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Citius, Altius, Fortius

How high can a human jump with a pole?
Physics (energy conservation) tells us that longer poles don't help!

I 02 footspeed: 44.72km/h
| Ah = 2% (Usain Bolt, Berlin, August 2009, between 60m and 80m)
[ Ah =7.62m

Over the years, we have learnt a few other conservation laws
that tell us what an athlete/a particle can do or cannot do.

— Remarkable breakthrough in the understanding of Nature: —

forces among particles are associated to symmetries
- conservation of E — invariance by (time)-translation
- electro-magnetic forces — (local) invariance by phase rotation of particle wavefunctions

The Standard Model of Particle Physics

Lorentz symmetry + internal SU(3)xSU(2)xU(|
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Role(s) of Symmetry

— Selection Rules —

e hydrogen atom: energy levels depends on n, but not on |, nor m

(invariance under rotations as well as another symmetry that leaves the Runge-Lenz vector invariant)

e electric charge conservation: e*e- i> y but e*y L e-
— Dynamical Principle —

Requiring that theory describing SM particles is invariant under some
(local) symmetries require the existence of interactions among these
particles. And these interactions have a particular structure.
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Outline
o Monday: symmetry

o Lagrangians
o Lorentz symmetry - scalars, fermions, gauge bosons
o Gauge/local symmetry as dynamical principle - Example: U(1) electromagnetism

0 Tuesday: SM symmetries

o Nuclear decay, Fermi theory and weak interactions: SU(2)
o Strong interactions: SU(3)
o Dimensional analysis: cross-sections and life-time computations made simple

0 Wednesday: chirality of weak interactions

o Chirality of weak interactions
o Pion decay

0 Thursday: Higgs mechanism
o Spontaneous symmetry breaking and Higgs mechanism
o Lepton and quark masses, quark mixings
o Neutrino masses

a Friday: quantum effects
o Running couplings
o Asymptotic freedom of QCD
o Anomalies cancelation
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SM= S(R+Q)M

The fundamental constituents of matter obey the laws of Quantum Mechanics and Special Relativity
They are described in the framework of Quantum Field Theory (QFT)

QFT offers a way
1) To organise our knowledge
2) To parametrise our ignorance

— | —

Play a crucial role in the Likely to fail to describe

Describe collider data evolution of the Universe gravity @ quantum level

"Before breaking the rules, you first need to master them”

Goals of the lectures

1. Explain QFT to describe the SM particles and their interactions
2. Introduce the principles to build a model of Nature
3. Explain how to compute cross-section and decay rate

4. Unveil clues where the SM might fail
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Lagrangians

The Newton law of classical mechanics

—

F=ma or V(z)=-mi

can be obtained by requiring the least action principle

05 =0
where
t .
the action: S = / dtL(x,x) with the (classical) Lagrangian: £ (z,#) = §mx'2 — V(z)
t1
: . 0L 1

(Hamiltonian/energy:  H = b — L= 5m:i:2 +V(x))
O]
g = (5L d oL 50 d oL
s 4 _ e e — 2=
‘320-8 05 ) d (5:13 - 5:&) dx + boundary terms = 0 = s
— D
5 &
g For the classical Lagrangian: —V'(z) = mz
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Lagrangians for Particle Physics

—

Equations of motion, like F' = md, are covariant under the action of a symmetry.

Lagrangians are invariant.

That makes identifying the symmetries of Nature much easier.

—Particle Physics—

particles < fields with specific transformation properties under some fundamental symmetries

build a Lagrangian (i.e. a function of the these fields and their space-time derivatives) that
remains invariant under the action of the symmetry transformations.

Which symmetries?
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Lorentz Transformations

O 2z Consider two observers

In relative motion with a constant speed vo along the x-axis

Vo they use their own systems of coordinates (t,x,y,z) and (t',x,y’,z")

X In particular
t t = e ,
! I _ v W' = v — v
y X _ X / Boct + @ with 3, = B O
’ ! v,V ‘ the speed
e o — € speed can
be arbitrarily large.

In particular

The speed of light is

the same for all observers:

if v=c than v’=c too
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Einstein Algebra

uw=20,1,2,3

A? = (ct)2 —x? —y? =t = NuThx”  with  Npw = diag(1,—1,—1,—1) Minkowski metric

/ /
ot — '™ = A, x¥  leaves Ainvariantiff 7, =1/, A" LAY,

At linear order, A# , ~ §*, + w*, , the invariance of A2 simply writes Wyu + wyy =0

/
where we have defined w,,, = 1, w" ,

S

@)

5 ct ct’ = o (ct — Box) e 7

& I — _ —

0 Y g foct + ) correspondsto  AF, = LA

a Y y =y 1
QQ /

g Z 2=z 1
@)

‘3

1

o / /

2 indeed satisfies Nuw = Mo A LAY since V21— B =1

Exercise: find the expression of A*, for a boost along a general space direction
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Scalar Lagrangian

A (real) scalar field ¢

is a real function of space-time coordinates that doesn’t change under Lorentz transformations

¢(x) = ¢ (w

/
ot — 't = AP Y

) = o(x)

Lorentz invariant Lagrangian for scalar field?

e any potential V(@) is automatically invariant

e kinetic term?
ot — P = AH*

¢(x) = ¢'(z') = ()

Eqg. of motion: o0=éc= (—auaﬂcb = g—g
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) o I.e.

W) 0.0=17", 0,0 mp udo=n" N N, 0,80,¢ =n""8,80,¢

’ (Lorentz transformation)

Klein-Gordon
equation




Equations of Motion of Elementary Particles

— = _

Schrodinger Equation (1926): <zh |

| ,
E = P +V classical < quantum 0 0

2m correspondance B = Zh[)_ & p— Zh%

—

—

fm ‘2 -
f Klein-Gordon Equation (1927): 1 0
| E2 5 C2 0152

2 2
—5 = Dp +m-c
C

—

Dirac Equation (1928):

| { +1/p2c2 + m2ch  matter
E =

_\/p2cz+m204 antimatter

positron (e*) discovered by C. Anderson in 1932
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http://en.wikipedia.org/wiki/Schr%C3%B6dinger_equation
http://en.wikipedia.org/wiki/Klein%E2%80%93Gordon_equation
http://en.wikipedia.org/wiki/Positron
http://en.wikipedia.org/wiki/Carl_D._Anderson
http://en.wikipedia.org/wiki/Dirac_equation

Fermion Lagrangian

1) 4-component Dirac spinor

N IR SN | Y-S describes a spin-1/2 particle
: L= w i (W a,“ m) ¢ : when quantised

. . v (u=10,1,2,3) are four 4x4 matrices
e Equation of motion:

0=06L =" (iv"9, —m) s Dirac equation (iv" 0, —m) ¢ = 0

® L orentz invariance: (see technical slides at the end of the lecture)

et — ' = (0", + why)z”  with wyy +wy, =0

8

6(@) > 0/@) = (Lt g 2) v

¢ Dirac algebra:

For this equation to be consistent with Einstein equation (m2=E2-p2) or

Klein-Gordon eq., the y# matrices have to obey the Clifford algebra

® Dirac matrices: One particular realisation of the Dirac algebra (not unique)
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U(1) Gauge Symmetry — QED

Quantum ElectroDynamics : the phase of an electron is not physical and can be rotated away

If the phrase transformation is local, i.e., depends on space-time coordinate, then
Ou1h — € (9,1 +1(0,0)v)

and the kinetic term is no-longer invariant due to the presence of the non-homogenous piece

To make the theory invariant under local transformation, one needs to introduce a gauge field
that keeps track/memory of how the phase of the electron changes from one point to another.
For that, we build a covariant derivative that has nice homogeneous transformations
Dutp = 0,00+ ieAyh — Dyt iff A, — A, — 20,8

€

L =110 (iy*D, —m)+ i invariant under |
¢ |ocal phase rotation

e |orentz transformation
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. )

GAM@DT’YO/YM@b
gauge field (aka photon) and electron e (p) e” (@)
7

Interaction between

Gauge invariance is a dynamical principle: it predicts some interactions among particles.

It also explains why the QED interactions are universal
(an electron interacts with a photon in the same way on Earth, on the Moon and at the outskirts of the Universe)

— Some examples of QED processes —

e Moeller scattering : e~ +e¢~ — e~ + e~
e Bhabha scattering : e~ +e™ — e + e

e Pair annihilation : e +et — v+~
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Gauge Field Kinetic Term

To build the QED Lagrangian, we had to introduce a new field A,
it is propagating degree of freedom we need to add a kinetic term in the Lagrangian.

Tensor field strength: F,, = 0,4, — 0, A,

ot — o't = AP Y
¢ Lorentz transformations: AH L AT AR AV » P — F'M = A AF PO

* U(1) gauge transformations: 4, — 4, — é@ﬁ » F., — F,

e | orentz transformation

: 1 D .
: Lyin = ——F,,, F* . Invariant under _
4 : * |ocal phase rotation

equations of motion «— Maxwell equations of electromagnetism

A%=EM scalar potential, A=1.2.3 = EM vector potential

> 0, F" = J¥
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Remark: no interaction among photons (photons only interact with electrically charged fields)
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SU(N) non-Abelian Gauge Symmetry

We generalise the QED construction by considering general transformation of a N-vector
¢ —=Ugp

We build a covariant derivative that again has nice homogeneous transformations

Dy = 0,6 +igAud — UDuo  iff A, 5 UAU L+ é(@MU)U_l

g is the gauge coupling and defines the strength of the interactions

For the field strength to transform homogeneously, one needs to add a non-Abelian piece
F,.=0,A,—-0,A, +iglA,, A) - UF,U"!
Contrary to the Abelian case, the gauge fields are now charged and interact with themselves

Lyin = TrF,, F*" D g0AAA + g?AAAA

o,d P, C
pa “ps3
92
Py P2
[, a v, b

3 gauge boson self-interactions
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Technical Details
for Advanced Students




Time-ordering # Causality

AZ ct ct’ = o (ct — Box)
' T ' = o (—Boct + x)
y | Y=y
° 2 Z =z

/ >

X,

“time dilation + space contraction”

Proper space-time distance A is independent of the observer:

A/Q _

consider two events E1 and E2 characterised by their space-time coordinates

t'> can be positive or negative
causality # time ordering

cth)? — (D) = (ct)? — 22 = A2
2 2 2

Only events inside the past/future light cones are causally connected
The light cones are invariant under Lorentz transformations
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Spinor Transformation

Transformation law:  ¢(z) = ¢'(2') = S(A)yY(z)

We want the Dirac equation to take the same form in the two systems of coordinates x and x’

(170, —m)yY =0

(iv"0), —m)y" =0

This implies the condition: SAHAY ST =¥

We consider small Lorentz transformations:

1

A’UJV :(Sl'lj—|—w'uy S=1-— ZO'MVCUMV

The covariance of the Dirac equation then implies that the matrices o, have to satisfy the relation
Yo%) = 2i(n"" 77 —n"7")

It is easy to check that the following matrices fit the bill: 0”7 = ~|+”,77]

o
2

o — o't = (6", + Wtz

b(a) = () = (14 .

with w,, +w,, =0

8

Jonr, 1) ¥

Lorentz-invariant Lagrangian

L =y"M (iv"0, —m) 1 is Lorentz-invariant iff 7°[v",Y*]7°M + M[y*, "] =0

M =" is a solution and it defines the Dirac Lagrangian. |¢ = 74"
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Symmetries and invariants

SU(N)

the transformations among the components of a complex N-vector that leaves its norm invariant

0]F = d1¢1 + ... Onon — [¢']F = [9]*

SU(N,M)
the transformations among the components of a complex (N+M)-vector that leaves its (N,M) norm invariant
6] = @i + ... ONON + ONp 1N+ — - — PN ONm — [OF =[]

SO(N)

the transformations among the components of a real N-vector that leaves its norm invariant

0]F = d1 +...05 = [&']* = |¢]”

SO(N,M)
the transformations among the components of a real (N+M)-vector that leaves its (N,M) norm invariant
¢ :¢%+“'¢?\7+¢?\7+1 _°'°_¢?\H—M — |¢']* = |9|*

The Lorentz group is thus SO(1,3)
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Lorentz transformation

SO(1,3)
The elements of SO(1,3) satisfy U'nU =n where =diag(1,-1,-,1,-1)
The infinitesimal transformations are U =7 ~ 1+ 60°T% + . ..

The generators satisfy the constraints: 7%'n + nT“ = 0

0 1 0 O
One particular generatoris 7= (1) 8 8 8
0O 0 0 O
coshf sinhd 0 O
. g7 | sinh® coshf® 0 O
We obtain " = 0 0 10
0 0 0 1

We indeed recover the usual Lorentz transformation with the identification

v=coshf and (v =sinh6

1

[V

& cosh®0 — sinh? 0 =1
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