The Particle World

CERN Summer School Lectures 2023
Lectures 1 and 2: The Standard Model

David Tong

Further Reading

Particle Physics

CERN Lectures

David Tong

Department of Applied Mathematics and Theoretical Physics,
Centre for Mathematical Sciences,
Wilberforce Road,
Cambridge, CB3 OBA, UK
http://www.damtp.cam.ac.uk/user/tong/particle.html
d.tong@damtp.cam.ac.uk

What are we made of?

Atom structureProtonNeutron
© Electron
"If we consider protons and neutrons as elementary particles, we would have three kinds of elementary particles [p,n,e].... This number may seem large but, from that point of view, two is already a large number."

Paul Dirac 1933 Solvay Conference

The Standard Model

12 particles +4 forces + Higgs boson

The Standard Model

Higgs

The Standard Model

Hypercharge

Strong

Higgs

Our First Unification: Fields

- Particles are excitations of underlying quantum fields
- Forces are also due to fields and have associated particles
- Electromagnetism $=$ photon
- Strong = gluon
- Weak $=\mathrm{W}$ and Z bosons
- Gravity $=$ graviton

Intrinsic Angular Momentum $=$ Spin

These are fermions.

The Pauli exclusion principle applies to fermions.

Spin 2

These are all (gauge) bosons

A Remarkable Fact

All spin $1 / 2$ particles are described by the same equation, discovered by Dirac

Here m is the mass.

Consequence: all matter particles come with anti-particles

Mass

An aside: In the Standard Model, the masses of all particles are determined by the strength of interaction with the Higgs field.

Units for Mass

We measure mass in terms of energy, using $\mathrm{E}=\mathrm{mc}^{2}$. The unit of choice is the electronvolt

$$
1 \mathrm{eV} \approx 1.6 \times 10^{-19} \mathrm{~J}
$$

Or $\mathrm{MeV}=10^{6} \mathrm{eV}$ or $\mathrm{GeV}=10^{9} \mathrm{eV}$ or $\mathrm{TeV}=10^{12} \mathrm{eV}$.

More confusingly, we also measure distance in terms of inverse energy, using

$$
\lambda=\frac{\hbar c}{E}
$$

For a particle of mass E, this is the "Compton wavelength", or the size of the particle.
Note: heavier particles are smaller!

The Masses of Particles

Compton wavelength of electron $\lambda_{e} \approx 2 \times 10^{-12} \mathrm{~m}$

The Masses of Particles

Note: photon and graviton both massless.
(The gluon is a little subtle...see later.)

The Masses of Particles

The biggest

$$
\begin{gathered}
H \approx 2 \times 10^{-33} \mathrm{eV} \\
L_{\text {universe }} \approx 9 \times 10^{26} \mathrm{~m}
\end{gathered}
$$

The smallest

$$
\begin{aligned}
& M_{\mathrm{pl}}=\sqrt{\frac{\hbar c}{8 \pi G}} \approx 2 \times 10^{18} \mathrm{GeV} \\
& L_{\mathrm{pl}}=\sqrt{\frac{8 \pi \hbar G}{c^{3}}} \approx 8 \times 10^{-35} \mathrm{~m}
\end{aligned}
$$

Electric Charge

Charge $=$

-1

$-1 / 3$

$+2 / 3$

The electric charge characterizes the (relative) strength of the electromagnetic interaction

Electromagnetism (or QED)

The Maxwell Equations

$$
\begin{array}{ll}
\nabla \cdot \mathbf{E}=\frac{\rho}{\epsilon_{0}} & , \quad \nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} \\
\nabla \cdot \mathbf{B}=0 & , \quad \nabla \times \mathbf{B}=\mu_{0}\left(\mathbf{J}+\epsilon_{0} \frac{\partial \mathbf{E}}{\partial t}\right)
\end{array}
$$

This implies the Coulomb force which, in natural units, reads

$$
F=\alpha \frac{Q_{1} Q_{2}}{r^{2}}
$$

with the fine structure constant

$$
\alpha=\frac{e^{2}}{4 \pi \epsilon_{0} \hbar c} \approx \frac{1}{137}
$$

Feynman Diagrams

An important fact: quantum field theory is hard!

We are saved in QED because $\alpha \approx \frac{1}{137} \ll 1$. This allows us to write down an approximate solution
e.g. what is the probability for a photon to scatter off an electron in some direction?

More complicated diagrams, like

Renormalisation

Look close at the electron.

$$
\mathbf{E}=\frac{e}{4 \pi \epsilon_{0} r^{2}} \hat{\mathbf{r}} \quad \square
$$

Large energy density near electron, This allows for the creation of particle-anti-particle pairs

This is the physics behind the increasingly complicated diagrams like this

Renormalisation

As you look more closely, the charge of an electron gets bigger!

Constants of nature are not constant!

The Strong and Weak Force

Both nuclear forces have associated "electric" and "magnetic" fields

$$
\mathbf{E}=\left(E_{x}, E_{y}, E_{z}\right) \quad \mathbf{B}=\left(B_{x}, B_{y}, B_{z}\right)
$$

But each component is now itself a matrix.

- 1×1 matrixElectromagnetism
- 2×2 matrix
 Weak force
or $\mathrm{U}(1) \times \mathrm{SU}(2) \times \mathrm{SU}(3)$
- 3×3 matrix \square Strong force

These fields are governed by the Yang-Mills equations

The Strong Force (or QCD)

Each quark comes in three colours, which we take to be red, green and blue.
(Note: a better counting is that each generation contains $1+3+3+1=8$ particles.)

Why is the Strong Force Strong?

strong coupling constant

energy $=1 /$ distance

At high energy, say $\mathrm{E}=100 \mathrm{GeV}$, we have $\alpha_{s} \approx 0.1$. But the strong force gets stronger as we go to larger distances. (Asymptotic freedom.)

Taken naively, $\alpha_{s} \rightarrow \infty$ at the energy scale:

$$
\Lambda_{\mathrm{QCD}} \approx 200 \mathrm{MeV}
$$

This corresponds to a distance scale $R_{\mathrm{QCD}}=\frac{1}{\Lambda_{\mathrm{QCD}}} \approx 5 \times 10^{-15} \mathrm{~m}$

Confinement

At short distances, $F(r) \sim \frac{\alpha_{s}}{r^{2}}$ but at long distances $F(r)$ becomes constant.

In terms of the potential energy, $V(r) \sim-\frac{\alpha_{s}}{r}$ at short distances, but at long distances

$$
V(r) \sim \Lambda_{\mathrm{QCD}}^{2} r
$$

This is confinement. We don't see isolated quarks.
Also, the force carrying field is not massless. The gluons stick together to form glueballs, with mass around $m_{\text {gluon }} \approx \Lambda_{\mathrm{QCD}}$. This is the "mass gap" problem.

Hadrons (Stuff Made of Quarks)

- Baryons: three quarks. For example

$$
\begin{aligned}
n(d d u) & m_{n} \approx 939.57 \mathrm{MeV} \\
p(u u d) & m_{p} \approx 938.28 \mathrm{MeV}
\end{aligned}
$$

A puzzle: $\mathrm{m}_{\text {down }}=5 \mathrm{meV}$ and $\mathrm{m}_{\text {up }}=2 \mathrm{MeV}$. Where does the mass come from?

- Mesons: quark-anti-quark pair. For example, pions

$$
\begin{array}{ll}
\pi^{+}(\bar{d} u) & m \approx 139 \mathrm{MeV} \\
\pi^{0} \frac{1}{\sqrt{2}}(\bar{u} u-\bar{d} d) & m \approx 135 \mathrm{MeV} \\
\pi^{-}(\bar{u} d) & m \approx 139 \mathrm{MeV}
\end{array}
$$

Note: Pions have spin 0 and so should be thought of as "force carrying" particles! So ...

Decay

All hadrons other than the proton are unstable. They decay.

- Strong decay: $\sim 10^{-22}$ to 10^{-24} seconds.

$$
\begin{gathered}
\Delta^{++}(u u u) \rightarrow p+\pi^{+} \\
\Sigma^{0}(d u s) \rightarrow \Lambda^{0}+\gamma \text { with } \Lambda^{0}(d u s) \\
\pi^{+}(u d) \rightarrow \mu^{+}+\nu_{\mu}
\end{gathered}
$$

- Weak decay: $\sim 10^{-7}$ to 10^{-13} seconds.

The most famous weak decay is how we first discovered the weak force

$$
n \rightarrow p+e^{-}+\bar{\nu}_{e}
$$

Or, if you look more closely,

Particles vs Resonances

- Strong decay: $\sim 10^{-22}$ to 10^{-24} seconds.
- Electromagnetic decay: $\sim 10^{-16}$ to 10^{-21} seconds.
- Weak decay: $\sim 10^{-7}$ to 10^{-13} seconds.

If a particle decays through the weak force, we can take a photograph of it!

If it decays through the strong force, or EM, then we see it more indirectly

The Weak Force

half of each particle!

Parity Violation

$$
{ }^{60} \mathrm{Co} \rightarrow{ }^{60} \mathrm{Ni}+e^{-}+\bar{\nu}_{e}+2 \gamma
$$

Chiral Fermions

left-handed fermion

right-handed fermion

Left-handed particles experience the weak force, right-handed do not.

The Forces of the Standard Model

Each generation splits into 8×2 sets of particles

Note: We don't yet know if the right-handed neutrino exists.

The Structure of the Standard Model

Particles		Strong	Weak	Hypercharge
Left-handed	quarks	yes	yes	$+1 / 6$
	leptons	no	yes	$-1 / 2$
Right-handed	up quark	yes	no	$+2 / 3$
	down quark	yes	no	$-1 / 3$
	electron	no	no	-1
	neutrino	no	no	0

A perfect jigsaw: Anomaly cancellation means that it could hardly be any other way!

The Higgs Field

This is both the simplest and most complicated field in the Standard Model!

Particle	Strong	Weak	Hypercharge
Higgs	no	yes	$+1 / 2$

Two relevant scales: - Mass $m_{H} \approx 125 \mathrm{GeV}$

- Condensate $\langle\phi\rangle \approx 246 \mathrm{GeV}$

It is the condensate that gives the Higgs its Midas touch: everything that it touches gets a mass

How Particles Get a Mass

In the Standard Model, all fermions and gauge bosons are obliged to be fundamentally massless

They get a mass by interaction with the Higgs.

some dimensionless coupling $\quad\langle\phi\rangle \approx 246 \mathrm{GeV}$

- The Higgs gives mass to the W-boson and Z-boson and all fermions.
- The photon remains massless: it is the one that got away!
- Recall: the mass of the proton and neutron do not come from the Higgs!

One Last Thing: Quark Mixing

There is a misalignment between the interactions with the Higgs and the interaction with the weak force.

It turns out that you can choose to have the up-sector aligned. But then the down sector is not. The result is a superposition of particles.

These particles interact with weak force

These particles interact with Higgs, and so definite mass.

This is how, for example, mesons with strange quarks decay

One Last Thing: and Lepton Mixing

There is a similar statement for neutrinos

These particles interact with weak force and are produced in, say, beta decay

$$
\left(\begin{array}{c}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{array}\right)=\left(\begin{array}{ccc}
U_{e 1} & U_{e 2} & U_{e 3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{array}\right)\left(\begin{array}{c}
\nu_{1} \\
\nu_{2} \\
\nu_{3}
\end{array}\right)
$$

These particles have definite mass. These are energy eigenstates that travel unchanged through space.

The Mixing Matrices

For quarks, we have the CKM matrix

$$
\left(\begin{array}{l}
\left|V_{u d}\right|\left|V_{u s}\right|\left|V_{u b}\right| \\
\left|V_{c d}\right|\left|V_{c s}\right|\left|V_{c b}\right| \\
\left|V_{t d}\right|\left|V_{t s}\right|\left|V_{t b}\right|
\end{array}\right) \approx\left(\begin{array}{ccc}
0.97 & 0.22 & 0.004 \\
0.22 & 0.97 & 0.04 \\
0.009 & 0.04 & 0.999
\end{array}\right)
$$

For neutrinos, we have the PMNS matrix

$$
\left(\begin{array}{l}
\left|U_{e 1}\right|\left|U_{e 2}\right|\left|U_{e 3}\right| \\
\left|U_{\mu 1}\right|\left|U_{\mu 2}\right|\left|U_{\mu 3}\right| \\
\left|U_{\tau 1}\right|\left|U_{\tau 2}\right|\left|U_{\tau 3}\right|
\end{array}\right) \approx\left(\begin{array}{ccc}
0.8 & 0.5 & 0.1 \\
0.3 & 0.5 & 0.7 \\
0.4 & 0.6 & 0.6
\end{array}\right)
$$

We only know these parameters by experimental measurement. Why do they take these values? Why are the matrices so different?

Summary: The Greatest Theory of All Time

$$
G=S U(3) \times S U(2) \times U(1)
$$

\times three generations
with all complications coming from interactions with Higgs!

