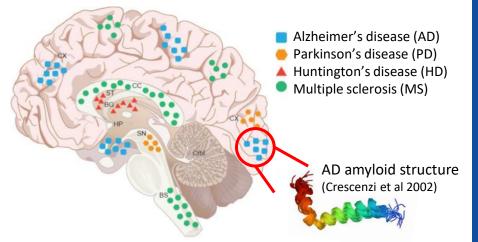


Proton Therapy beyond cancer: Potential benefits for neurodegenerative disorders

<u>C.M. Coelho</u>^{1,2,3}, L. Pereira^{1,2,3}, P. Teubig^{1,2}, F. Murtinheira³, P. Santos⁴, F. Mendes⁴, S. Viñals^{5,6}, D. Galaviz^{1,2}, F. Herrera^{1,3}

¹FCUL, ²LIP, ³BioISI, ⁴C2TN/IST, ⁵CMAM/UAM, ⁶UCM

IGFAE workshop on technologies and applied research at the future Galician proton-therapy facility

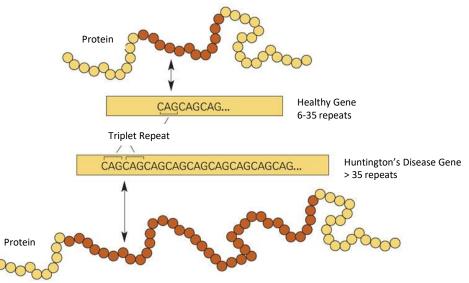

Supported by research grant: PRT/BD/151545/2021

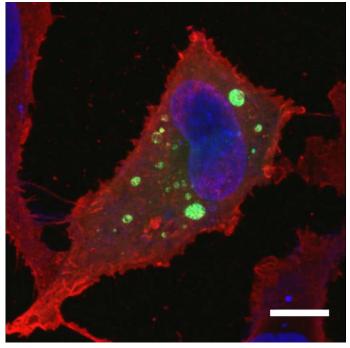
OVERVIEW

- Introduction and objectives
- Gamma-irradiations
- Proton beam
 - Development of the IMP beam line for cell irradiation
 - Homogeneous irradiation for pT studies @ IMP
 - Proton irradiation of cells
- Future work
- Summary
- References

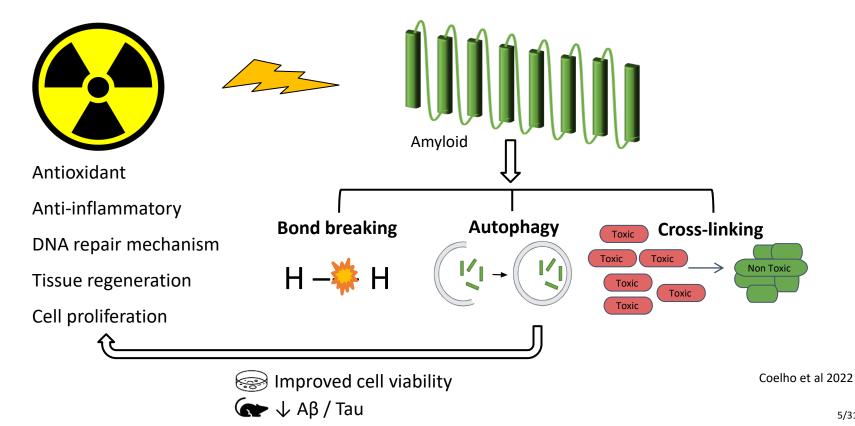
INTRODUCTION Neurodegenerative disorders

- Increased prevalence
- Progressive loss of neurons
 - Unclear mechanisms
- No cure
- Histopathological hallmarks
 - Oxidative stress
 - Neuroinflammation
 - Alterations in the homeostasis of proteins


Most common degenerative cognitive diseases and their position in the brain (Hussain et al 2018)

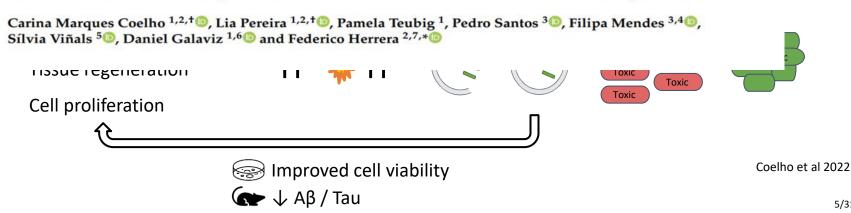


Huntington Disease

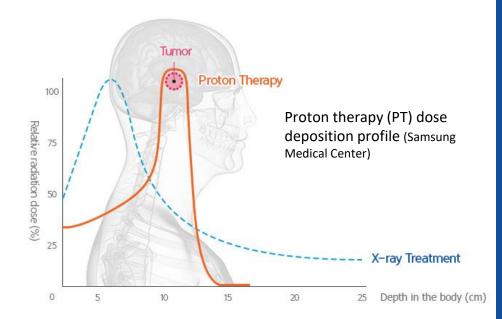

• Mutations in exon 1 of the gene that encodes the Htt protein

- Abnormal long polyglutamine tract
 - Greater expansion leads to a bigger aggregation of the **mutant form** of Htt

Impact of LDRT in amyloidosis



Impact of LDRT in amyloidosis


Review

Radiation as a Tool against Neurodegeneration—A Potential Treatment for Amyloidosis in the Central Nervous System

Proton Therapy

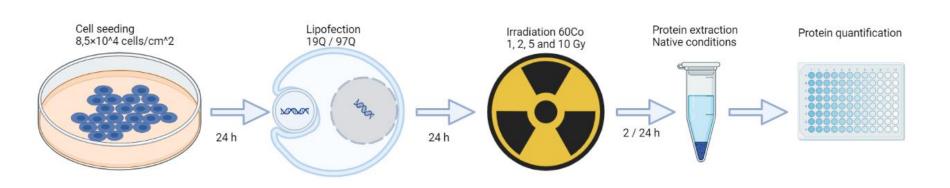
- Finite range
- Minimal lateral scattering
- Higher dose conformity
- Advanced dose shaping capabilities
- Higher precision
- Lower integral dose
- Reduced toxicity

OBJECTIVES

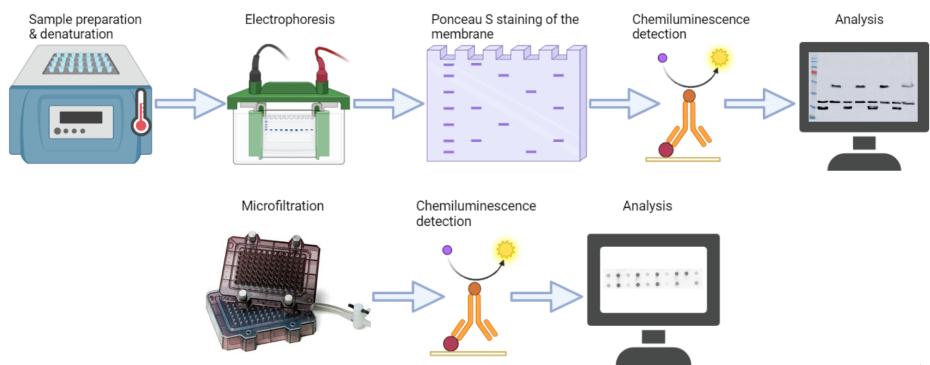
 Evaluate the capability of PT to disrupt or diminish the formation of toxic protein amyloids associated with neurodegenerative disorders

- Study the effects of different types of radiation on the structure and conformation of those toxic protein amyloids
 - Experimental validation of the predicted results on abnormal deposits of protein amyloids
- Optimize experimental conditions and develop an irradiation protocol
- Characterization of the biochemical and biophysical mechanisms underlying the optimal PT conditions for disruption of amyloid deposits

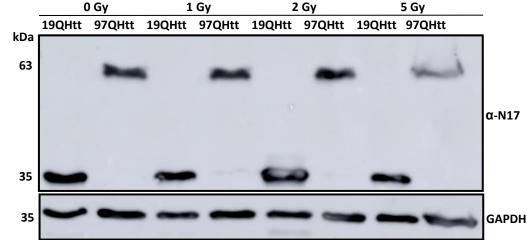
GAMMA-IRRADIATIONS Irradiation facility

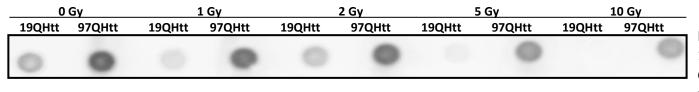


PRECISA22 - ⁶⁰Co irradiator used in the first experiments.

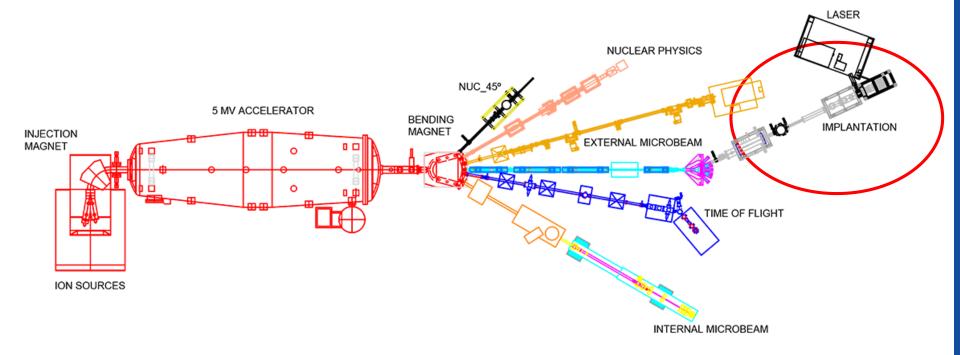


Dosimetric measurements of PRECISA22 performed with an ionizing chamber.

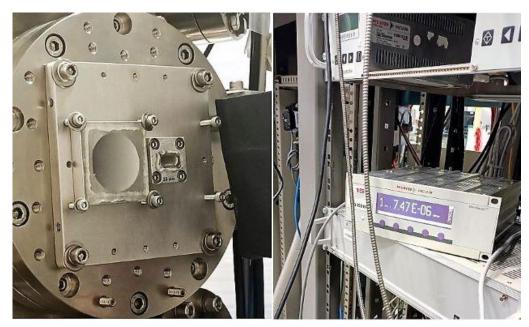

Irradiation and protein extraction


Detection of protein levels and aggregation

Irradiation reduces the expression and aggregation of huntingtin

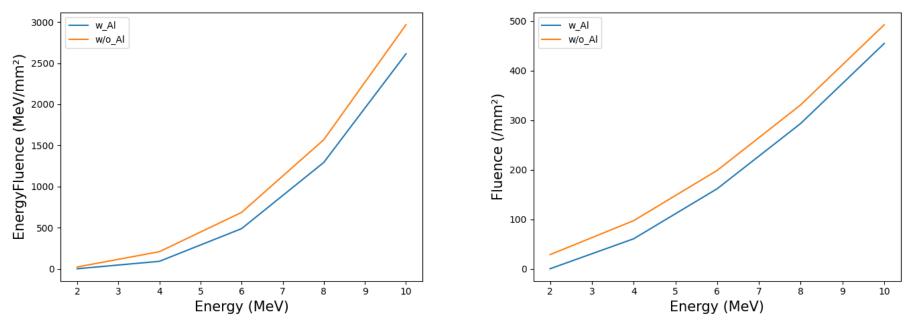

Representative Western blot of samples extracted from transfected HeLa cells 24 h after the irradiation.

Representative filter trap assay of 19QHtt or 97QHtt transfected HeLa cells after the irradiation with the referred doses.



DEVELOPMENT OF THE IMP BEAM LINE FOR CELL IRRADIATION

Exit window


- Ø 35 mm
- Al foil
 - 99% purity
 - 50 μm thickness
- Vacuum test

Vacuum test of the larger exit window.

Exit window

TOPAS simulations

Results from the MC simulations with and without the aluminum foil in terms of fluence and energy fluence depending on the initial beam energy.

HOMOGENEOUS IRRADIATION FOR PT STUDIES @ IMP RCF dosimetry system

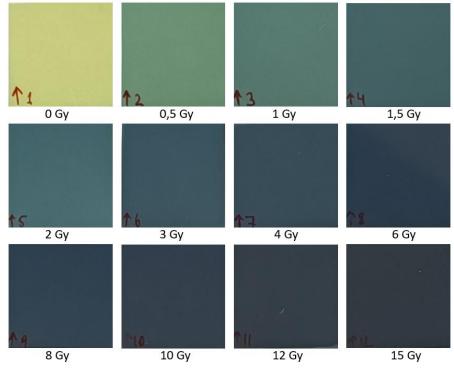
Matte Surface Clear Polyester Base, 125 µm

Active Layer, 28 µm

Matte Surface Clear Polyester Base, 125 µm

EBT3 RCF's

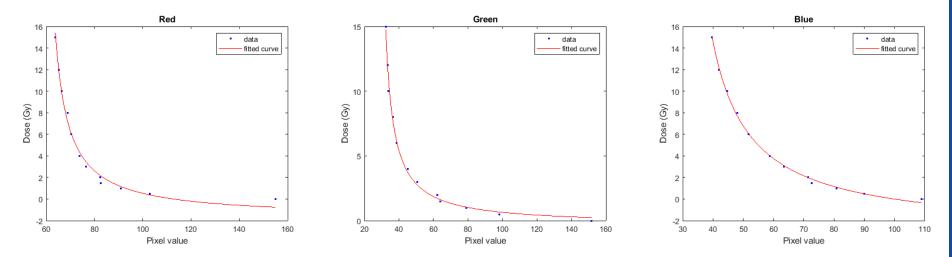
$$D(Gy) = a + \frac{b}{PV - c}$$


Calibration equation (Sanchez-Parcerisa et al 2021)

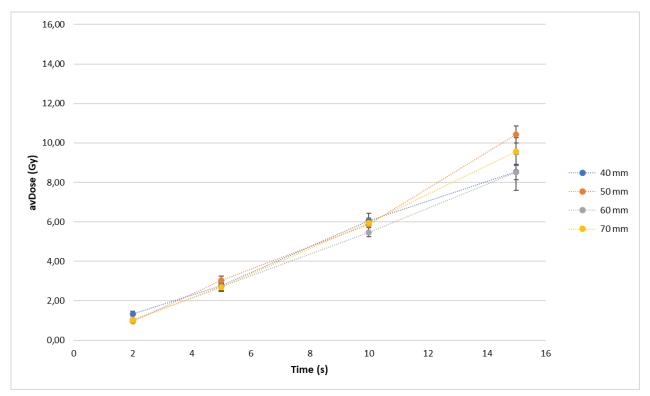
RCF dosimetry system

Calibration

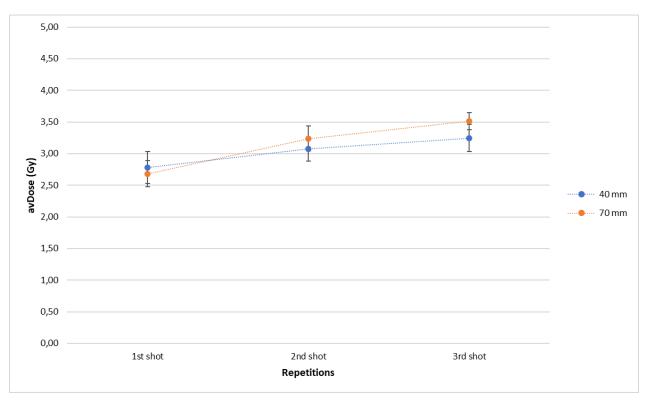
Parameter	<red></red>	<green></green>	<blue></blue>	
а	-1.59 ± 0.88	-0.497 ± 0.642	-3.12 ± 0.60	
b	89.4 ± 23.0	78.9 ± 18.8	227 ± 33	
С	58.6 ± 1.3	26.9 ± 4.2	27.1 ± 1.6	


Calibration parameters.

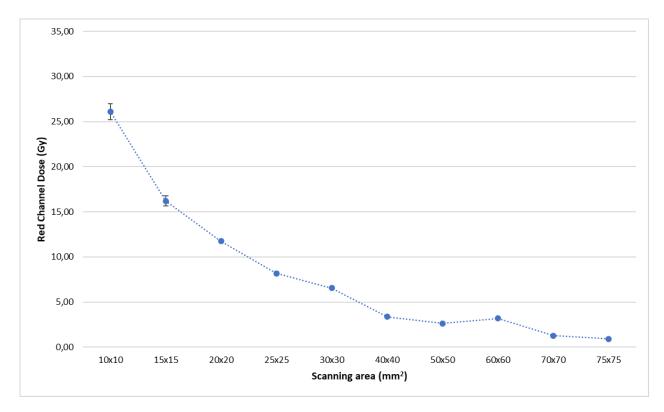
Irradiation pattern of the calibration RCFs.


RCF dosimetry system

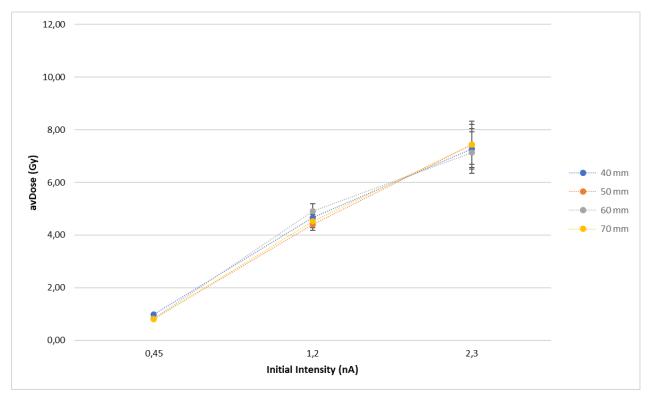
Calibration


Fitting of the pixel values (PV) in RGB with the defined calibration parameters

RCF dosimetry system – time and distance


Calculated avDose in function of the exposure time and the distance to the exit window

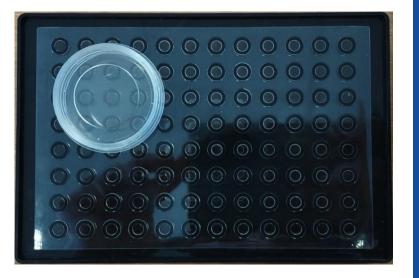
RCF dosimetry system - reproducibility


Calculated avDose for RCFs irradiated in the same conditions

RCF dosimetry system – scanning area

Calculated Red Channel Dose in function of the scanning area

RCF dosimetry system – beam intensity

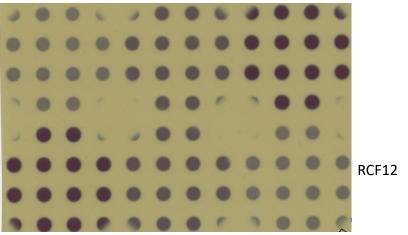


Calculated avDose in function of the initially measured beam intensity for different distances to the exit window

PROTON IRRADIATION OF CELLS Experimental conditions

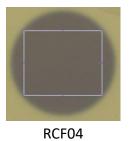
- IMP beam line
- 10 MeV H+
- Large Al exit window (Ø = 35 mm)
- Intensity = 0.9(1) nA
- Distance to the sample = 60 mm
- Area scanned with the raster = 75x75 mm²

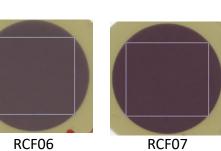
Online RCF analysis

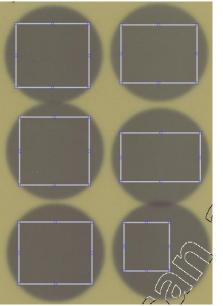

RCFs placed inside the 35 mm cell culture dish

- t = 5, 10 and 20 s
- RCF placed inside the 96well plate
 - t = 5, 10 and 20 s
- Dose rate $\approx 0.1 \text{ Gy/s}$
 - 10 s to deliver 1 Gy

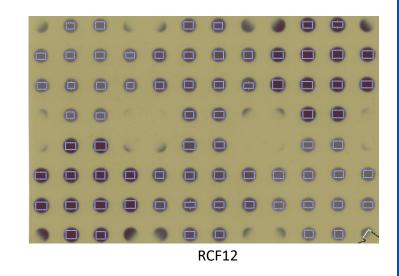
RCF05

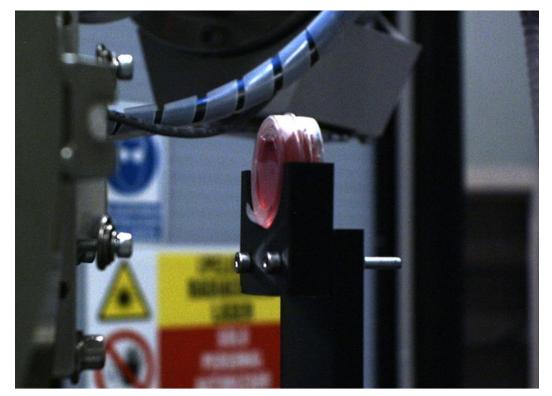

RCF07


RCF 24 h analysis

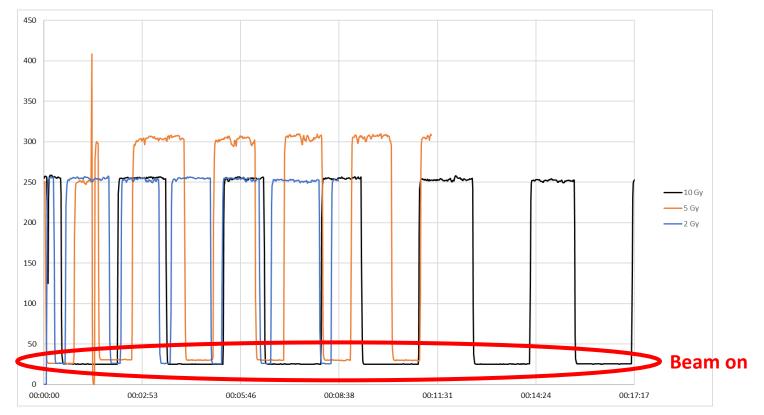

RCF ID	Placement	Planned time (s)	Real time (s)	Intensity (nA)	Dose rate (Gy/s)
RCF04	Outside 35 mm dish	5	7	0.91	0.06
RCF05		5	7	0.93	
RCF06	Inside 35 mm dish	10	11	0.93	0.1
RCF07		20	22	0.94	
RCF10	Outside 96 well plate	5	6	0.93	0.06
RCF12_1 st	Inside 96 well plate	5	7	0.93	0.06
RCF12_2 nd		10	12		0.1
RCF12_3 rd		30	32		
RCF12_4 th		30	32		
RCF12_5 th		10	12		
RCF12_6 th		5	7		0.06

RCF 24 h analysis



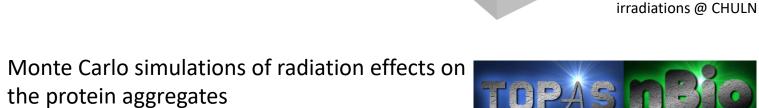


RCF10


Biological samples irradiation

- 3 cell lines
 - STHdh Q7, STHdh Q111 and STHdh Q7/111
- 3 doses of radiation
 - 2, 5 and 10 Gy
- Irradiation in duplicate

Setup of the biological samples irradiation


Biological samples irradiation

Internal charge measurements during the irradiation of the biological samples with 2, 5 and 10 Gy

FUTURE WORK

- Analysis of the biological samples irradiated with the proton beam
- Irradiation of biological samples with a commercial linear accelerator used for med purposes

Phantom design for the

SUMMARY

- Effects of RT demonstrated with the preliminary experiments performed using γ-rays
 - Reduction in the expression and aggregation of proteins
- RCF dosimetry system is a reliable and easy to use method to calculate the dose rate
- Proton irradiation conditions with higher influence in dose delivery
 - Beam intensity
 - Scanning area
 - Time of exposure

REFERENCES

- Crescenzi O, Tomaselli S, Guerrini R, Salvadori S, D'Ursi AM, Temussi PA, Picone D. 1IYT Solution structure of the Alzheimer's disease amyloid beta-peptide (1-42). 2002. Available from: <u>RCSB PDB -</u> <u>1IYT: Solution structure of the Alzheimer's disease amyloid beta-peptide (1-42)</u> [last accessed 25/11/2022].
- Hussain R, Zubair H, Pursell S, Shahab M. Neurodegenerative Diseases: Regenerative Mechanisms and Novel Therapeutic Approaches. *Brain Sci.* 2018; 8(177).
- Coelho CM, Pereira L, Teubig P, Santos P, Mendes F, Viñals S, Galaviz D, Herrera F. Radiation as a Tool against Neurodegeneration—A Potential Treatment for Amyloidosis in the Central Nervous System. *International Journal of Molecular Sciences*. 2022; 23(20):12265. https://doi.org/10.3390/ijms232012265
- Samsung Medical Center. Principles of Proton Therapy. Available from: <u>How it works What is Proton</u> <u>Therapy? - SAMSUNG PROTON THERAPY CENTER (samsunghospital.com)</u> [last accessed 25/11/2022].
- Sanchez-Parcerisa D, Sanz-García I, Ibáñez P, España S, Espinosa A, Gutiérrez-Neira C, López A, Vera JÁ, Mazal A, Fraile LM, Udías JM. Radiochromic film dosimetry for protons up to 10 MeV with EBT2, EBT3 and unlaminated EBT3 films. *Phys Med Biol*. 2021;66(115006).

Thanks!

Any questions?

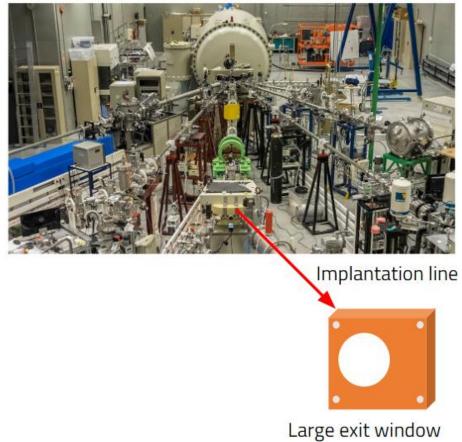
Acknowledgements:

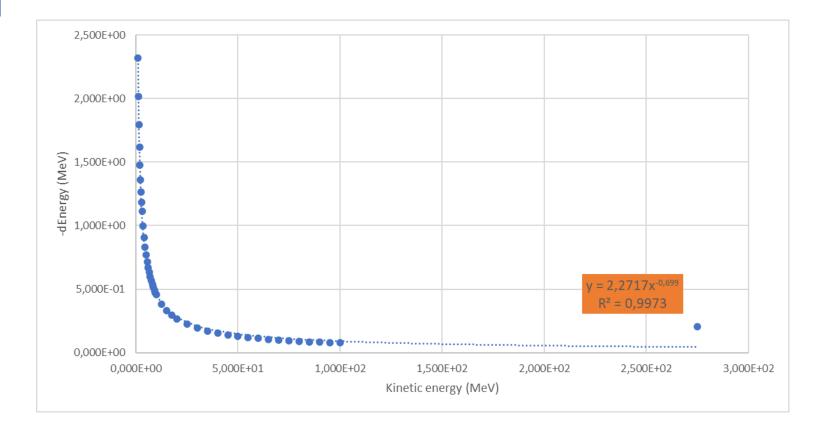
ProtoTera Grant - PRT/BD/151545/2021, Centre grants to BioISI – UIDB/04046/2020 and UIDP/04046/2020, Centre grants to LIP UIDB/50007/2020, UIDP/50007/2020 and LA/P/0016/2020.

Institution	Patients	Treatment	Outcome measures	Reference
University Hospital of Geneva	10 patients (observation) + 10 patients (LDRT)	10 Gy in 5 x 2 Gy (5 consecutive days)	PET scan (8-12 weeks) Neurocognitive tests (6 and 12 months) Treatment toxicity (12 months)	Zilli, T. 2021 (NCT03352258)
William Beaumont Hospitals	15 patients (arm 1) + 15 patients (arm 2)	10 Gy in 5 x 2 Gy (arm 1) 20 Gy in 10 x 2 Gy (arm 2)	PET scan (4 months) Neurocognitive tests and Treatment toxicity (6 weeks, 3, 6 and 12 months)	Fontanesi, J. 2022 (NCT02359864)
Kyung Hee University Hospital	5 patients (arm 1) + 5 patients (arm 2)	9 Gy in 5 x 1,8 Gy (arm 1) 5,4 Gy in 3 x 1,8 Gy (arm 2)	PET scan and neurocognitive tests (6 months)	Kyung Hee University Hospital at Gangdong 2020 (NCT04203121)
Virginia Commonwealth University	15 patients (arm 1) + 15 patients (arm 2)	10 Gy in 5 x 2 Gy (arm 1) 20 Gy in 10 x 2 Gy (arm 2)	Neurocognitive tests (6 weeks, 3, 6 and 12 months) Treatment toxicity (48 months)	Virginia Commonwealth University 2021 (NCT02769000)

Patient	Disease	Age (years)	Nr. of scans	Total administered dose (Gy)	Reference
1	AD	81	11	0,447	Cuttler et al. 2016, 2017, 2018, 2021
2	PD	n.a.	6	0,240	Cuttler et al. 2017
3	AD	88	4	0,165	Cuttler et al. 2021
4	AD	90	4	0,175	Cuttler et al. 2021
5	AD	84	4	0,162	Cuttler et al. 2021
6	AD	82	4	0,161	Cuttler et al. 2021

- RCF dosimetry system
 - LET quenching effect (Sanchez-Parcerisa et al 2021)
 - Surface energy at the film active layer


$$E_{s}(z, E_{0}) = \left[(E_{0} - sE_{0}^{q})^{p} - \frac{z}{r} \right]^{1/p}$$


- Proton LET in film active layer

$$LET_{AL} = ae^{-bE_s} + ce^{-dE_s}$$

- Relative efficiency

$$RE(LET_{AL}) = 1 - A \cdot LET_{AL}^{B},$$

	a (keV μ m ⁻¹⁾		c (keV μ m ⁻¹)	$d (\mathrm{MeV}^{-1})$
EBT3	$(4.1 \pm 1.5) \times 10^5$	2.88 ± 0.12	22.5 ± 1.9	0.142 ± 0.013

Picture	avDose (Gy)	Irradiation time (s)	Dose rate (Gy/s)	Beam intensity (nA)	Distance to beam exit (mm)	Scanning area (mm²)
	1.34 ± 0.12	2	0.67	0.8	40	40x40
	2.78 ± 0.25	5	0.556	0.8	40	40x40
	6.07 ± 0.37	10	0.607	0.8	40	40x40
	8.53 ± 0.40	15	0.569	0.8	40	40x40
	1.04 ± 0.06	2	0.52	0.8	60	40x40
	2.71 ± 0.22	5	0.542	0.8	60	40x40