beta* levelling in 2023

M. Hostettler, A. Calia, S. Fartoukh, D. Jacquet, D. Mirarchi, J. Wenninger

232nd MPP Meeting - Luminosity Levelling in Run 3

recap: beta* levelling settings management

- settings are stored in a "repository BP" that spans the full levelling range
 - e.g. 60cm \rightarrow 30cm for 2022
- optics match points in BP = possible levelling targets
 - identified by position (seconds) in the BP

RQ10.R4B1/K_SMOOTH

2022: 60cm \rightarrow 30cm repository BP

▲									
0.600	0.560	0.520	0.485	0.450	0.415	0.385	0.355	0.325	0.300
0s	44s	85s	123s	161s	199s	233s	268s	304s	337s

- high-level levelling logic (or OP) decides to execute a step
- lumi server identifies start and end point (seconds in BP)
- functions to play are sliced by lumi server
 - \circ similar to the squeeze in steps
 - start point of the functions are required to match actual settings (except corrections)

recap: beta* levelling machine protection

• beta* levelling is more dynamic than a "standard squeeze"

- the situation in SB is less static than the cycle before: knobs, corrections
- tight requirements on orbit control in collisions: few um @ IPs
- OFB reference, collimator centres calculated from orbit response
- magnet kick & PC current functions automatically "incorporated" for corrections
 - orbit, tune, chroma, coupling = relative corrections
- in general, the "orchestration" steps are equivalent to the sequencer squeeze

• principle: lumi server shall NOT become critical for machine protection

- safe envelope guarded by external systems:
 - collimators: pre-programmed limits checked by the PRS
 - magnets: PCInterlock (orbit, quads including optics)
- within these safe envelopes, lumi server can calculate settings

moving the limits during levelling needs to be carefully considered

beta* levelling in 2022 operation

• $60cm \rightarrow 30cm beta^* / constant xing angle$

- constant TCT/TCL gaps
- negligible centre changes @ TCT/TCL

automated step-taking

- based on experiment pile-up
- signal from either ATLAS or CMS OP choice

orchestration logic commissioned

- PCs, feedbacks, collimators & PCInterlock
- behaved as expected throughout the year
- following MPP meeting #222 recommendation:
 "almost flat" collimator limits driven to validate the functionality

beta* levelling plans for 2023

• 120cm / 135 urad \rightarrow 30cm / 160 urad

- large beta* range: need to change TCT/TCL gaps
- crossing angle change: follow with TCT/TCL centres
- → need to follow with interlock limits

• no change to the orchestration logic

functionality ready & tested in 2023 configuration MD

recap: moving TCT/TCL jaws

• TCTs/TCLs moved during crossing angle levelling in run 2

• centres calculated from expected bump changes

beta* levelling reusing the same logic

- centres calculated from orbit changes
 - same approach (and largely the same code) now also used for TCT settings generation throughout the cycle
- gaps from pre-programmed functions

• "best effort" pre-flight check of interlock limits

- not 100% reliable due to LVDT offsets
- not for protection avoid dumps due to mistakes

tested in 2022 (flat) & 2023 MD (real)

java.lang.IllegalArgumentException: The
set value violates the limits on Collimator
[element=TCL.5R5.B1, beam=BEAM1, plane=H]:
...
---- TIME PT1M1S ---Motor [DOWNSTREAM, RIGHT]:
InnerLimit = -6.3763
OLD Position = -6.77
NEW Position = -6.3556
OuterLimit = -25.407
...

recap: moving TCT/TCL limits

• collimator limits are Machine Critical Settings (MCS)

o digitally signed on creation, can only be loaded & played as a whole

• implemented solution for beta* levelling

- at generation time, split the TCT/TCL limit functions at optics match points
- pre-generate MCS signature for every segment
- lumi server looks up segment & the corresponding signature for a beta* levelling step

PARAMETER	
	#
	$1 \ 1 bf b078 e4790391 b448d16c70 b5 fefed47d7 c7a eff37a7 ee587 e17 ea feb 288657 dc3004 ba a 85048d946 cb 683490 f 0 ce 4b72 db e7 f 29 6a 48 b 8947 e 9 a e 17 68 a cc 6e feb 28 b 60 cm constraints and the second se$
	2 8ae20eb075e7fd3656881987e44e1f3c302840da2830518b212267cea82944acf9dba0a14bc0cdd9f5ded02b19d3bce21910c0c70a980d661335e572723a2d36
	3 86277cf8eb0f35053f693ed1fd57be0397254c2963d21f4afdd67e7f2c3a70ef52874be2e71c172acaccdfb826b0fd7ccc0c82eb4ec0cf8e9e9f00e2b92ed220
TCTPH 411 P1 //ntorlockTbrocholdSubFunct#cub_cignaturas	4 32da1c173506b7d763684bc947f8d23f8f40effd6bb5a5247c047547c1c390f77b6f5f624debfc745845a433fedb0cee38f88208e0fc7b096fd5e06dd20cfc12
TCTFH.4LI.BI/InterlockThresholdSubFunct#sub_signatures	5 3754dd217752c2765231d86709a55ee7eb347a1fbc7395c8a532ba4fcf7c521de8428e0b7e9cb7f79828ab9af1c5ab5b6e2a1e2881c407fe225e63c660ffca5e
	6 5deabab2cbd1b726d13efebbd4a9276be63898de6d818443c45b8f662eb9aec7552c20d64b4310b8ae8586357558f534882a78a3cbfe268fcd6bc1b27099f00c

Michi Hostettler

driving collimators & limits: 2022 fills

centre shift calculated from knobs - no gap changes - almost-flat limits (~50um changes)

driving collimators & limits: 2023 MD

CERN

driving collimators & limits: 2023 MD

centre shift calculated from knobs - gap changes from settings - limits driven last fill: all collimators aligned with final settings

CÉRN

update on discussed failure cases (MPP #222)

• wrong limit function loaded by lumi server

- what if lumi server picks wrong limit segment?
- $\circ \quad \text{collimator PRS checks continuity, start point} \\ \text{mismatches actual limits} \rightarrow \text{exception} \\ \end{array}$
- 2023 settings: monotonous limits for beta* levelling
 - strongly dominated by gap changes (~mm)
 - any wrong limit segment will always mismatch

collimators not driven at all

- driving collimators can be skipped by the EiC
 - not much different from sequencer
- guarded by collimator beta* interlock
- **GUI option guarded by a confirmation popup**
 - courtesy to avoid mis-clicks
 - further (soft) protection required?

conclusions

• beta* levelling successfully used in 2022

- fully automatic step-taking (based on lumi/pile-up)
- commissioned & tested full orchestration
 - including driving of TCTs/TCLs and limits

• 2023: larger beta* levelling range & crossing angle change

- need to drive TCT/TCL gaps, centres & limits with significant (~mm) changes
- settings & logic tested in 2023 configuration MDs
 - all tests successful, including refused step when limits were wrong

• failure cases discussed in MPP #222 addressed

- limits for 2023 are monotonic no risk of playing wrong segment
- option to disable collimator movements protected by confirmation
 - same "risk" exists in the sequencer sequences can be skipped ad hoc
 - further protection necessary?

thanks for your attention!

232nd MPP Meeting - Luminosity Levelling in Run 3

Michi Hostettler