Project HighLO: identifying anomalies in financial market data using particle physics tools

Axel Naumann, Lorenzo Moneta, Jonas Rembser,

June 29, 2023

Joost Pennings, Tarek Alskaif, Marjolein Verhulst & Philippe Debie

Financial Markets

For example

- Stocks
- Futures and options

CÉRN

Challenge For Regulators and Researchers

- Effectively combatting manipulation in financial markets
- So much data, where to begin?
- How to convert messages in an understandable and analysable format?
- Irregular data
 - Traditional time series analyses difficult to apply

CÈRN

Project **High** Energy Physics Tools in **L**imit **O**rder Book Analysis (HighLO)

Goal:

Interdisciplinary develop new methodologies to detect/identify manipulation

- Data (so far):
 - CME Group
 - All futures and options markets
 - 2015 (±30 TB) and 2019-2020 (±300 TB)

CÈRN

- Time in milli- and nanoseconds
- Limit orderbook and order data

Key Team and Partners Project HighLO

CÈRN

www.highlo.org

Affiliated Researchers

Key team

Limit orderbook

 Marketplace showcasing all **demand** and **supply** for a specific product

- Limit orders
- Market orders

	Level	Price	Quantity
	5	\$55.00	2
	4	\$54.60	10
Ask (sell)	3	\$53.50	2
م (ا	2	\$53.00	4
	1	\$50.00	9
		Spread	
	1	\$49.00	12
- 5	2	\$48.00	4
Bid (buy)	3	\$47.50	38
l d	4	\$46.00	3
	5	\$40.00	1

Why CERN?

- Data processing framework: ROOT
- IEB data in ROOT format
- Scientifically analyse data; statistically correct
- Highly efficient and customizable

- Data storage support, machine learning, visualization
- Open source and supported for decades
- Love to look at masses of raw data!

CERN vs. Limit Orderbook (LOB)

CERN

Look for **unusual** particles or for **anomalies** that do not fit the Standard Model

LOB

Look for **unusual** trading behavior or for **anomalies** that fit manipulative trading

CÈRN

First step: visualizations

Verhulst, M. E., Debie, P., Hageboeck, S., Pennings, J. M., Gardebroek, C., Naumann, A., ... & Moneta, L. (2021). When two worlds collide: Using particle physics tools to visualize the limit order book. *Journal of Futures Markets*, 41(11), 1715-1734. <u>https://doi.org/10.1002/fut.22251</u>

CÈRN

However, there's one problem...

Traditional timeseries analysis uses regular intervals in data

- E.g. seconds, minutes, hours, days, etc.
- But our data is not regular
 - Market activity is irregular
 - Sometimes 20 updates in the same **millisecond!**

CERN

→ Traditional timeseries research aggregates to make it regular: lose a lot of information (data)!

The new visualization: Dec 2015 T-Bond

Limit Order Book ZBZ5 2015-11-12 (09:00 - 10:00)

Traditional vs. new visualization

Limit Order Book ZCZ5 2015-08-12 (09:00 - 12:00)

... the new visualization

Limit Order Book ZCZ5 2015-08-12 (09:00 - 12:00)

Visualizing Manipulation: the JPMorgan Case

Debie, P., Gardebroek, C., Hageboeck, S., van Leeuwen, P., Moneta, L., Naumann, A., ... & Verhulst, M. E. (2022). Unravelling the JPMorgan Spoofing Case Using Particle Physics Visualization Methods. *European Financial Management*. Early View. https://doi.org/10.1111/eufm.12353

CÈRN

JPMorgan Market Manipulation

- 2008 2016
- Spoofing
- Benefitted \$172,034,790
- \$311,737,008 market damages
- Settlement \$920 million

CÈRN

Market manipulation: spoofing

"The illegal practice of bidding or offering with intent to cancel before execution." (Dodd-Frank Act, 2010)

JPMorgan Case: 5-second interval

Ultra T-Bond September 2015 contract

08:45:40 and 08:46:10 AM CT

JPMorgan Case: all market activity

Ultra T-Bond September 2015 contract

220 154 153.97 200 **OB** level 153.94 180 153.91 153.88 160 153.84 Price (Points) 140 153.81 153.78 120 153.75 .⊑ 100 153.72 Volume i 153.69 der 80 oro 153.66 Genuine ord 60 153.62 153.59 40 153.56 153.53 20 153.5 Cumul. Trade Volume 300 200 100 зв Seconds since 08:45:40 1 second time interval 20 10 0 1000 2000 'n Seconds since 08:45:40

08:45:40 and 08:46:10 AM CT

Layered Spoofing

W۶

U.S. Treasury Bond September 2009 contract

07:47:10 - 07:47:30 AM CT

High-Frequency Data Analysis using the Tools from High-Energy Physics

Research Questions

1. How to measure the impact of an event

on a time series

using knowledge and tools from particle physics?

CÈRN

2. What is the impact of large limit order submissions on the transaction price?

Impact Plot – The Concept

Trigger

Idea:

Impact value

Measure the changes in a time series

at fixed intervals before or after an event

Example:

What is the average price change 50ms after a limit order submission

Data

	E-mini S&P 500 futures	Crude oil Futures	US T-Bond Futures
CME Globex code	ES	CL	ZB
Data range	2019/0	7/01 - 2020/07	7/01
Number of messages	4.9B	14.8B	1.0B
Raw data	656 GB	1 140 GB	144 GB
In ROOT	46 GB	80 GB	9 GB

Impact plot – The Construction

- 1. Collect a set of triggers
 - \rightarrow Large limit order submissions
- 2. For each trigger, extract a time series
 - \rightarrow 200ms before to 200ms after the trigger
- 3. Overlap these time series (align the triggers)

Cern

- 4. For each time delay, build a distribution
 - \rightarrow 401 distributions, sequence of distributions

Impact plot – A Diagram

CÉRN

Impact plot – E-mini S&P 500

Compare the impact plot against average market conditions

- The signal impact plot: As described
- The background impact plot: Randomly drawn message

 \rightarrow Pairwise statistical testing, per time slice

 \rightarrow A sequence of p-values, one for each delay

Impact plot – E-mini S&P 500

Impact plot – Crude Oil

Impact plot – US T-Bonds

Advantages compared to an impact analysis using VAR models

- 1. No data fitting or user-chosen modelling parameters
- 2. Better interpretation and visualisation
- 3. Linear computational cost and trivial multi-threading
- 4. Measure past and future time correlations

\rightarrow Interdisciplinary collaboration led to new techniques

An Agent-Based Financial Simulation of the Futures Commodity Market

Manipulation Detector Verification

Possible verification methods:

- Testing on proven cases (= labels)
- Spoof the market to generate labels
- Spoof in a simulation

- \rightarrow Bias to existing work
- \rightarrow Not feasible

→ Agent-based modelling using BioDynaMo

Research Questions

- 1. What is the accuracy of our detection method?
- 2. Who is hurt due to the spoofing?

"The economy needs agent-based modelling"

Next Steps

Next Steps for Project HighLO

- Interdisciplinary overview of spoofing
- Market manipulation/anomaly detection:
 - Spoofing: Expert vs. Machine
 - Detection tool & real-time monitoring
- Agent-based simulation:
 - BioDynaMo
 - Simulate financial markets

- Energy market collaboration
 - Dutch Authority for Consumers and Markets
 - ACER (EU)

CÈRN

Next Steps for Project HighLO (2)

Need:

- Interaction academics and practitioners
- Feedback and input from regulators, exchanges, surveillance agencies
- Reactive and proactive

Goal: International Expert Group on Market Surveillance

CÈRN

International Expert Group on Market Surveillance (IMS Group)

- **18** regulatory agencies across the world
- Combine science with industry through co-creation

Goal

- Combine academic research with expert knowledge to:
 - Tackle market surveillance challenges
 - Create **consistency** in regulation, definitions and interpretations of the law
 - Develop new surveillance **methods and tools**

CERN

Kick-off at CERN: March 15-16, 2023

Topics:

- Past and current surveillance systems
- Surveillance in energy markets
- Spoofing case
- Spoofing identification tools and metrics
- Challenges of algorithmic trading surveillance
- Research done by **Project HighLO**

Questions?

axel.naumann@cern.ch

marjolein.verhulst@wur.nl

philippe.debie@wur.nl

www.highlo.org

CÉRN

References

Verhulst, M.E., Debie, P., Hageboeck, S., Pennings, J.M.E., Gardebroek, C., Naumann, A., ... & Moneta, L. (2021). When two worlds collide: Using particle physics tools to visualize the limit order book. *Journal of Futures Markets*, 41(11), 1715-1734. <u>https://doi.org/10.1002/fut.22251</u>

Debie, P., Gardebroek, C., Hageboeck, S., van Leeuwen, P., Moneta, L., Naumann, A., ... & Verhulst, M. E. (2022). Unravelling the JPMorgan Spoofing Case Using Particle Physics Visualization Methods. *European Financial Management*. Early View. <u>https://doi.org/10.1111/eufm.12353</u>

Debie, P., Verhulst, M.E., Rembser, J., Pennings, J.M.E., Naumann, A., Tekinerdogan, B., Moneta, L., Catal, C., Alskaif, T. & Demirel, S. (2022). A Novel Approach to Examine the Impact of Behavior in Financial Markets using Particle Physics Methods: The Impact of Limit Order Submissions (Working Paper).

