplification).

Pros:

I Calculate directly isospin-breaking and radiative correction to QCD (10% precision is enough).

I Reuse QCD configurations (careful with the finite-volume e↵ects).

I Tuning is trivial: QED counterterms are calculated by solving linear equations.

Cons:

I Complicated observables, quark-disconnected pieces, expensive variance-reduction techniques.

I Correction-to-QCD noise ratio diverges with V
1/2 and some power of a�1. Bad scaling with

V can be killed with coordinate-space techniques, bad scaling with a is irreducible.

https://inspirehep.net/literature/1224545
https://inspirehep.net/literature/1782626
https://inspirehep.net/literature/1782626


Three ways for QCD+QED on the lattice
2. QCD+QED simulations

Gluon and photon fields are treated on equal footing. Fully interacting SU(3) ⇥ U(1)
configurations are generated. Used in:

S. Borsanyi et al. [BMW], “Ab initio calculation of the neutron-proton mass di↵erence,” Science
347 (2015), 1452-1455.

R. Horsley et al. [QCD-SF], “QED e↵ects in the pseudoscalar meson sector,” JHEP 04 (2016),
093. R. Horsley et al. [QCD-SF], “Isospin splittings of meson and baryon masses from three-flavor
lattice QCD + QED,” J.Phys.G 43 (2016) 10, 10LT02.

A. Altherr et al. [RC*], “First results on QCD+QED with C⇤ boundary conditions,” JHEP 03
(2023), 012, 1452-1455.

Pros:

I Standard algorithms can be used.

I Simpler observables.

I The scaling of the noise in QCD+QED with V and a is like in QCD.

Cons:

I Expensive simulations.

I Observables need to be calculated at the permille precision level.

I Up and down quark masses need to be tuned independently.

https://inspirehep.net/literature/1300659
https://inspirehep.net/literature/1300659
https://inspirehep.net/literature/1391515
https://inspirehep.net/literature/1391515
https://inspirehep.net/literature/1389860
https://inspirehep.net/literature/1389860
https://inspirehep.net/literature/2157207
https://inspirehep.net/literature/2157207


Three ways for QCD+QED on the lattice
3. Reweighting on QCD

Reweight observables with e
�SQCD+QED+SQCD .

S. Aoki et al. [PACS-CS] “1+1+1 flavor QCD + QED simulation at the physical point,”
Phys.Rev.D 86 (2012), 034507.

T. Ishikawa et al. ‘’‘Full QED+QCD low-energy constants through reweighting,” Phys.Rev.Lett.
109 (2012), 072002.

Notice: RM123 is nothing but an expansion of the reweighting factor.

Pros:

I Reuse QCD configurations (careful with the finite-volume e↵ects).

I Use correlations to calculate isospin-breaking and radiative correction to QCD.

I Relatively simple to implement.

Cons:

I Tuning is more complicated than RM123, but simpler than full simulations.

I Correction-to-QCD noise ratio diverges with V
1/2 and some power of a�1.

https://inspirehep.net/literature/1114491
https://inspirehep.net/literature/1114491
https://inspirehep.net/literature/1090734
https://inspirehep.net/literature/1090734


Charged states

The Gauss’s law forbids charged states with periodic boundary conditions:

Q =

Z
L

0
d
3
x ⇢(x) =

Z
L

0
d
3
x r · E(x) = 0 .

Some popular solutions:

I QEDL: non-local constraint
R
d
3
x Aµ(t, x) = 0.

I QEDm: massive photon.

I QED1: (only with RM123) reconstruct infinite-volume QCD n-point functions and integrate
them with infinite-volume photon propagators.

I QEDC: C-periodic boundary conditions in space �(t, x + Lek ) = �C (t, x).

Some properties of QEDC:

I Continuum limit described by Symanzik e↵ective theory (like QEDm).

I Leading finite-volume e↵ects dominated by low-energy states (like QEDm).

I Power-like finite-volume e↵ects to single-particle masses and matrix elements (like QEDL).

I Incompatible with ✓-periodic boundary conditions.

I Partially-broken flavour symmetry.



Numerical simulations



openQ*D code

Campos, Fritzsch, Hansen, Marinkovic, Patella, Ramos, Tantalo + Lücke
https://gitlab.com/rcstar/openQxD

I Extension of openQCD-1.6

I Simulation of QCD and QCD+QED

I C? boundary conditions in space

I Compact photon action

I Wilson flow for photon field

I Fourier acceleration for photon field

I Multiple deflation subspaces

I U(1)-invariant quark propagators

I Sign of determinant/Pfa�an (soon)

I Mass reweighting (soon)

I. Campos et al., “openQ*D code: a versatile tool for QCD+QED simulations,” Eur.Phys.J.C 80 (2020) 3, 195.

https://gitlab.com/rcstar/openQxD
https://inspirehep.net/literature/1751937


Ensembles

a ' 0.05 fm

u+d+s+c quarks

A = 64 ⇥ 323

B = 80 ⇥ 483

C = 96 ⇥ 483

D = 128 ⇥ 643

m⇡L . 4

m⇡L & 5



Ensembles

a ' 0.05 fm

u+d+s+c quarks

A = 64 ⇥ 323

B = 80 ⇥ 483

C = 96 ⇥ 483

D = 128 ⇥ 643

m⇡L . 4

m⇡L & 5

#configurations

1993

1000

600

8 Too
theim.
-

2001

therm.



Ensembles

a ' 0.05 fm

u+d+s+c quarks

A = 64 ⇥ 323

B = 80 ⇥ 483

C = 96 ⇥ 483

D = 128 ⇥ 643

m⇡L . 4

m⇡L & 5

- ↑
mass reweighting

*

xof set (D+D)
"

with a=Yp112 [Licke, AP, to appear soon)



Ensembles

a ' 0.05 fm

u+d+s+c quarks

A = 64 ⇥ 323

B = 80 ⇥ 483

C = 96 ⇥ 483

D = 128 ⇥ 643

m⇡L . 4
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Ensembles

a ' 0.05 fm

u+d+s+c quarks

A = 64 ⇥ 323

B = 80 ⇥ 483

C = 96 ⇥ 483

D = 128 ⇥ 643

m⇡L . 4

m⇡L & 5

Ideally :Mor=1672.45 (29) MeV

Here:t= 0.415 fu

Ideally <phys= lim( Fr(t)>

Here <R =N(a) tosFurHoK Notice a phys
=

(R+0(P)



Ensembles

a ' 0.05 fm

u+d+s+c quarks

A = 64 ⇥ 323

B = 80 ⇥ 483

C = 96 ⇥ 483

D = 128 ⇥ 643

m⇡L . 4

m⇡L & 5

Quark masses are tuned by choosing

Mat, Met, to Mro, to MDaveto+Mo

"Trajectories" defined by keeping to,2,3 constant as an is varied.

do =8t (MI -MII) pz =(Mk.-M)
di =8t(M+Mk+Mit) ↓ =(M=+Mas +Ma.)



Meson masses
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Meson masses
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L/a = 32: 1.09(1)% + 0.308(8)%
L/a = 48: 0.751(4)% + 0.145(2)%



Omega mass
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Summary and possible points for discussion

I Simulations run as well/bad as QCD ones. More expensive because of C? boundary
conditions and RHMC for all quarks.

I We calculate the sign of the quark Pfa�an on all configurations. We have a faster algorithm
that can be useful for QCD as well.

I Tuning of quark masses is di�cult but not hopeless. Which precision do we need?

I Meson e↵ective masses are obtained with a statistical precision similar to QCD. Finite-volume
e↵ects need to be quantified better.

I Correlations are essential in order to calculate isospin-breaking e↵ects (e.g. mass splittings).

I We calculated p, n, ⌅�, ⇤0, ⌦
� masses. Too noisy for now. We are neglecting extra Wick

contractions due to C? boundary conditions.

I We are calculating HVP contribution to muon g � 2 on QCD+QED configurations.


