

MInternational UON Collider Collaboration

Report from WG on RF:

Progress on the design and simulation of RF systems for R

Fabian Batsch, Heiko Damerau, Ivan Karpov

<u>Acknowledgements</u>: David Amorim, Scott Berg, Fulvio Boattini, Luca Bottura, Christian Carli, Antoine Chancé, Alexej Grudiev, Elias Metral, Ursula Van Rienen, Daniel Schulte, Sosoho-Abasi Udongwo

Presented on the Accelerator design meeting, 27/2/2023

- Hybrid RCSs have intersecting normal conducting (NC) and superconducting (SC) magnets
- Studies presented aim to determine the RF (cavity) and lattice parameters (number of RF stations, momentum compaction factor,...)

F. Batsch

- Activity summary
- Beam induced power estimates for muon RCS RF systems
- Studies on synchronous phase and consequences on the acceleration
- Summary and Outlook

-1-12-120

Activity summary / reminder

- From MC Collaboration Meeting: [reminder, see presentation for details]
 - 1. In total, short-range wakefields and beam loading cause induced voltage of ~2.2 MV/m per cavity, or 10% of V_{acc} , but do not harm beam transport
 - 2. On the order $n_{\rm RF}$ = 32 RF stations needed to ensure a sufficiently low synchrotron tune between stations, less but $n_{\rm RF}$ > 16 for RCS3

Activity summary / reminder

- From MC Collaboration Meeting: [reminder, see presentation for details]
 - 1. In total, short-range wakefields and beam loading cause induced voltage of ~2.2 MV/m per cavity, or 10% of $V_{\rm acc}$, but do not harm beam transport
 - 2. On the order $n_{\rm RF}$ = 32 RF stations needed to ensure a sufficiently low synchrotron tune per station, less but $n_{\rm RF}$ > 16 for RCS3
- Muon RCS in LHC tunnel?→ limited to around 4.2 TeV due to required amount of magnets [preliminary studies by D. Amorim and me, see <u>here</u>]

F. Batsch

Question of possibly high HOM power for the TESLA cavity raised during
 <u>collaboration meeting</u> → 1st topic of today

Beam-induced power for the TESLA cavity

- First estimate of HOM power assume a constant current in ring:
 - Bunch population 2.54x10¹² μ /b, $T_{rev} = 20 \ \mu s \rightarrow$ / = 20.4 mA
 - Induced voltage from short-range wakefields $U_{ind,SR}$ = 1.1 MV/m
 - \rightarrow Rough limit estimate per cavity: P = 20.4 mA x 1.1 MV = 22.4 kW
- Calculation of HOM power in TESLA / ILC 1.3 GHz cavity in two ways for a single bunch from loss factors using:
 - Approximated wake potentials in macro-particle tracking simulations (BLonD)
 - The output of <u>ABCI</u> code for detailed RF structure

Beam-induced power with BLonD

- The geometry of the cavity defines all HOM, i.e. for single-bunch cases, the shortrange wakefield from K. Bane [ref, see appendix for details] includes these, but not the long-range fundamental mode
 - \rightarrow Use short-range wake potential $W_{||,SR}$ to compute power

Plot shows: bunch charge density, $\sigma = 6.6$ mm U_{ind} , short-range U_{ind} , fundamental mode Total U_{ind} Wake potential from ABCI (for RCS1, $n_{RF} = 32$, parameter in appendix)

Beam-induced power with BLonD

- The geometry of the cavity defines all HOM, i.e. for single-bunch cases, the shortrange wakefield from K. Bane [ref, see appendix for details] includes these, but not the long-range fundamental mode
 - \rightarrow Use short-range wake potential $W_{||,SR}$ to compute power
- Calculate power loss through loss factor k_{\parallel} for each simulation step / RF station:

$$k_{||} = \int \lambda(t) W_{||,SR}(t) dt$$
, with bunch charge density $\lambda(t)$
 $P_{HOM} = k_{||} * \frac{Q^2}{T_B}$ with bunch charge Q and bunch spacing $T_B = T_{rev}$

Beam-induced power from mode analysis

 Second possibility uses an approximation for short Gaussian bunches to compute loss factor

$$k_{||} = \left| rac{R}{Q} \right| rac{\omega_r}{2} * e^{-(\omega_r \sigma)^2}$$
 ($rac{\omega_r}{4}$ for Linac norm)

 This gives the loss factor per mode, for longitudinal modes, see <u>here</u> (TESLA) & <u>paper</u> <u>(ILC LL)</u>

→ Total HOM loss factor is sum over all HOMs:

$$k_{||} = \sum k_{||,i}$$
, $P_{HOM} = k_{||} * \frac{Q^2}{T_B}$

Table 2 Values of Qext for the monopole modes

				2 wolded	2 demount	2 demount	
[1				couplers on		Oavt
MODE		FREO	B/O	asymmetric	asymmetric	symmetric	Limit
		THE G.	1	cavity	asymmetric	cavity	Chin
				Cavity	Cavity	Cavity	
	_			Qext	Clext	Qext	
		[MHZ]	[Ω]	[1.0E+3]	[1.0E+3]	[1.0E+3]	[1.0E+3]
TM 0 1 1	1	2379,6	0,00	350,0	1150	1600	
	2	2384,4	0,17	72,4	360	460	
	3	2392,3	0,65	49,5	140	220	
j	4	2402,0	0,65	84,0	68	110	
	5	2414,4	2,05	32,0	70	97	
	6	2427,1	2,93	29,1	81	59	
1	7	2438,7	6,93	20,4	66	49	1000
1	8	2448,4	67,04	27,4	58	51	100
	9	2454,1	79,50	58,6	110	100	100
TM012	1	3720,0	1,26	3,0			
[2	3768,9	0,07	5,1			
	3	3792,2	0,75	5,2			
	4	3811,7	1,43	3,9			
	5	3817,5	0,18	15,2			
	6	3829,2	2,33	11,3			
	7	3839,8	0,77	40,0			
1	8	3845,3	22,04	240,0			300
	9	3857,3	6,85	6,1			1000

From

"Higher order mode coupler for TESLA", J. Sekutowisz

Beam-induced power from mode analysis

We obtain the modes through <u>ABCI</u>:

Table 2 Values of Qext for the monopole modes

					2 wolded	h domount	o domount	
1		i			z weided		z demodni.	
					couplers on	couplers on	couplers on	Qext
MODE			FREQ. R/Q		asymmetric	asymmetric	symmetric	Limit
					cavity	cavity	cavity	
					Qext	Qext	Qext	
			[MHz]	[Ω]	[1.0E+3]	[1.0E+3]	[1.0E+3]	[1.0E+3]
ТМО	11	1	2379,6	0,00	350,0	1150	1600	
		2	2384,4	0,17	72,4	360	460	
		3	2392,3	0,65	49,5	140	220	
i i		4	2402,0	0,65	84,0	68	110	
		5	2414,4	2,05	32,0	70	97	
		6	2427,1	2,93	29,1	81	59	
		7	2438.7	6.93	20,4	66	49	1000
I [8	2448,4	67,04	27,4	58	51	100
		9	2454,1	79,50	58,6	110	100	100
TM01	12	1	3720,0	1,26	3,0			
(2	3768,9	0,07	5,1	1		
		3	3792,2	0,75	5,2			
		4	3811,7	1,43	3,9			
		5	3817,5	0,18	15,2			
		6	3829.2	2.33	11.3			
	_	7	3830 8	0 77	40.0			
		8	3845,3	22,04	240.0			300
		9	3857,3	6,85	6,1			1000

From "Higher order mode coupler for TESLA", J. Sekutowisz

(ABCI file from Sosoho U.)

Beam-induced power from mode analysis

Collider pration

We obtain the modes through ABCI: Loss Factor Spectrum Integrated up to f ABCI_MP 12.5 : SAMPLE INPUT: TESLA CAVITY MROT= 0, SIG= 1.000 cm, (ABCI file from S.-A. Udongwo) 3.5 3.0 (V/pC)HOMs 2.5 1.5 V/pC **TM012** $|\mathbf{k}||(\mathbf{f})$ 2.0 fundamental 1.5 ð First two "strong" monopole HOM's 1.0 N contribute with mode, 0.5 4.7 kW Ż 10 6 8 f (GHz) F. Batsch Table 2 Values of Qext for the monopole modes

					2 welded	2 demount.	2 demount.	
					couplers on	couplers on	couplers on	Qext
M	0	DE	FREQ.	R/Q	asymmetric	asymmetric	symmetric	Limit
					cavity	cavity	cavity	
					Qext	Qext	Qext	
			[MHz]	[Ω]	[1.0E+3]	[1.0E+3]	[1.0E+3]	[1.0E+3]
ТМО	01	1 1	2379,6	0,00	350,0	1150	1600	
		2	2384,4	0,17	72,4	360	460	
		3	2392,3	0,65	49,5	140	220	
		4	2402,0	0,65	84,0	68	110	
		5	2414,4	2,05	32,0	70	97	
		6	2427,1	2,93	29,1	81	59	
	_	7	2438.7	6.93	20,4	66	49	1000
		8	2448,4	67,04	27,4	58	51	100
		9	2454,1	79,50	58,6	110	100	100
тмо	12	1	3720,0	1,26	3,0			
		2	3768,9	0,07	5,1			
		3	3792,2	0,75	5,2			
		4	3811,7	1,43	3,9			
		5	3817,5	0,18	15,2			
		6	3829,2	2,33	11,3			
		7	3930,9	0.77	40,0			
		8	3845,3	22,04	240,0			300
		9	3857,3	6,85	6,1			1000

From "Higher order mode coupler for TESLA", J. Sekutowisz

- 1.5 V/pC results in 7.9 kW!
- → Consistent with upper limit of 22.4 kW
- Power for fundamental mode is 10 kW

Beam-induced power using BLonD

• Parameters in BLonD: RCS1, $n_{\rm RF}$ = 32 RF stations, 696 cavities, 90% survival, bunch length $4\sigma_z$ = 0.1 ns = 30 mm, <u>1 bunch</u>

$$\rightarrow k_{||,SR} = \int \lambda(t) W_{||,SR}(t) dt = -2.11 \text{ V/pC}$$

- → The HOM power loss per cavity reaches 10.4 kW
- → Consistent with ABCI

0.3

$\textit{P}_{\rm HOM}$ for other RCS

Larger power loss due to shorter bunches in RCS2:

Summary (1)

- The induced power is very large, up to 13 kW for RCS1&2 per bunch and cavity
- → Bunch crossings inside the cavity increases power up to 4 times, to be avoided
- HOM power capability limit is 1 kW, 3-4 kW under development → up to 20 kW per cavity estimate

See also PhD thesis of S. Zadeh

→ Design of high-capacity power absorbers or lower RF frequency with larger iris needed (wakefields scale with $1/a^2$, *a* the iris radius)

→ The present parameter tables are based on the ILC cavity (1.3 GHz), but a lower frequency,
 e.g. 800 MHz, might be required if the HOM power cannot be handled

F. Batsch

Studies for 801.58 MHz cavities

• Some RCS parameter that change with the FCC-ee 5-cell cavity:

	TESLA/ILC	FCC-ee	
Frequency f _{RF} [MHz]	1300	801.58	
Cells	9	5	
Active length <u>Lactive</u> [mm]	1038	935	
Cavity length L _{cav} [mm]	1276	1291	46% instead of 38% use
Gradient [MV/m]	30 (conservative)	25	straight section, feasible!
Number of cavities RCS1	696	835	
Straight length RCS1	2334	2334	
Straight length with RF	38 %	46 %	

F. Batsch

- the in the

of

Studies for 801.58 MHz cavities

The loss factors and beam-induced powers approximately half their values:

Complementary studies by S.-A. Udongwo

- Activity summary
- Beam induced power estimates for muon RCS RF systems
- Studies on synchronous phase and consequences on the acceleration
- Summary and Outlook

- the in the

The synchronous phase and its influence

- The synchronous phase ϕ_s as it becomes more important with HOM discussion:
- The bucket area changes with ϕ_s , which affects the HOM power to a small extend
- The synchronous phase ϕ_s strongly influences the main RF requirements: Energy gain of the synchronous particle $\Delta E_s = V_{RF} * \sin \phi_s = 14.75$ GeV per turn.

For $\phi_s = 45^\circ$ \rightarrow $V_{RF} = 21$ GV, i.e., large overvoltage

→ Increase the synchronous phase and consequently reduce bucket area to possibly decrease $V_{\rm RF}$

Over-voltages due to $\phi_{\rm s}$

- Independent of the cavity frequency or RCS, the overvoltage in the RF voltage
 - $V_{RF} = \Delta E_s / \sin(\phi_s)$, compared to $\phi_s = 45^\circ$ is:

Over-voltages due to $\phi_{\rm s}$

- Independent of the cavity frequency or RCS, the overvoltage in the RF voltage
 - $V_{RF} = \Delta E_s / \sin(\phi_s)$, compared to $\phi_s = 45^\circ$ is:

Over-voltages due to $\phi_{\rm s}$

Independent of the cavity frequency or RCS, the overvoltage in the RF voltage

- With increasing ϕ_s ... (for RCS1, 1.3 GHz, emittance 0.1 eVs $n_{\rm RF}$ = 32)
- 1. The bucket area $A_{\rm b}$ shrinks, the potential well shift due to $U_{\rm ind}$ becomes relevant

- With increasing ϕ_s ... (for RCS1, 1.3 GHz, emittance 0.1 eVs $n_{\rm RF}$ = 32)
- 1. The bucket area $A_{\rm b}$ shrinks, the potential well shift due to $U_{\rm ind}$ becomes relevant

- With increasing ϕ_s ... (for RCS1, 1.3 GHz, emittance 0.1 eVs $n_{\rm RF}$ = 32)
- 1. The bucket area $A_{\rm b}$ shrinks, the potential well shift due to $U_{\rm ind}$ becomes relevant

2. The bunch length increases:

- With increasing ϕ_s ... (for RCS1, 1.3 GHz, emittance 0.1 eVs $n_{\rm RF}$ = 32)
- 1. The bucket area $A_{\rm b}$ shrinks, the potential well shift due to $U_{\rm ind}$ becomes relevant

100 increasing $\phi_{\rm s}$... (for RCS1, 1.3 GHz, With 80 Beam loss (%) emittance 0.1 eVs $n_{\rm RF}$ = 32) 60 The losses increase 4 40 20 10% loss due to muon 40 60 20 decay! ϕ_s (deg) 0.00 5. The potential well minimum shifts -0.02 Turn 0, section 0 -10Δφ_s (%) Δ*t* (ns) ۰. φ_s = 60° 2 --0.041 -20 ΔF (GeV) 0 -0.06-30 -2 20 20 40 60 40 60 ϕ_s (deg) ϕ_s (deg) 0.1 0.2 0.3 0.4 0.5 0.6 ∆t (ns) F. Batsch

Studies of synchronous phase: RCS2 ⁶ No intensity effects

- With increasing ϕ_s ... (for RCS1, 1.3 GHz, emittance 0.1 eVs $n_{\rm RF}$ = 32)
- 1. The bucket area $A_{\rm b}$ shrinks, the potential well shift due to $U_{\rm ind}$ becomes relevant

2. The bunch length increases:

3. The HOM power decreases... until the bucket becomes too small and the bunch is lost (> 65°)

Studies of synchronous phase: RCS3 ⁸ No intensity effects

- With increasing ϕ_s ... (for RCS1, 1.3 GHz, emittance 0.1 eVs $n_{\rm RF}$ = 32)
- 1. The bucket area $A_{\rm b}$ shrinks, the potential well shift due to $U_{\rm ind}$ becomes relevant

2. The bunch length increases:

3. The HOM power decreases... until the bucket becomes too smalland the bunch is lost (> 66°)

Summary (2)

- The synchronous phase ϕ_s can be increased with 1.3 GHz up to approx. 60° (RCS1) or 65° (RCS2 and 3), around 5° more for a 800 MHz cavity

ø _{s,max}	TESLA/ILC	FCC-ee
RCS1	60°	65°
RCS2	65°	70°
RCS3	66°	71°

A _{B,min}	TESLA/ILC	FCC-ee
RCS1	70%	54%
RCS2	77%	70%
RCS3	70%	71%

• Minimum 70% of the bucket can be filled, deeper look for range up to 90% required

F. Batsch

- The synchronous phase could be a mean to reduce P_{HOM} due to increasing bunch lengths
- Larger $\phi_{\rm s}$, can reduce required $V_{\rm RF}$ by >20%, even more for a 800 MHz system

<u>Outlook:</u>

- Define range of ϕ_s for harmonic ramping and full simulation through all 3 RCS
- Beam-crossings must be avoided in cavities → assumed to be possible as bunch positions are precisely controlled for collider
- > Inclusion of multi-turn effects in simulation (also for counter-rotating bunches)

F. Batsch

- With increasing ϕ_s ... (for RCS1, 800MHz, emittance 0.1 eVs n_{RF} = 32)
- 1. The bucket area $A_{\rm b}$ shrinks, the potential well shift due to $U_{\rm ind}$ becomes relevant

2. The bunch length increases:

3. The HOM power decreases... until the bucket becomes too smalland the bunch is lost (> 65°)

- With increasing ϕ_s ... (for RCS1, 800MHz, emittance 0.1 eVs n_{RF} = 32)
- 1. The bucket area $A_{\rm b}$ shrinks, the potential well shift due to $U_{\rm ind}$ becomes relevant

2. The bunch length increases:

3. The HOM power decreases... until the bucket becomes too smalland the bunch is lost (> 70°)

100 RCS1, 800MHz, With increasing $\phi_{\rm s}$... (for 80 Beam loss (%) emittance 0.1 eVs $n_{\rm RF}$ = 32) 60 ٠ The losses increase 4 40 20 10% loss due to muon C 20 60 40 decay! ϕ_s (deg) 0.00 0 . 5. The potential well minimum shifts -5 -0.02 Turn 0, section 0 Δt (ns) φ_s = 65° -0.04 2 -ΔE (GeV) -0.060 -20 ٠ -25 -0.08-2 20 20 40 60 40 60 ϕ_{s} (deg) ϕ_s (deg) 0.1 0.2 0.3 0.4 0.5 0.6 ∆t (ns) F. Batsch

- With increasing ϕ_s ... (for RCS1, 800MHz, emittance 0.1 eVs n_{RF} = 32)
- 1. The bucket area $A_{\rm b}$ shrinks, the potential well shift due to $U_{\rm ind}$ becomes relevant

2. The bunch length increases:

3. The HOM power decreases... until the bucket becomes too smalland the bunch is lost (> 71°)

100 RCS1, 800MHz, With increasing $\phi_{\rm s}$... (for 80 Beam loss (%) emittance 0.1 eVs $n_{\rm RF}$ = 32) 60 The losses increase 4 40 20 10% loss due to muon C 20 40 60 decay! ϕ_s (deg) 0.00 0 ٠ 5. The potential well minimum shifts -5 -0.02Turn 0, section 0 -10 $\Delta \phi_{s}$ (%) 0.04 ⊑ 10.06 ⊑ φ_s = 70° -15 2 ΔE (GeV) -20 0 -0.08-25 • -0.10-2 20 40 60 20 40 60 ϕ_{s} (deg) ϕ_s (deg) 0.1 0.2 0.3 0.4 0.5 0.6 ∆t (ns) F. Batsch

Parameters and tools: General parameter

2.37 750000 1500000 750106 1500106 66 0.9 0.729 1.06 11364

1703.0 10700 1.79 0.628 1070.2 3975.7 2.34 TESLA 1300 46367 28.04 35.7 16.07 0.45 Around 50 9-cell 536 2.9 4.0 9.0 331.72 0.025 0.079 1.40 1.97 0.172 14.53 10.27 0.52 0.37 🧃

Detailed parameter table:

	RCS1 → 314 GeV	RCS2 → 750 GeV	RCS3 → 1.5 TeV	* Basic data * Particles * Costs * Type * Dynamics * Dognamics	Symbol	Unit 	Stage 1 Details Value Details # RCS 0.34 Details	Stage 2 Value # hybrid RCS 1.09704595
Circumference, $2\pi R$ [m]	5990	5590	10700	21 Injection energy 22 Ejection energy 23 Energy ratio 24 Momentum at e 25 Momentum at e	E _{vi} E _{vi} E _{vi} p/c p/c	[MeV]/u [MeV]/u MeV/c MeV/c	63000 313830 defined by n 4.98 63106 313935 17	313830 750000 2.39 313935 750106 55
Energy factor, E_{ej}/E_{inj}	5.0	2.4	2.0	Planned Survival rate Total survival rate Accel, Gradient, linear for survival Required energy gain per turn	N_IN_ N_IN, G AE	[MV/m] [MeV]	0.9 0.9 2.44 14755	0.9 0.81 1.33 7930
Repetition rate, f _{rep} [Hz]	5 (asym.)	5 (asym.)	5 (asym.)	²² Transition gamma ²³ Injection relativistic mass factor ²⁴ Ejection relativistic mass factor ²⁵ Ejection v/c ²⁶ Ejection v/c ²⁶ Ejection v/c ²⁶	7, 7, 7, 8, 8,	- - - %	20.41 597 2971 0.9999986	20.41 2971 7099 0.999999943
Number of bunches	1μ⁺, 1μ⁻	1µ⁺, 1µ⁻	1μ+, 1μ-	2 3 3 Parameter Classical RCS 3 4 Circumference 4 Circumference Ratio	R 2xR R _{µ1} /R	(m) (m)	953.3	953.3 5990
Bunch population	2.5x10 ¹²	2.3x10 ¹²	2.2x10 ¹²	4 Pack traction 4 Bend radius 4 Tot, straight section length 5 Injection bending field (average) 7 RF	Pg Lat Bas	m (m) (T)	0.61 581.8 2334.7 0.36	581.8 2335.7 1.80
Survival rate per ring	90%	90%	90%	Alain RF frequency Main RF frequency Revolution frequency ej Revolution frequency ej Revolution period Berevolution period	fas h fay Trev Va	[MHz] [kHz] [µs]	1300 25957 50.08 20.0 20.87	1300 25957 50.08 20.0 11.22
Acceleration time [ms]	0.34	1.04	2.37	Max RF power SI RF Filling factor Momber RF stations Cavities Number of cavities Data Impediate	P.,	[MW]	0.4 Around 50 9-cell 696	0.4 Around 50 9-cell 374
Number of turns	17	55	66	Previous implements Gradienti cavity Average energy gain per total straight Accelerating field gradient, with FF Stable phase	ΔΕ/L ΔΕ/L ΔΕ/L ΔΕ/L	[MV/m] [MeV/m] [MeV/m] [MV/m]	30 6.3 8.9 22.3 45	30 3.4 4.8 12.0 45
Energy gain per turn, ΔE [GeV]	14.8	7.9	11.4	10 Conversion factor mm mrad – eVs 14 Longitudina emittance (gf= 4cz) 16 Longitudina emittance (gf= 4cz) 17 Ejection bucket area 17 Ejection bucket area 18 Bucket area 19 Horizontal betatron tune 10 Horizontal betatron tune	- 5 ⁴ , A ₁₀₀ A ₁₀₁ A ₁₀ /A _{0.00} Q _b Q _y	Vsimm mr. [eVs] [eVs] [eVs] [eVs]	 69.40 0.0257.5 MeV m 0.079 0.62 1.37 0.172 	165.86 0.025 0.079 1.01 1.56 0.172
Acc. gradient for survival [MV/m]	2.4	1.3	1.1	 Verage horizontal Twiss beta Verage verical Twiss beta Impection synchrotron frequency Impection synchrotron frequency Impection synchrotron hume q, Impection synchrotron hume q, 	βh βv I _{3.m} I _{3.m} /I _m I _{5.0} /I _m	[m] [m] [kHz] [kHz]	10 10 76.33 34.20 1.52 0.68	10 10 25.07 16.22 0.50 0.32
Acc. field in PE covity [M]//m]	20	20	30					41

Induced voltages: Short-range wakefields

30

25

20

10

W_L(V/pC/m) 15 fit

40

precise equation

50

60

Based on K. Bane et al., 'Calculation of the short-range longitudinal wakefields in the NLC linac', ICAP98, 1998

$$W_L \approx \frac{Z_0 c}{\pi a^2} \exp\left(\frac{2\pi \alpha^2 L^2 s}{a^2 g}\right) \operatorname{erfc}\left(\frac{\alpha L}{a} \sqrt{\frac{2\pi s}{g}}\right) [s \operatorname{small}]$$
(3)

One can approximate this by a semi-analytically expression, valid for small s and s/L < 0.15:

Induced voltages: Short-range wakefields for 800 MHZ

Short-range wakefields using the Bane formalism in BLonD also valid for 5-cell, 800 MHz cavity (cell length L = 187 mm):

Parameters and tools: RF – The TESLA cavity

- Studies are based on the 1.3 GHz Tesla cavity (design report: <u>Phys. Rev. ST Accel. Beams 3,</u> 092001, 2000)
 <u>Table 2: TTF cavity design</u> type of accelerating structure
 - \rightarrow see <u>talk</u> by A. Yamamoto
- Relevant beam parameter
 - Bunch population 2.54x10¹², \mathcal{E}_{L} =0.01 eVs \rightarrow large intensity effects
 - Bunch current 20.4 / 18.8 / 10.0 mA \rightarrow 2x430 kW per cavity
 - (with 30 MV/m accelerating • gradient 74 / 532 cavities in ring, distributed over n_{RF} RF stations
 - Synchronous phase 45° (above transition: γ_{tr} = 20.41, 600 < γ < 14200
 - TESLA Cavity parameter (9 cells, L=1.06 m):
 - $f_{\text{RF}} = 1.3 \text{ GHz} \rightarrow \text{harmonic number } h = 25957 \text{ to } 46367$
 - *R***/Q = 518** Ω, total *R*_s = 306 GΩ
 - Gradient 30 MV/m

	Table 2: TTF cavity design parameters. ^a						
	type of accelerating structure	standing wave					
	accelerating mode	TM_{010} , π mode					
	fundamental frequency	1300 MHz					
	design gradient E_{acc}	25 MV/m					
	quality factor Q_0	$> 5 \cdot 10^9$					
	active length L	1.038 m					
	number of cells	9					
	cell-to-cell coupling	1.87~%					
	iris diameter	70 mm					
	geometry factor	270 Ω					
	R/Q	518 Ω					
	$E_{\rm peak}/E_{\rm acc}$	2.0					
	$B_{\text{peak}}/E_{\text{acc}}$	4.26 mT/(MV/m)					
	tuning range	\pm 300 kHz					
	$\Delta f / \Delta L$	315 kHz/mm					
	Lorentz force detuning at 25 MV/m	$\approx 600 \text{ Hz}$					
	Q_{ext} of input coupler	$3 \cdot 10^{6}$					
	cavity bandwidth at $Q_{\text{ext}} = 3 \cdot 10^6$	430 Hz					
	RF pulse duration	$1330 \ \mu s$					
`	repetition rate	5 Hz					
J)	fill time	530 μs					
1	beam acceleration time	800 µs					
	RF power peak/average	208 kW/1.4 kW					
	number of HOM couplers	2					
	cavity longitudinal loss factor k_{\parallel} for $\sigma_z = 0.7 \text{ mm}$	10.2 V/pC					
	cavity transversal loss factor \mathbf{k}_{\perp} for $\sigma_z = 0.7 \text{ mm}$	15.1 V/pC/m					
	parasitic modes with the highest impedance : type	TM_{011}					
	$\pi/9$ $(R/Q)/$ frequency	$80 \Omega/2454 MHz$					
	$2\pi/9$ $(R/Q)/$ frequency	67 Ω/2443 MHz					
	bellows longitudinal loss factor \mathbf{k}_{\parallel} for $\sigma_z = 0.7 \text{ mm}$	1.54 V/pC					
	bellows transversal loss factor \mathbf{k}_{\perp} for $\sigma_z=0.7~\mathrm{mm}$	1.97 V/pC/m					

From design report

Studies & BLonD code

(Beam Longitudinal Dynamics code)

- <u>BLonD</u>: macro-particle tracking code, developed at CERN since 2014
- Links: documentation and github
- MuC-specific to multiple RF stations & muon decay
- Using the <u>BLonD</u> code to observe effects of
 - Short-range wakefields
 - Fundamental beam loading
 - Synchrotron tune *Q*_s between RF stations
- First studies with only one bunch, 2nd to follow

Induced voltages: both contributions

 Both effects combined: total induced voltage in a cavity is around 2.2 MV per cavity / per meter, i.e. 10-11% of the RF voltage

