

Introduction to Secondary Beams Beamline for Schools 2023

M. Van Dijk, D. Banerjee, J. Bernhard (BE-EA-LE) Date: 22.02.2023

A brief introduction – and who am I, anyway?

A brief introduction

- I am one of the Secondary Beamline Physicists that work at CERN
- I am one of the (Secondary Beamline) Physicists that work at CERN

Things covered today

• A little bit of physics, a little bit of context

maarten.van.dijk@cern.ch

- What about you?
 - You are considering applying for the BL4S program
 - And some information about physics and the beamlines is helpful for this!

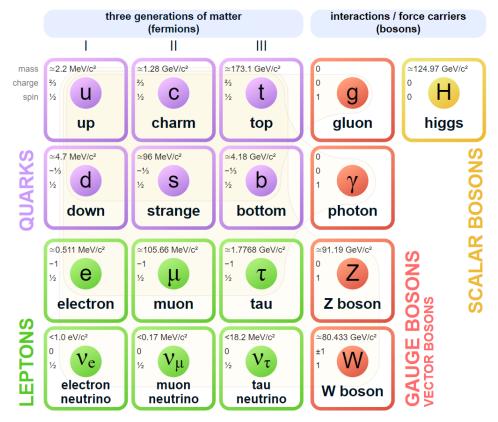
Topics of this talk

Secondary beams are complicated things

- What is a particle?
- What are secondary beams?
- Where do they come from?
 - Fixed target, *not* a collider
- What can we expect to find in a secondary beam?

• Detectors and detectors – interactions of particles with matter

- What is a detector and how does it work?
- Different particles in different detectors
- BL4S detectors
- Proposals for BL4S?



Particle physics in context

Let's start from the beginning (?)

- Standard model of elementary particles contains all of the wisdom of the last 100 years or so
 - Clearly, this is a bit much to start from
 - And usually we don't need all of it
- A few things that will keep returning
 - Elementary particles cannot be split further
 - You will never see a quark alone
 - However, we can glue quarks together
 - Glue two quarks together = a meson
 - Glue three quarks together = a baryon
 - Particles made from quarks are hadrons

How do you do particle physics?

• Put a lot of energy in a very small space

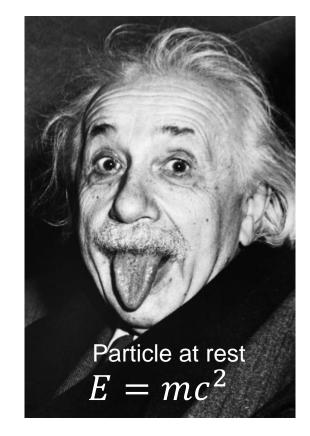
- Use electric and magnetic fields to push a particle to high energy
- Nature will do the rest of the work for you

Two possible configurations for using this energy

- Smash into other particles (moving also at high speed)
- Smash into fixed (non-moving) target

Collider is good at concentrating energy

- Energy scaling is much more efficient due to special relativity
- Ask your teacher if you would like to know more about this!
- Fixed target is good at "many" collisions all particles will interact
 - Good for producing large numbers of **secondary** particles (!)



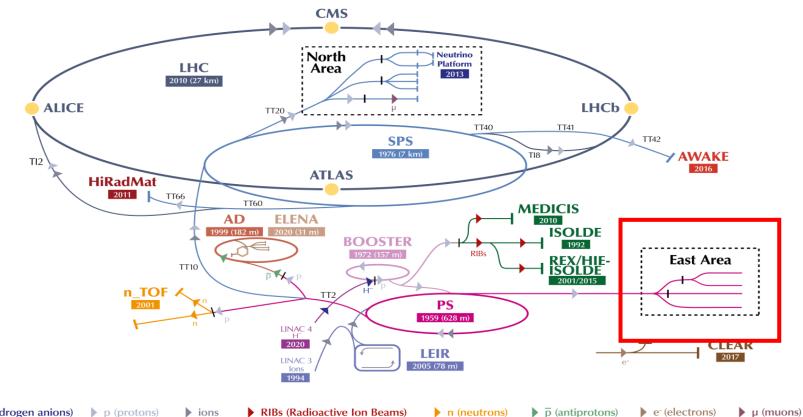
Energy, momentum and all that jazz

• Mass and energy are not the same

- But they are **equivalent and exchangeable**
- Momentum is *also* a form of energy!
- Add it to equation
- Momentum and mass are ALSO exchangeable!
- In particle physics, we express energy in GeV
 - 1 GeV = 1.60218 × 10⁻¹⁰ Joule
 - And following the equation, we can also see that we can also do this for mass and momentum
 - Mass GeV/c²
 - Momentum GeV/c
 - 1 proton mass = $1.673 \times 10^{-27} \text{ kg} = 0.938 \text{ GeV/c}^2$

Moving particle

- $E^{2} = (mc^{2})^{2} + (pc)^{2}$ $E^{2} = m^{2}c^{4} + p^{2}c^{2}$
- $E = \sqrt{m^2 c^4 + p^2 c^2}$



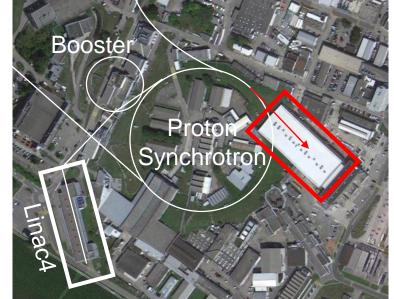
The CERN accelerator complex

Overview

The CERN accelerator complex Complexe des accélérateurs du CERN

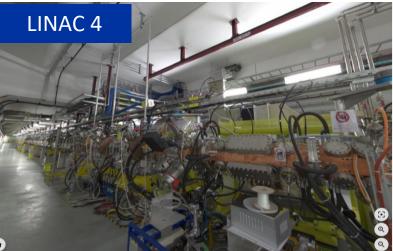
 $H^{-}(hydrogen anions) p (protons) = ions RIBs (Radioactive Ion Beams) n (neutrons) p (antiprotons) e (electrons) p (muons)$

LHC - Large Hadron Collider // SPS - Super Proton Synchrotron // PS - Proton Synchrotron // AD - Antiproton Decelerator // CLEAR - CERN Linear Electron Accelerator for Research // AWAKE - Advanced WAKefield Experiment // ISOLDE - Isotope Separator OnLine // REX/HIE-ISOLDE - Radioactive EXperiment/High Intensity and Energy ISOLDE // MEDICIS // LEIR - Low Energy Ion Ring // LINAC - LINear ACcelerator // n_TOF - Neutrons Time Of Flight // HiRadMat - High-Radiation to Materials // Neutrino Platform

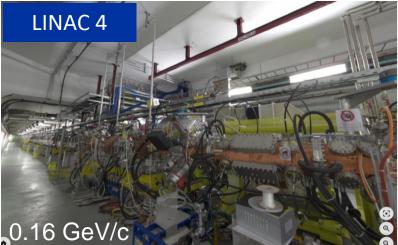


January 202

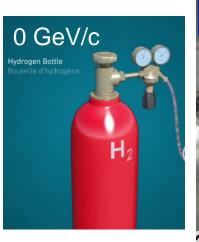
Geography of CERN



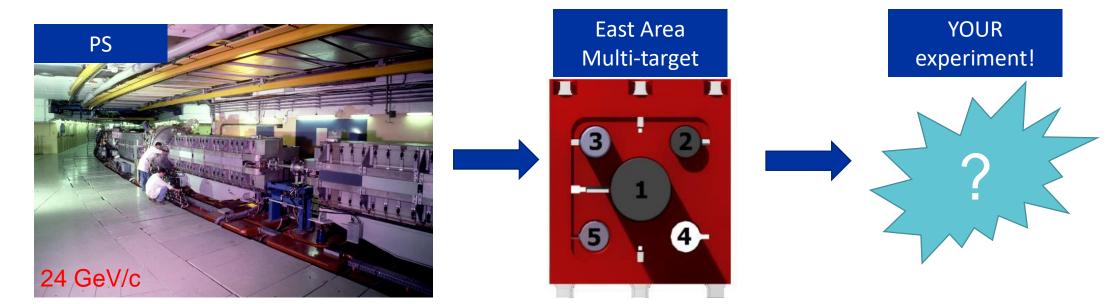
The life of a proton at CERN



Energy scales in the CERN machines



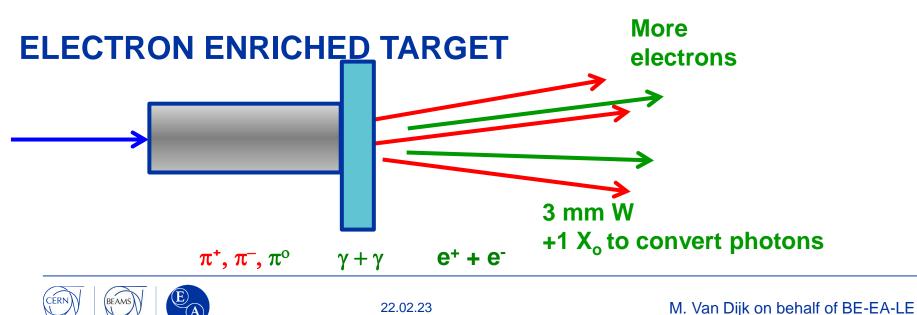
7000 GeV/c



The life of YOUR proton at CERN?

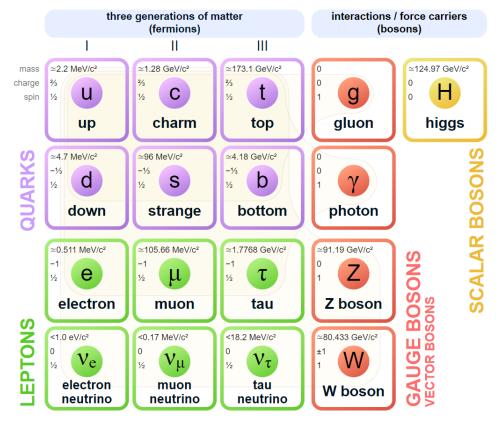
What particles can we see in T9?

22.02.23


Targets and particle production

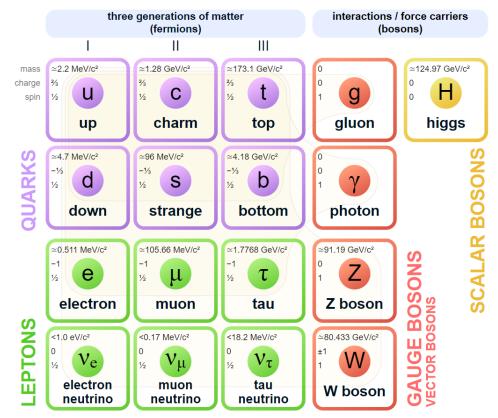
T9/T10/T11 Multitarget Configuration

	Head	Material	Length (mm)	Diameter (mm)	Comments	
	1	Be	200	10 + Al case	Electron enriched	
		W	3			- 3 (
	2	Al	100	10	Electron enriched	
		W	3			1
/	3	Al	200	10	Hadron	
	4	Air	-	-	Empty	5 .
	5	Al	20	10	Hadron	


100-200 mm AL or BE, i.e. Low-Z material Up to 1 L_{int} and 0.5 Xo

So, what comes out of the T9 target?

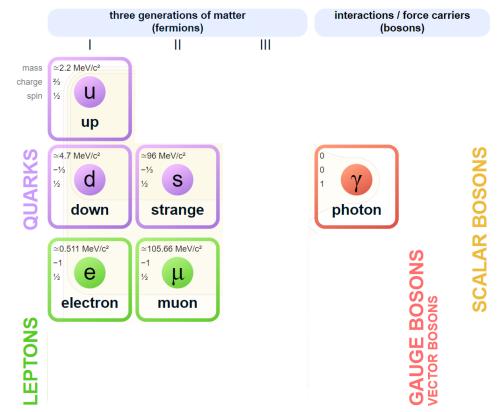
• Let's combine what we have seen so far


- Mass, momentum and energy are equivalent
- Energy scale expressed in GeV
- 1 GeV ~ 1 proton mass
- Secondary beams are made by smashing primary protons into a target
- Primary protons used in the East Area carry 24 GeV/c
 - Fixed target experiment
 - Only produce particles of much lower mass!
- Beams are steered with magnets
 - Magnets only affect charged particles
 - Cannot make neutral particle beams in T9

CERN BEAMS E

Now let's edit the Standard Model a bit for T9

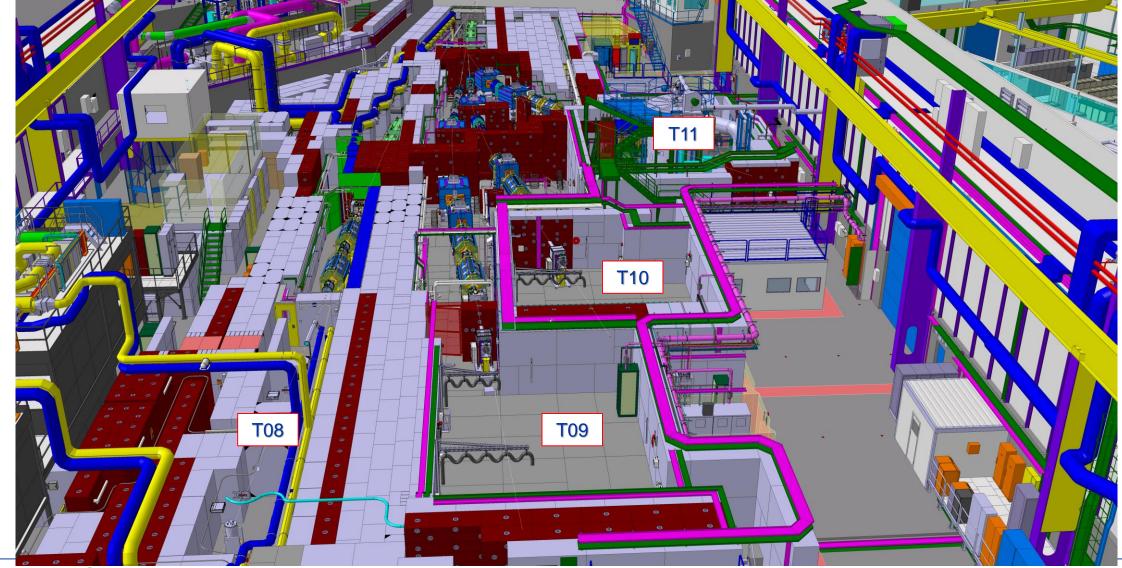
- Keep only particles we will see in T9
- Boson sector
 - Higgs, Z-boson and W-boson are too heavy
 - Gluon we cannot see
- Quark sector
 - Top, bottom and charm quarks are too heavy
- Lepton sector
 - Tau is too heavy
 - Neutrinos are (close to) undetectable



The final products

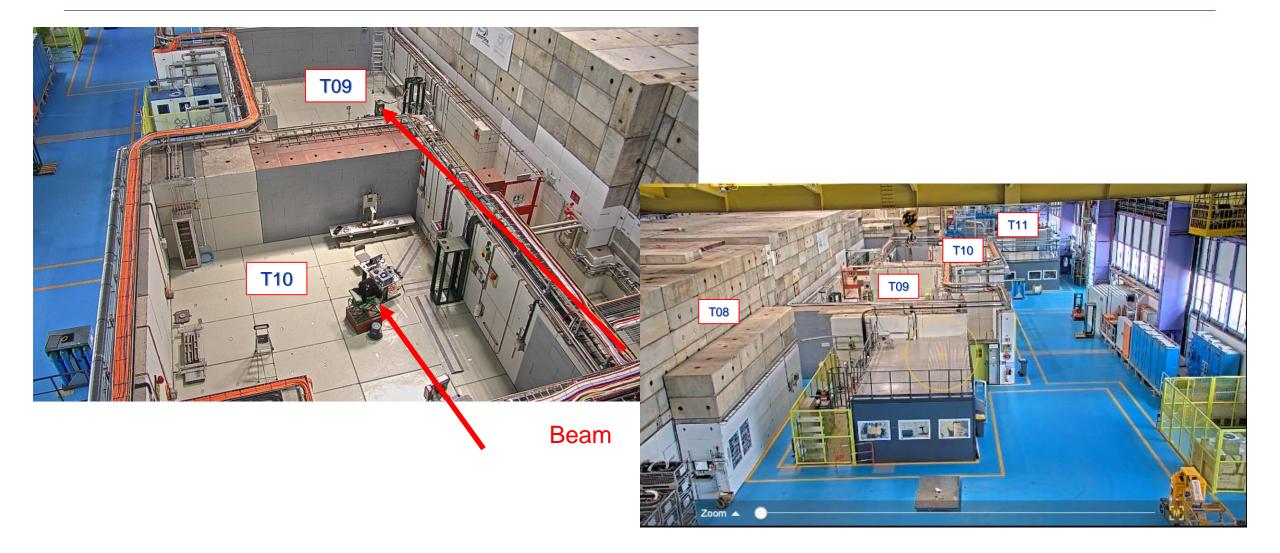
Hadrons (particles containing quarks)

- Mesons (two-quark particles)
 - Pions (ud), kaons (us)
- Baryons (three-quark particles)
 - Proton (uud)
- Leptons
 - Electrons, muons
- Photons produced when beam meets detector
- Neutral particles will not make it to T9 (magnets)
 - Neutral kaons (ds)
 - Neutrons (udd)



Targets and particle production

		Name		Q	Mass	Μ	ean life (τ)	ст	Mean decay distance	Decays	
					[MeV/c²]		[s]	[m]	[m/GeV/c]		
Leptons		Electron	e	±e	0.511				stable		
_	Гер	Muon	μ	±e	105.6	2	2.2×10 ⁻⁶	659.6	6.3×10 ³	$\mu^{+} \longrightarrow e^{+} \overline{\nu}_{e} \nu_{\mu}$ (100%)	
	Mesons	Pion	π	±e	139.6	2	2.6×10 ⁻⁸	7.8	56.4	$\pi^+ \longrightarrow \mu^+ \nu_\mu$ (100%)	
		Kaon	к	±e	493.6	1.23×10 ⁻⁸		3.7	8.38	$\begin{array}{cccc} K^{+} \longrightarrow & \mu^{+} \nu_{\mu} & (63\%) \\ & \pi^{0} e^{+} \nu_{e} & (5\%) \\ & \pi^{0} \mu^{+} \nu_{\mu} & (3\%) \\ & \pi^{+} \pi^{0} () & (28.9\%) \end{array}$	
			Ko (497.6	K ^o s	8.9×10 ⁻¹¹	0.02	0.060	$\begin{array}{ccc} K^0{}_S \longrightarrow & \pi^0 & \pi^0 & (30.7\%) \\ & \pi^+\pi^- & (69.2\%) \end{array}$	
Hadrons				0		K ^o L	5.12×10 ⁻⁸	15.34	34.4	$\begin{array}{cccc} K^{0}{}_{L} \longrightarrow & \pi^{\pm}e^{\mp}\nu_{e} & (40.5\%) \\ & \pi^{\pm}\mu^{\mp}\nu_{\mu} & (27.0\%) \\ & 3\pi^{0} & (19.5\%) \\ & \pi^{+}\pi^{-}\pi^{0} & (12.5\%) \end{array}$	
	Baryons	Proton	Р	±e	938				stable		
		Lambda	۸	0	1115.6	2.63×10 ⁻¹⁰		0.079	0.237*	$\Lambda^{0} \longrightarrow p \pi^{-}$ (63.9%)	
		Sigma	Σ+	+e	1189.3	8	.02×10 ⁻¹¹	0.024	0.068*	$\Sigma^{+} \longrightarrow p \pi^{0}$ (51.57%)	
		Hyperons	Σ-	-е	1197.4	1.	48×10 ⁻¹⁰	0.044	0.125*	$\Sigma^{-} \longrightarrow n \pi^{-}$ (99.84%)	
(*) for 10 GeV/c											


Layout of the East Area

(E) (A)

Layout of the East Area

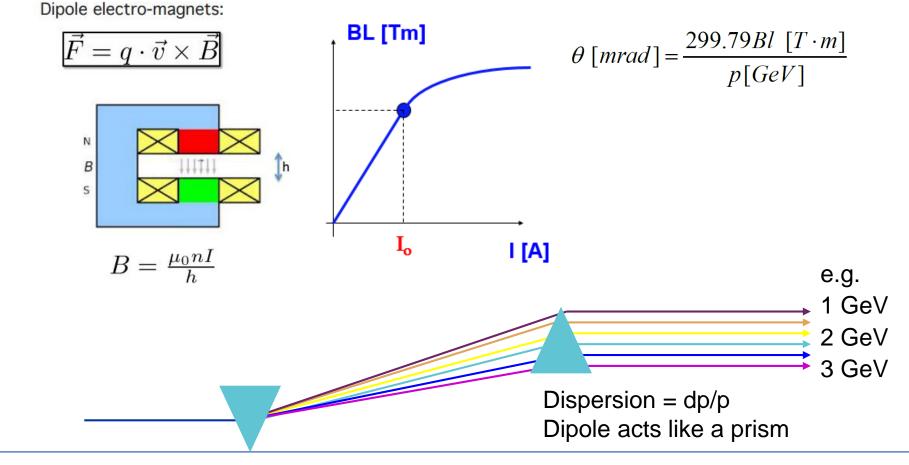
How do we build a beamline?

22.02.23

Beam lines

Experiments and test beams require "clean" beams with high purity (one particle type) and small momentum spread

Beam lines design ("optics")

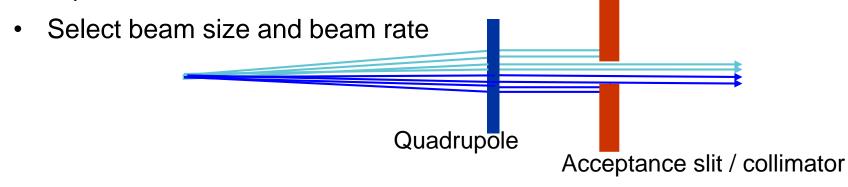

- 1. Collect produced particles from target
- 2. Select momentum
- 3. Select particle type
- 4. Transport beam to experiment
- 5. Select beam spot size for experiment

Secondary beam line - layout

Basic beam design

Transport and momentum selection: bending magnets

Secondary beam line - layout

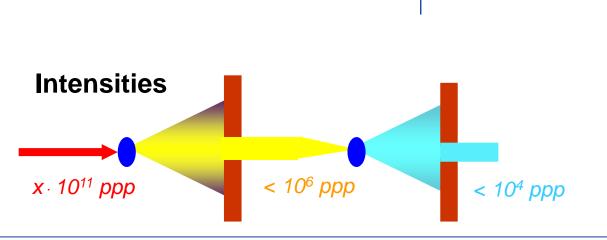

Basic beam design

Momentum selection and acceptance: collimators

Select small momentum band in combination with dispersion from BENDs

Momentum slit / collimator

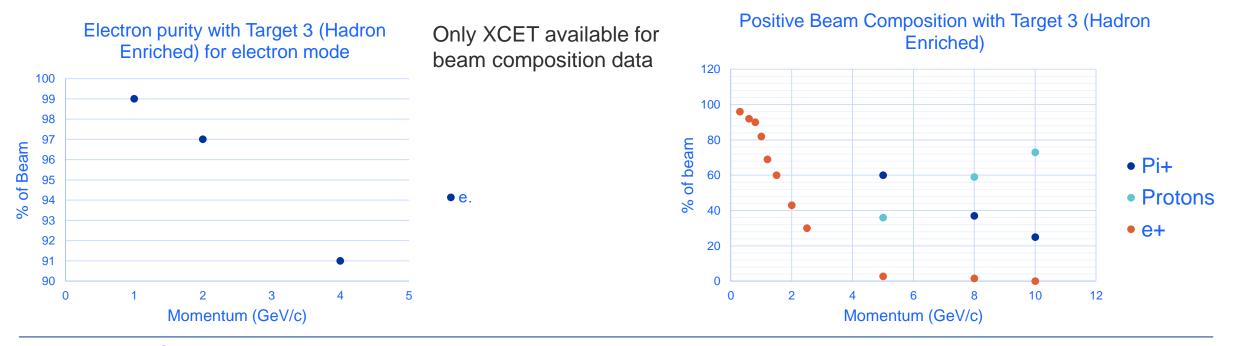
• Acceptance collimators



Secondary beam line - layout

Basic beam design

Selection of particle types Secondary Absorber Primary Target (Be) Target (2022) (few mm Pb, 2022) Primary beam Secondary beam Tertiary beam Tertiary beam 24 GeV/c **p** Mixed ($e+h+\mu+\chi$) *Typically* ~1-10 GeV/c Pure hadrons Flux up to 10^4 ppp, e.g. *Few* 10¹¹ *ppp Typically ~1-15 GeV/c* Flux ~ 10^6 ppp \rightarrow Pb: 1X_o, <<1 λ_{l} : 'pure' electrons


T9 Beam Modes available

Electron mode

- The charged particles from the secondary target are deflected away selecting the photons. A 5 mm Pb converts the photons into e+/e- pair.
- Momenta 0.1 GeV/c 4 GeV/c.
- > 99% purity for p < 1 GeV/c

• Mixed hadron mode

- The secondary beam from protons on target can be chosen.
 - Momenta 0.1 GeV/c 16 GeV/c.
 - At lower momenta electrons dominate.

So...what can we control in the beamline?

Choice of target

• More electrons, or more hadrons

Momentum of beam

- Absolute momentum (up to 16 GeV/c)
- Spread of momentum (between 0.5% and 7.5% standard deviation around chosen momentum)

• Particle content of the beam – hadrons, electrons or mixed

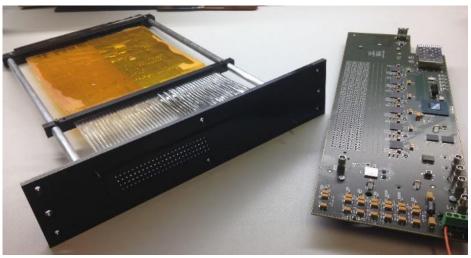
- Electron only beam (below 5 GeV/c ~90% pure, at 1 GeV/c ~99% pure) or hadron only
- Tag particle species from beam with threshold Cherenkov counter (see later slide!)
- Size and quantity of beam
 - More or fewer particles extracted between hundreds and millions per spill
 - Beam can be a few mm large, up to a few cm (standard deviation)

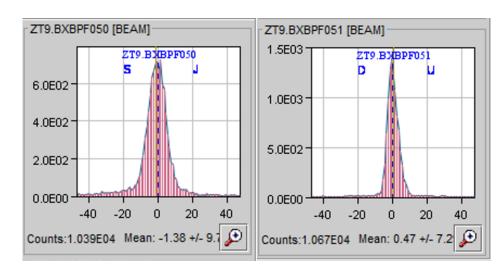

How do we see the beam?

Secondary beam line - Instrumentation

Scintillating Counter (XSCI)

- Charged particles produce light in scintillator
- Light collected and transported by light guide
- Coupled to photo multiplier tube (PM), light hits photocathode and produces electrons
- Electrons are amplified within a high voltage cascade
- Used to count particles in a range from a few particles up to rates of MHz
- Different shapes and sizes: Some can scan through a beam, other count the total rate



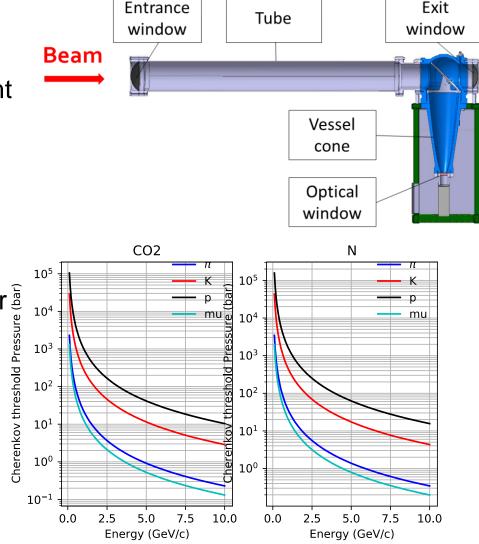


Secondary beam line - Instrumentation

Scintillating fibre hodoscopes (XBPF)

- Particle detection with scintillating fibres from the creation of scintillation light, due to the passage of a charged particle, and the transmission of this light inside the fibre by total internal reflection.
- Composed of 100 or 200 scintillating fibres of 1 mm thickness and square cross-section

Secondary beam line - Instrumentation


Threshold Cerenkov counters (XCET)

In a medium (e.g., He or CO2 gas) if a charged particle goes faster than light it emits Cerenkov light in a cone with half-opening angle f:

 $f^2 = 2kP - m^2/p^2$

where k depends on the gas, P=pressure.

- By selecting the right operating pressure, one type of particle has good efficiency and the other gives no signal. By making a coincidence with scintillator signals, particle identification can be made. Two types of XCET in T09: • Low pressure → 0.01 – 4 bars • High pressure → 0.01 – 15 bars

Conclusion

• Core concepts of the CERN beamlines

- GeV is everywhere!
- Secondary beams are made by shooting primary protons on a target and collecting the resulting particles with magnets
- In T9, most of the beam will be pions, kaons, muons and electrons

• The user is in control of many of the beam aspects

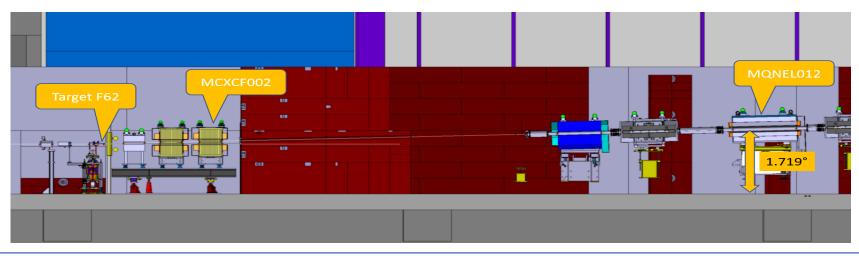
- Particle type in beam, size of beam, momentum, intensity
- We look forward to reading your proposals!

home.cern

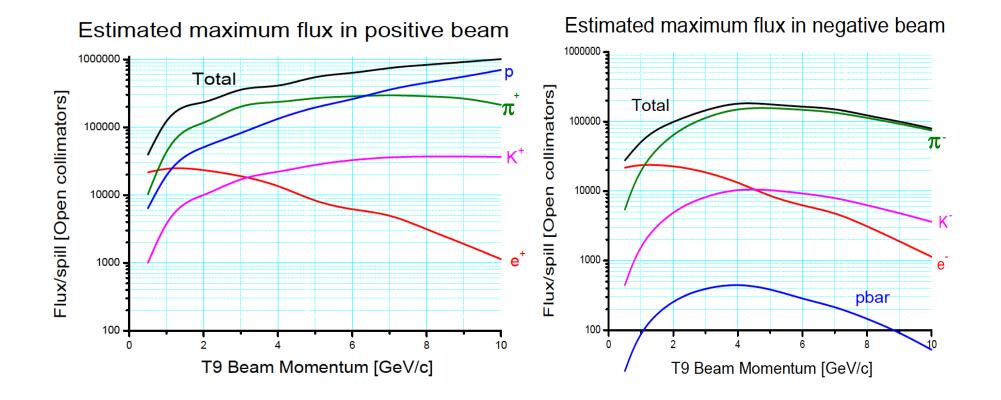
Beam composition

Useful numbers

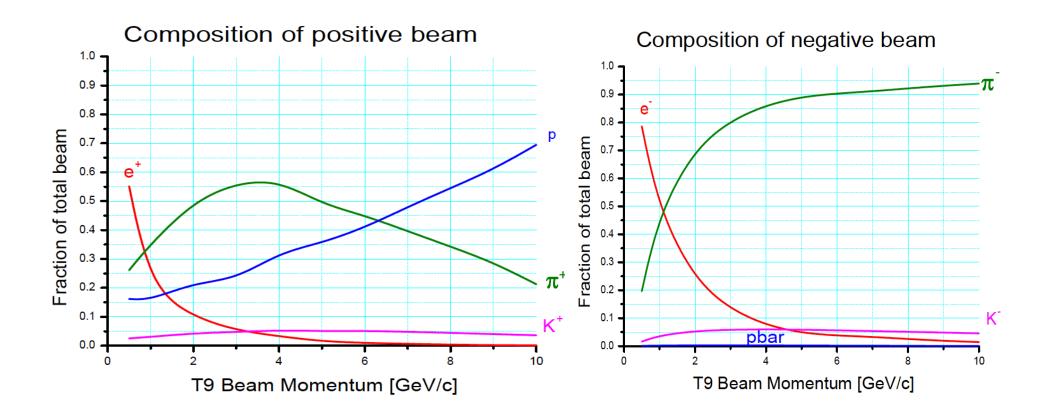
Spill characteristics


- The beam will arrive to the T9 zone in "spills" the beam is taken out of the PS and "spills" to the target
- Spill length (= time over which particles come to you) is around 400ms
- You will get 2-4 of these every minute (conditions not static, dependent on other users)
- Content of the spill is between a few hundred and a few million particles

Characteristics of the East Beams


Parameter	T09 Target	T10/T11	T10/T11 Target	
Beam Line	Т09	T10	T11	
Secondary beam Max Momentum (GeV/c)	16	12	3.5	
Δp/p (%)	±0.7 to ±15.0	± 0.7 to ± 15.0	±0.7 to ±15.0	
Maximum intensity/spill (hadrons/electrons)	10 ⁶	10 ⁶	10 ⁶	
Available particle types	Pure electrons (T09) or mixed/pure hadrons or pure muons			

30-35 mrad vertical production angle


Beam rates

For wide open collimators, i.e. $dp/p \approx \pm 7.5\%$ (Theoretical Calculation)

Beam composition

With electron enriched target (otherwise e[±] strongly reduced) (Theoretical Calculation)

