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Text:

At  the  Faculty  of  Mathematics  and  Natural  Sciences,  Department  of  Physics,  is  a  joint

appointment  with  the  German  Electron  Synchrotron  (DESY)  a

W3-S-Chair  of  "Theoretical  Particle  ─  development  of  theories  beyond  the

Standard  Model"

to  be  filled  as  soon  as  possible.

DESY  is  one  of  the  leading  centers  for  Astroparticle  and  Particle  Physics.  The  research

program  of  particle  physics  includes  a  strong  involvement  in  the  LHC  experiments  and

basic  research  in  the  field  of  theoretical  particle  in  the  Standard  Model  and  possible

extensions.  The  Institute  of  Physics,  Humboldt  University  is  also  involved  with  two

professorships  at  the  LHC  experiment  ATLAS.  The  research  interests  of  the  working  groups

in  the  field  of  theoretical  particle  physics  ranging  from  mathematical  physics  on  the

phenomenology  of  particle  physics  to  lattice  gauge  theory.

Candidates  /  students  should  be  expelled  through  excellence  with  international  recognition

in  the  field  of  theoretical  particle  physics  with  a  focus  on  the  development  of  models

beyond  the  Standard  Model.  Is  expected  to  close  cooperation  with  the  resident  at  the

Humboldt  University  workgroups.  In  addition  to  the  development  of  possible  standard

model  extensions  and  phenomenological  studies  of  experimental  verification  to  be  carried

out.  Place  special  emphasis  send  the  Higgs  physics.  It  is  expected  that  he  /  she  maintains

the  scientific  contacts  between  DESY  and  the  HU  and  active  in  the  DFG  Research  Training

Group  GK1504  "Mass,  Spectrum,  Symmetry:  Particle  Physics  in  the  Era  of  the  Large

Hadron  Collider"  cooperates.  He  /  she  should  be  at  all  levels  of  teaching  in  physics  at  the

HU  participate  (2  LVS)  and  will  have  the  opportunity  to  acquire  outside  of  a  creative

research  program.

Applicants  /  inside  must  meet  the  requirements  for  appointment  as  a  professor  /  to

professor  in  accordance  with  §  100  of  the  Berlin  Higher  Education  Act.

DESY  and  HU  aim  to  increase  the  proportion  of  women  in  research  and  teaching  and  calling

for  qualified  scientists  urgently  to  apply.  Severely  disabled  applicants  /  will  be  given

( christophe.grojean@desy.de )
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DESY (Hamburg) 

Humboldt University (Berlin)
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Citius, Altius, Fortius
How high can a human jump with a pole?  

�h = 7.62m

�h =
v2

2g

footspeed:  44.72km/h  
(Usain Bolt, Berlin,  August 2009, between 60m and 80m) 

The Standard Model of Particle Physics
 Lorentz symmetry + internal SU(3)xSU(2)xU(1) symmetry  

Over the years, we have learnt a few other conservation laws  
that tell us what an athlete/a particle can do or cannot do. 

— Remarkable breakthrough in the understanding of Nature: — 
forces among particles are associated to symmetries 

conservation of E → invariance by (time)-translation 
electro-magnetic forces → (local) invariance by phase rotation of particle wavefunctions

•  

•  

Physics (energy conservation) tells us that longer poles don’t help!
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Role(s) of Symmetry

— Dynamical Principle —

Requiring that theory describing SM particles is invariant under some 
(local) symmetries require the existence of interactions among these 

particles. And these interactions have a particular structure.

— Selection Rules —

• hydrogen atom: energy levels depends on n, but not on l, nor m 
    (invariance under rotations as well as another symmetry that leaves the Runge-Lenz vector invariant)

• electric charge conservation: e+e- → ! but e+! → e-✓ ✗
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Outline
 Monday: symmetry 

Lagrangians 
Lorentz symmetry - scalars, fermions, gauge bosons 
Gauge/local symmetry as dynamical principle - Example: U(1) electromagnetism 

Tuesday: SM symmetries 
Nuclear decay, Fermi theory and weak interactions: SU(2) 
Strong interactions: SU(3) 
Dimensional analysis: cross-sections and life-time computations made simple 

 Wednesday: chirality of weak interactions 
Chirality of weak interactions 
Pion decay 

Thursday: Higgs mechanism 
Spontaneous symmetry breaking and Higgs mechanism 
Lepton and quark masses, quark mixings 
Neutrino masses 

Friday: quantum effects 
Running couplings 
Asymptotic freedom of QCD 
Anomalies cancelation 
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The fundamental constituents of matter obey the laws of Quantum Mechanics and Special Relativity 
They are described in the framework of Quantum Field Theory (QFT)

QFT offers a way 
1) To organise our knowledge 

2) To parametrise our ignorance

Describe collider data Play a crucial role in the 
evolution of the Universe

Likely to fail to describe  
gravity @ quantum level

1. Explain QFT to describe the SM particles and their interactions 

2. Introduce the principles to build a model of Nature 

3. Explain how to compute cross-section and decay rate 

4. Unveil clues where the SM might fail

Goals of the lectures

"Before breaking the rules, you first need to master them”

SM= S(R+Q)M
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Lagrangians
The Newton law of classical mechanics 

or~F = m~a V 0(x) = �mẍ

Eu
le

r-
La

gr
an

ge
 

eq
ua

tio
ns

For the classical Lagrangian: �V 0(x) = mẍ

�S =

Z t2

t1

dt

✓
�L
�x

� d

dt

�L
�ẋ

◆
�x+ boundary terms = 0

�L
�x

=
d

dt

�L
�ẋ

�S = 0
where

S =

Z t2

t1

dtL(x, ẋ) L(x, ẋ) = 1

2
mẋ2 � V (x)the action: with the (classical) Lagrangian:

Hamiltonian/energy: H = ẋ
�L

�ẋ
� L =

1

2
mẋ2 + V (x)( )

can be obtained by requiring the least action principle 
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Lagrangians for Particle Physics

Equations of motion, like                   , are covariant under the action of a symmetry.~F = m~a

Lagrangians are invariant.

That makes identifying the symmetries of Nature much easier.

particles ↔ fields with specific transformation properties under some fundamental symmetries

build a Lagrangian (i.e. a function of the these fields and their space-time derivatives) that 
remains invariant under the action of the symmetry transformations.

 —Particle Physics— 

Which symmetries?
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Lorentz Transformations
Consider two observers  

in relative motion with a constant speed v0 along the x-axis 

they use their own systems of coordinates (t,x,y,z) and (t’,x’,y’,z’)

y’

z’

x’

O’
O

y

z

x

v0

 Galilean transformations 
0

BB@

t
x
y
z

1

CCA !

0

BB@

t0 = t
x0 = ��0ct+ x

y0 = y
z0 = z

1

CCA �0 =
v0
c

with

in particular

v0 = v � v0

the speed can  
be arbitrarily large.

Lorentz transformations

0

BB@

ct
x
y
z

1

CCA !

0

BB@

ct0 = �0 (ct� �0x)
x0 = �0 (��0ct+ x)

y0 = y
z0 = z

1

CCA

�0 =
v0
c

with
�0 =

1p
1� �2

0

in particular

The speed of light is  

the same for all observers: 

if v=c than v’=c too

v0 =
v � v0

1� v · v0/c2

Note: �2 ⌘ (ct)2 � x2 � y2 � z2 = (ct0)2 � x02 � y02 � z02 ⌘ �02
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Einstein Algebra

�2 ⌘ (ct)2 � x2 � y2 � z2 = ⌘µ⌫x
µx⌫ ⌘µ⌫ = diag(1,�1,�1,�1)with Minkowski metric

xµ ! x0µ = ⇤µ
⌫x

⌫ leaves Δ2 invariant iff ⌘µ⌫ = ⌘µ0⌫0⇤µ0
µ⇤

⌫0
⌫

At linear order,                                   ,  the invariance of Δ2  simply writes ⇤µ
⌫ ⇡ �µ⌫ + !µ

⌫
!µ⌫ + !⌫µ = 0

where we have defined !µ⌫ ⌘ ⌘µµ0!µ0
⌫

µ = 0, 1, 2, 3xµ ⌘

0

BB@

ct
x
y
z

1

CCA

Exercise: find the expression of          for a boost along a general space direction⇤µ
⌫

0

BB@

ct
x
y
z

1

CCA !

0

BB@

ct0 = �0 (ct� �0x)
x0 = �0 (��0ct+ x)

y0 = y
z0 = z

1

CCA corresponds to ⇤µ
⌫ =

0

BB@

� ���
��� �

1
1

1

CCA

bo
os

t a
lo

ng
 x

-d
ir

ec
tio

n

⌘µ⌫ = ⌘µ0⌫0⇤µ0
µ⇤

⌫0
⌫indeed satisfies since �2(1� �2) = 1
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A (real) scalar field 
is a real function of space-time coordinates that doesn’t change under Lorentz transformations

�

10

Scalar Lagrangian

Lorentz invariant Lagrangian for scalar field?

xµ ! x0µ = ⇤µ
⌫x

⌫

�(x) ! �0(x0) = �(x)

• any potential V(Φ) is automatically invariant 

• kinetic term?

L =
1

2
@µ�@

µ�� V (�)

@µ� = ⇤⌫
µ @

0
⌫�

0 @µ�@
µ� = ⌘µ⌫⇤µ0

µ ⇤
⌫0

⌫ @
0
µ0�0@0

⌫0�0 = ⌘µ
0⌫0

@0
µ0�0@0

⌫0�0

⌘µ
0⌫0

(Lorentz transformation)

xµ ! x0µ = ⇤µ
⌫x

⌫

�(x) ! �0(x0) = �(x)

0 = �L =

✓
�@µ@

µ�� @V

@�

◆
��Eq. of motion: Klein-Gordon  

equation⇤� = �V 0(�)i.e.
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Equations of Motion of Elementary Particles

Schrödinger Equation (1926):

E =
p2

2m
+ V E � i� �

�t
p � i� �

�x

�
i� �

�t
+

�2
2m

�� V

⇥
⇥ = 0

classical ↔ quantum 
correspondance &

Klein-Gordon Equation (1927):
E2

c2
= p2 +m2c2

�
1

c2
�2

�t2
��+

m2c2

�2

⇥
⇥ = 0

 positron (e+) discovered by C. Anderson in 1932 

Dirac Equation (1928):

matter

antimatter
E =

�
⇤

⇥
+
⌅

p2c2 +m2c4

�
⌅

p2c2 +m2c4

�
i�µ⇥µ � mc

�

⇥
� =0

E = ⌥�⌥p c+ ⇥mc2

⇤0 = ⇥, ⇤i = ⇥�i, {⇤µ, ⇤⇥} = 2⌅µ⇥

11

http://en.wikipedia.org/wiki/Schr%C3%B6dinger_equation
http://en.wikipedia.org/wiki/Klein%E2%80%93Gordon_equation
http://en.wikipedia.org/wiki/Positron
http://en.wikipedia.org/wiki/Carl_D._Anderson
http://en.wikipedia.org/wiki/Dirac_equation
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Fermion Lagrangian
 4-component Dirac spinor 

describes a spin-1/2 particle 
when quantised

 

L =  †�0 (i�µ@µ �m) 

• Equation of motion:
0 = �L =  †�0 (i�µ@µ �m) � Dirac equation (i�µ@µ �m) = 0

 are four 4x4 matrices�µ (µ = 0, 1, 2, 3)

• Lorentz invariance: (see technical slides at the end of the lecture)

 (x) !  0(x0) =

✓
14 +

1

8
!µ⌫ [�

µ, �⌫ ]

◆
 (x)

xµ ! x0µ = (�µ⌫ + !µ
⌫)x

⌫ with !µ⌫ + !⌫µ = 0

• Dirac algebra:
{�µ, �⌫} = 2⌘µ⌫

For this equation to be consistent with Einstein equation (m2=E2-p2) or

Klein-Gordon eq., the !μ matrices have to obey the Clifford algebra

• Dirac matrices: One particular realisation of the Dirac algebra (not unique)

�0 =

0

BB@

1
1

�1
�1

1

CCA , �1 =

0

BB@

1
1

�1
�1

1

CCA , �2 =

0

BB@

�i
i

i
�i

1

CCA , �3 =

0

BB@

1
�1

�1
1

1

CCA
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U(1) Gauge Symmetry — QED
Quantum ElectroDynamics : the phase of an electron is not physical and can be rotated away 

(internal symmetry, same transformation in all Dirac components) 

 ! ei✓ 

If the phrase transformation is local, i.e., depends on space-time coordinate, then

and the kinetic term is no-longer invariant due to the presence of the non-homogenous piece 

@µ ! ei✓ (@µ + i(@µ✓) )

To make the theory invariant under local transformation, one needs to introduce a gauge field 
that keeps track/memory of how the phase of the electron changes from one point to another. 

For that, we build a covariant derivative that has nice homogeneous transformations

iff Aµ ! Aµ � 1

e
@µ✓Dµ = @µ + ieAµ ! ei✓Dµ 

invariant under 
• Lorentz transformation 

• local phase rotation
L =  †�0 (i�µDµ �m) 
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Dynamical Principle

Gauge invariance is a dynamical principle: it predicts some interactions among particles. 

It also explains why the QED interactions are universal  
(an electron interacts with a photon in the same way on Earth, on the Moon and at the outskirts of the Universe)

L =  †�0 (i�µDµ �m) 

interaction between  

gauge field (aka photon) and electron

Chapter 5

QED : Quantum Electrodynamics

To start our exploration of the fundamental forces we will look at quantum electrody-
namics, or QED. QED was the first theory to be developed using “modern” theoretical
techniques of quantum field theory that was able to take relativistic effects into account.
At it’s root QED describes the interaction between electrons and photons.

5.1 QED Diagrams

The basic Feynman vertex is shown in Figure 5.1, in which an incoming electron with
momentum p, interacts with a photon with momentum k and polarisation vector εµ and
leaves with momentum p′.

Figure 5.1: Basic vertex in QED

The electron-photon vertex coupling factor in QED is
√
αEM ∝ e.

Unfortunately QED contains the effects of the electron spin which makes the mathe-
matics a bit tricky. We haven’t got the tools to deal with it yet, and we won’t until the
4th year Advanced Particle Physics course. We can’t calculate the diagrams in QED yet.
The closest we can get is the scalar electrodynamics we have already talked about.

There are only a few basic processes to consider in QED and they are essentially
different combinations of the basic electron-photon vertex

59

eAµ 
†�0�µ 

• Moeller scattering : e− + e− → e− + e−

Figure 5.2: Moeller scattering

• Bhabha scattering : e− + e+ → e− + e+

Figure 5.3: Bhabha scattering

• Compton scattering : e− + γ → e− + γ

Figure 5.4: Compton scattering

• Pair annihilation : e− + e+ → γ + γ

Figure 5.5: Pair annihilation

60
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Figure 5.3: Bhabha scattering

• Compton scattering : e− + γ → e− + γ
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60

• Moeller scattering : e− + e− → e− + e−

Figure 5.2: Moeller scattering

• Bhabha scattering : e− + e+ → e− + e+

Figure 5.3: Bhabha scattering

• Compton scattering : e− + γ → e− + γ

Figure 5.4: Compton scattering

• Pair annihilation : e− + e+ → γ + γ

Figure 5.5: Pair annihilation

60

— Some examples of QED processes —

F =
q1q2

4⇡✏0r2
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Gauge Field Kinetic Term
To build the QED Lagrangian, we had to introduce a new field Aµ 

it is propagating degree of freedom we need to add a kinetic term in the Lagrangian.

Fµ⌫ = @µA⌫ � @⌫AµTensor field strength: 

• Lorentz transformations:
xµ ! x0µ = ⇤µ

⌫x
⌫

Aµ ! A0µ = ⇤µ
⌫A

⌫ Fµ⌫ ! F 0µ⌫ = ⇤µ
⇢⇤

µ
�F

⇢�

• U(1) gauge transformations: Aµ ! Aµ � 1

e
@µ✓ Fµ⌫ ! Fµ⌫

Lkin = �1

4
Fµ⌫F

µ⌫ invariant under 
• Lorentz transformation 

• local phase rotation

 equations of motion ↔ Maxwell equations of electromagnetism 

Remark: no interaction among photons (photons only interact with electrically charged fields) 

A0=EM scalar potential, Ai=1,2,3 = EM vector potential

tunnel. Compute the center-of-mass energy avaialble?

c) Calculate the center-of-mass energy in the frame where the two beams are colliding head-on

like at the LHC.

(6 Points)

Exercise 4: Rapidity and pseudo-rapidity

We define the rapidity, y, and the pseudo-rapidity, ⌘, of a particle , produced in a collider:

y =
1

2
log

E+ pL

E� pL

, ⌘ = � log tan✓/2,

where E is the energy of the particle, pL its momentum along the beam axis, and ✓ the angle

of the particle with the beam axis.

a) Show that in the limit m! 0, ⌘! y.

b) Show that the rapidity is bounded by: |y|  log
2E

m
.

c) Show that the di↵erence of rapidities of two particles is invariant under Lorentz boosts along

the beam axis.

(6 Points)

Exercise 5: EM action for photons

The photon field strength is constructed from the potential 4-vector A
µ = (�, ~A) as

Fµ⌫ = @µA⌫�@⌫Aµ.

We use a mostly minus metric: ⌘µ⌫ = diag(1,�1,�1,�1).

a) From the classical EM definition of the electric and magnetic fields from the scalar and

vector potential

~E = �~r�� 1

c

@~A

@t
, ~B = ~r^ ~A

show that

~Ei = �Fi0
~Bi = �

1

2
✏i jkF jk,

where ✏i jk is the totally antisymmetric 3-tensor normalised to ✏123 = 1. Conclude that

F
µ⌫ =

0
BBBBBBBBBBBBBBB@

0 �~Ex �~Ey �~Ez

~Ex 0 �~Bz
~By

~Ey
~Bz 0 �~Bx

~Ez �~By
~Bx 0

1
CCCCCCCCCCCCCCCA
.

b) Derive the expression of the gauge field Lagrangian density, � 1

4⇡Fµ⌫F
µ⌫

, in terms of the

electric and magnetic fields and recognise the usual expression of the energy density stored in

the electromagnetic fields.

c) It is helpful to introduce the dual field strength

F̃
µ⌫ =

1

2
✏µ⌫⇢�F⇢�

2

tunnel. Compute the center-of-mass energy avaialble?

c) Calculate the center-of-mass energy in the frame where the two beams are colliding head-on

like at the LHC.

(6 Points)

Exercise 4: Rapidity and pseudo-rapidity

We define the rapidity, y, and the pseudo-rapidity, ⌘, of a particle , produced in a collider:

y =
1

2
log

E+ pL

E� pL

, ⌘ = � log tan✓/2,

where E is the energy of the particle, pL its momentum along the beam axis, and ✓ the angle

of the particle with the beam axis.

a) Show that in the limit m! 0, ⌘! y.

b) Show that the rapidity is bounded by: |y|  log
2E

m
.

c) Show that the di↵erence of rapidities of two particles is invariant under Lorentz boosts along

the beam axis.

(6 Points)

Exercise 5: EM action for photons

The photon field strength is constructed from the potential 4-vector A
µ = (�, ~A) as

Fµ⌫ = @µA⌫�@⌫Aµ.

We use a mostly minus metric: ⌘µ⌫ = diag(1,�1,�1,�1).

a) From the classical EM definition of the electric and magnetic fields from the scalar and

vector potential

~E = �~r�� 1

c

@~A

@t
, ~B = ~r^ ~A

show that

~Ei = �Fi0
~Bi = �

1

2
✏i jkF jk,

where ✏i jk is the totally antisymmetric 3-tensor normalised to ✏123 = 1. Conclude that

F
µ⌫ =

0
BBBBBBBBBBBBBBB@

0 �~Ex �~Ey �~Ez

~Ex 0 �~Bz
~By

~Ey
~Bz 0 �~Bx

~Ez �~By
~Bx 0

1
CCCCCCCCCCCCCCCA
.

b) Derive the expression of the gauge field Lagrangian density, � 1

4⇡Fµ⌫F
µ⌫

, in terms of the

electric and magnetic fields and recognise the usual expression of the energy density stored in

the electromagnetic fields.

c) It is helpful to introduce the dual field strength

F̃
µ⌫ =

1

2
✏µ⌫⇢�F⇢�

2

@µF
µ⌫ = J⌫
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SU(N) non-Abelian Gauge Symmetry
We generalise the QED construction by considering general transformation of a N-vector 

� ! U�

For the field strength to transform homogeneously, one needs to add a non-Abelian piece 

Fµ⌫ = @µA⌫ � @⌫Aµ + ig[Aµ, A⌫ ] ! UFµ⌫U
�1

We build a covariant derivative that again has nice homogeneous transformations

Dµ� = @µ�+ igAµ� ! UDµ� Aµ ! UAµU
�1 +

i

g
(@µU)U�1iff

g is the gauge coupling and defines the strength of the interactions

∃ gauge boson self-interactions

Contrary to the Abelian case, the gauge fields are now charged and interact with themselves

D.3. THE FEYNMAN RULES FOR QCD 379

D.3 The Feynman Rules for QCD

We give separately the Feynman Rules for QCD and the electroweak part of the Standard
Model.

D.3.1 Propagators

−iδab

[
gµν

k2 + iε
− (1− ξ)

kµkν
(k2)2

]
(D.39)µ, a ν, b

g

δab
i

k2 + iε
(D.40)

ω
a b

D.3.2 Triple Gauge Interactions

gfabc[ gµν(p1 − p2)ρ + gνρ(p2 − p3)µ

+gρµ(p3 − p1)ν ]

p1 + p2 + p3 = 0
(D.41)

µ, a ν, b

ρ, c

p1

p2

p3

D.3.3 Quartic Gauge Interactions

ii) Vértice quártico dos bosões de gauge

−ig2
[

feabfecd(gµρgνσ − gµσgνρ)

+feacfedb(gµσgρν − gµνgρσ)

+feadfebc(gµνgρσ − gµρgνσ)
]

p1 + p2 + p3 + p4 = 0

(D.42)
µ, a ν, b

ρ, cσ, d

p1 p2

p3p4

D.3.4 Fermion Gauge Interactions

ig(γµ)βαT
a
ij (D.43)

µ, a

α, jβ, i
p1

p2

p3

D.3. THE FEYNMAN RULES FOR QCD 379

D.3 The Feynman Rules for QCD

We give separately the Feynman Rules for QCD and the electroweak part of the Standard
Model.

D.3.1 Propagators

−iδab

[
gµν

k2 + iε
− (1− ξ)

kµkν
(k2)2

]
(D.39)µ, a ν, b

g

δab
i

k2 + iε
(D.40)

ω
a b

D.3.2 Triple Gauge Interactions

gfabc[ gµν(p1 − p2)ρ + gνρ(p2 − p3)µ

+gρµ(p3 − p1)ν ]

p1 + p2 + p3 = 0
(D.41)

µ, a ν, b

ρ, c

p1

p2

p3

D.3.3 Quartic Gauge Interactions

ii) Vértice quártico dos bosões de gauge

−ig2
[

feabfecd(gµρgνσ − gµσgνρ)

+feacfedb(gµσgρν − gµνgρσ)

+feadfebc(gµνgρσ − gµρgνσ)
]

p1 + p2 + p3 + p4 = 0

(D.42)
µ, a ν, b

ρ, cσ, d

p1 p2

p3p4

D.3.4 Fermion Gauge Interactions

ig(γµ)βαT
a
ij (D.43)

µ, a

α, jβ, i
p1

p2

p3

g g2

Lkin = TrFµ⌫F
µ⌫ � g@AAA+ g2AAAA
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Technical Details  
for Advanced Students
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Time-ordering ≠ Causality

O

y

z

x

y’

z’

x’

O’

0

BB@

ct
x
y
z

1

CCA !

0

BB@

ct0 = �0 (ct� �0x)
x0 = �0 (��0ct+ x)

y0 = y
z0 = z

1

CCA

consider two events E1 and E2 characterised by their space-time coordinates

t1 = 0
x1 = 0

t01 = 0
x0
1 = 0

t2 > 0
x2 > 0

ct02 = � (ct2 � �x2)
x0
2 = � (��ct2 + x2)

E1 E2

t’2 can be positive or negative 
causality ≠ time ordering

�02 = (ct02)
2 � (x0

2)
2
= (ct2)

2 � x2
2 = �2

Proper space-time distance Δ is independent of the observer: 

“time dilation + space contraction”

t

xOnly events inside the past/future light cones are causally connected
The light cones are invariant under Lorentz transformations
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Spinor Transformation
 Transformation law:  (x) !  0(x0) = S(⇤) (x)

We want the Dirac equation to take the same form in the two systems of coordinates x and x’

(i�µ@µ �m) = 0 (i�µ@0µ �m) 0 = 0

This implies the condition: S�µ⇤⌫
µS

�1 = �⌫

We consider small Lorentz transformations: ⇤µ
⌫ = �µ⌫ + !µ

⌫ S = 1� i

4
�µ⌫!µ⌫

The covariance of the Dirac equation then implies that the matrices "#$ have to satisfy the relation
[�⌫ ,�⇢�] = 2i(⌘⌫⇢�� � ⌘⌫��⇢)

It is easy to check that the following matrices fit the bill: �⇢� =
i

2
[�⇢, ��]

 (x) !  0(x0) =

✓
14 +

1

8
!µ⌫ [�

µ, �⌫ ]

◆
 (x)

xµ ! x0µ = (�µ⌫ + !µ
⌫)x

⌫ with !µ⌫ + !⌫µ = 0

Lorentz-invariant Lagrangian

L =  †M (i�µ@µ �m) is Lorentz-invariant iff �0[�⌫ , �µ]�0M +M [�µ, �⌫ ] = 0

M = �0 is a solution and it defines the Dirac Lagrangian.  ̄ ⌘  †�0
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Symmetries and invariants
SU(N) 

the transformations among the components of a complex N-vector that leaves its norm invariant   

|�|2 = �⇤
1�1 + . . .�⇤

N�N ! |�0|2 = |�|2

SO(N) 
the transformations among the components of a real N-vector that leaves its norm invariant   

|�|2 = �2
1 + . . .�2

N ! |�0|2 = |�|2

SU(N,M) 
the transformations among the components of a complex (N+M)-vector that leaves its (N,M) norm invariant   

|�|2 = �⇤
1�1 + . . .�⇤

N�N + �⇤
N+1�N+1 � . . .� �⇤

N+M�N+M ! |�0|2 = |�|2

SO(N,M) 
the transformations among the components of a real (N+M)-vector that leaves its (N,M) norm invariant   

|�|2 = �2
1 + . . .�2

N + �2
N+1 � . . .� �2

N+M ! |�0|2 = |�|2

The Lorentz group is thus SO(1,3)
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Lorentz transformation
SO(1,3) 

The elements of SO(1,3) satisfy                      where  =diag(1,-1,-,1,-1)  U t ⌘U = ⌘

The infinitesimal transformations are U = e✓
aTa

⇡ 1 + ✓aT a + . . .

The generators satisfy the constraints: T at⌘ + ⌘T a = 0

One particular generator is T =

0

BB@

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

1

CCA

e✓T =

0

BB@

cosh ✓ sinh ✓ 0 0
sinh ✓ cosh ✓ 0 0
0 0 1 0
0 0 0 1

1

CCAWe obtain

We indeed recover the usual Lorentz transformation with the identification

� = cosh ✓ and �� = sinh ✓

� =
1p

1� �2
, cosh2 ✓ � sinh2 ✓ = 1


