Accelerator & Technology Sector Beams Department Accelerator Beam Physics Group

Foteini Asvesta

Summer Student Lectures 2023

Disclaimer

Based on:

- Y. Papaphilippou : "Introduction to Accelerators"
- Summer student lectures:
 - B. Holzer, V. Kain, and M. Schaumann
- CERN accelerator school (CAS):
 - F. Tecker: "Longitudinal beam dynamics"
 - S. Sheehy: "Applications of accelerators"
- Joint Universities Accelerator School (JUAS):
 - F. Antoniou, H. Bartosik and Y. Papaphilippou: "Linear imperfections" and "nonlinear dynamics"
- <u>Books:</u>
 - K. Wille: "The Physics of Particle Accelerators"
 - S.Y. Lee: "Accelerator Physics"
 - A. Wolski: "Beam Dynamics in High Energy Particle Accelerators"

Images: cds.cern.ch

Overview

- I. Introduction to Accelerators
 - Applications
 - Accelerator types (historic overview)
 - Accelerator performance indicators & examples
 - Synchrotrons

II. Accelerator beam dynamics

III. CERN accelerator complex

Industry

- Material studies and processing
- Food sterilization
- Ion implantation

World wide about ~30,000 particle accelerators are in operation with a large variety of applications.

'Cold pasteurization' – before packaging

The large majority is used in industry and medicine:

- Industrial applications:
- Medical applications:

~20,000* ~10,000*

A. W. Chao, World Scientific Revies of Accelerator Science and Technology A. Faus-Golfe, The brave new world of accelerator application APAE report, Applications of particle accelerators in Europe S. Sheehy, Applications of accelerators, CAS 2014

04/07/2023

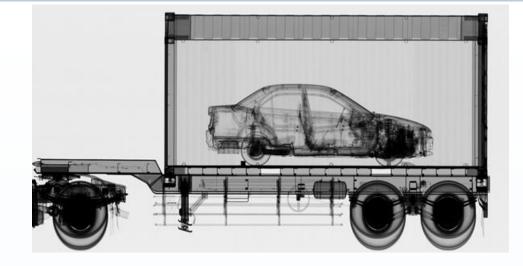
F. Asvesta | Particle Accelerators & Beam Dynamics

4

*Sources:

Security

- Airports & boarders
- Nuclear security
- Imaging


World wide about ~30,000 particle accelerators are in operation with a large variety of applications.

The large majority is used in industry and medicine:

- Industrial applications:
- Medical applications:

~20,000* ~10,000*

- Cargo containers scanned at ports and border crossings.
- Accelerator-based sources of X-Rays can be far more penetrating (6MV) than Co-60 sources.
- Container must be scanned in 30 seconds.

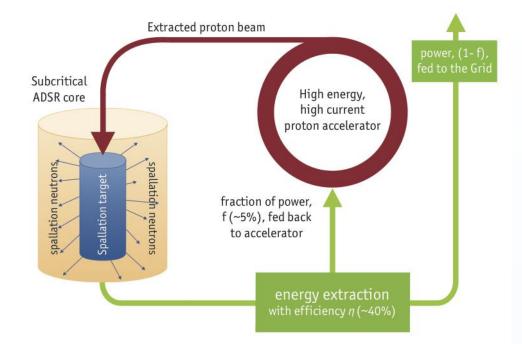
*Sources:

A. W. Chao, World Scientific Revies of Accelerator Science and Technology A. Faus-Golfe, The brave new world of accelerator application APAE report, Applications of particle accelerators in Europe S. Sheehy, Applications of accelerators, CAS 2014

04/07/2023

F. Asvesta | Particle Accelerators & Beam Dynamics

- l


World wide about ~30,000 particle

accelerators are in operation with a

large variety of applications.

Energy

- Destroying radioactive waste
- Energy production
- Nuclear fusion
- Thorium fuel amplifier

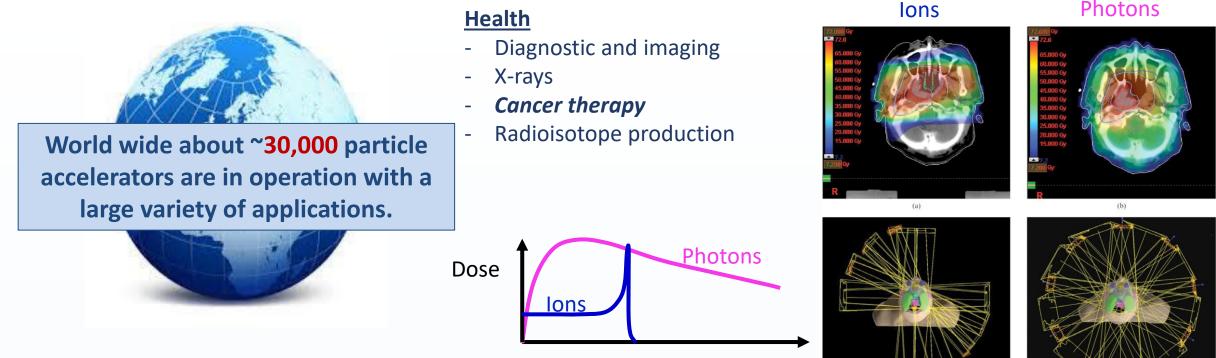
The large majority is used in industry and medicine:

- Industrial applications:
- Medical applications:

~20,000* ~10,000*

Accelerator Driven System (ADS)

Transmutation of nuclear waste isotopes or energy generation


*Sources:

A. W. Chao, World Scientific Revies of Accelerator Science and Technology A. Faus-Golfe, The brave new world of accelerator application APAE report, Applications of particle accelerators in Europe S. Sheehy, Applications of accelerators, CAS 2014

04/07/2023

F. Asvesta | Particle Accelerators & Beam Dynamics

6

The large majority is used in industry and medicine:

- Industrial applications:
- Medical applications:

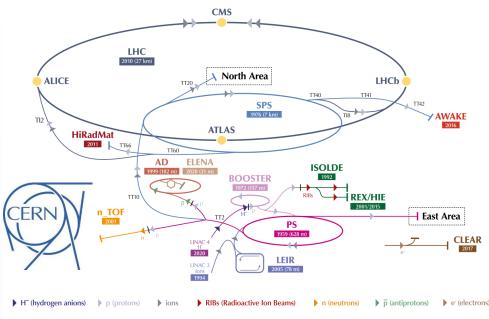
~20,000* ~10,000*

A. W. Chao, World Scientific Revies of Accelerator Science and Technology A. Faus-Golfe, The brave new world of accelerator application APAE report, Applications of particle accelerators in Europe S. Sheehy, Applications of accelerators, CAS 2014

04/07/2023

F. Asvesta | Particle Accelerators & Beam Dynamics

*Sources:


World wide about ~30,000 particle accelerators are in operation with a large variety of applications.

The large majority is used in industry and medicine:

- Industrial applications:
- Medical applications:

~20,000* ~10,000*

LHC - Large Hadron Collider // SPS - Super Proton Synchrotron // PS - Proton Synchrotron // AD - Antiproton Decelerator // CLEAR - CERN Linear Electron Accelerator for Research // AWAKE - Advanced WAKefield Experiment // ISOLDE - Isotope Separator OnLine // REX/HIE - Radioactive EXperiment/High Intensity and Energy ISOLDE // LEIR - Low Energy Ion Ring // LINAC - LINear ACcelerator // n_TOF - Neutrons Time Of Flight // HiRadMat - High-Radiation to Materials

*Sources:

A. W. Chao, World Scientific Revies of Accelerator Science and Technology A. Faus-Golfe, The brave new world of accelerator application APAE report, Applications of particle accelerators in Europe S. Sheehy, Applications of accelerators, CAS 2014

04/07/2023

F. Asvesta | Particle Accelerators & Beam Dynamics

Less than a fraction of a

Colliders

R&D

Particle Physics

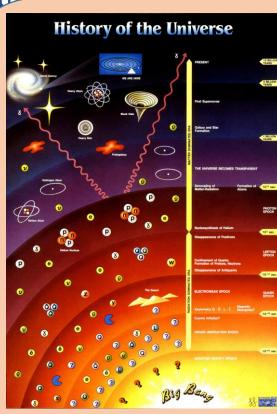
Storage rings &

Material science

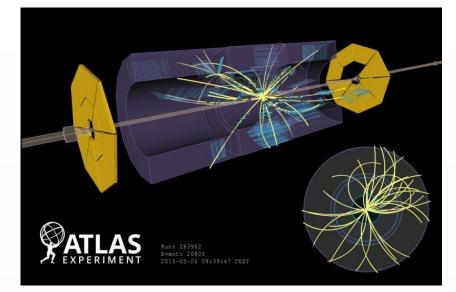
Light sources

percent is used for

Research!


Accelerators at CERN

Full complex of Accelerators to give energy to particles



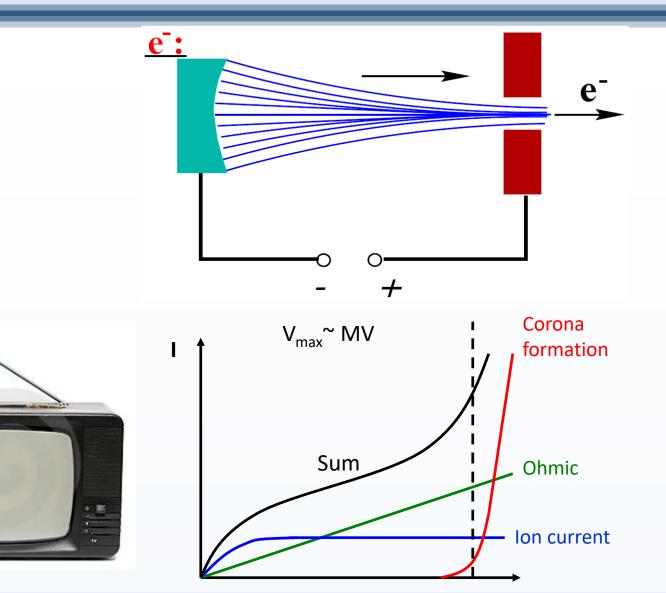
H (hydrogen anions) p (protons)

LHC - Large Hadron Collider // SPS - Super Proton Syr Electron Accelerator for Research // AWAKE - Advan EXperiment/High Intensity and Energy ISOLDE // LEIR

Understand the laws of physics and Reveal the history of the universe

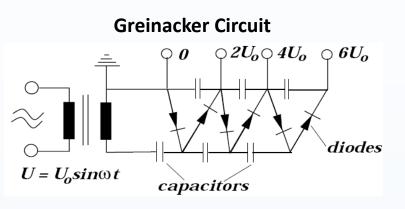
Particles produced in the collisions are observed in the detectors

History of Accelerators


Race for higher energies

Electrostatic Accelerators

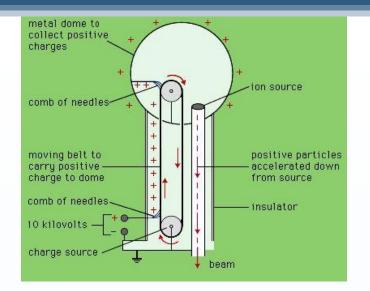
- The simplest of Accelerators! (cathode ray tubes – screens...)
 - Particle source blue electrode, acceleration in an electric fiels, exit – red electrode.
 - Achieved energies depend on the applied voltage.
 - Current increases exponentially for large voltages creating arcs and discharge (*Corona formation*)

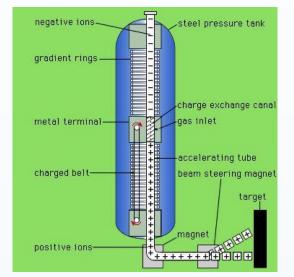

11

Voltage multipliers

Problem: Achieve higher voltages to push to higher energies

- **Cockcroft** and **Walton**(1932) developed a cascade generator based on multiple rectifiers
- Operating principle Greinacker circuit
 - AC power supply
 - 2N diods (one-way current "switch") so that the maximum voltage on each couple of capacitors goes to 2V₀, 4V₀, 6V₀, ...,2NV₀
 - Voltages ~MV can be achieved for beams of ~100s of mA
- Cockcroft and Walton used such an accelerator to split lithium nuclei producing helium nuclei. (Nobel prize 1951)

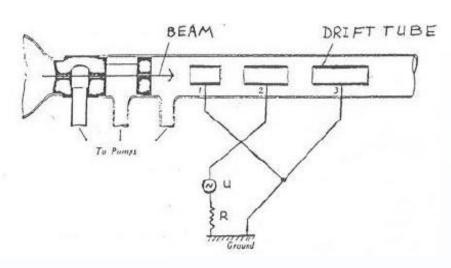



Fermilab cascade generator

Van de Graaff Generator (1930)

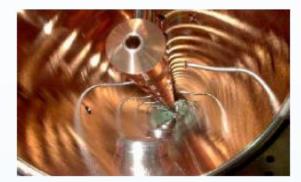
- Charges are accumulated through a moving belt charging the dome.
- Higher voltages can be achieved within a pressure tank – Paschen's law: Break down voltage depends on gas pressure & gap
- Possibility to double the voltage (Tandem)
 - Negative charge ions accelerated from 0 to V
 - Electrons absorbed from a gas and are accelerated again (from V to 0)

ROBERT VAN DE GRAAF DEMONSTRATES HIS FIRST GENERATOR TO KARL COMPTON

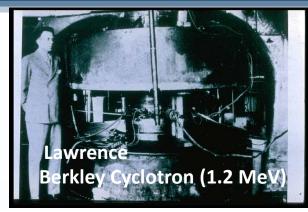

⊕MIT Museum All rights reserved

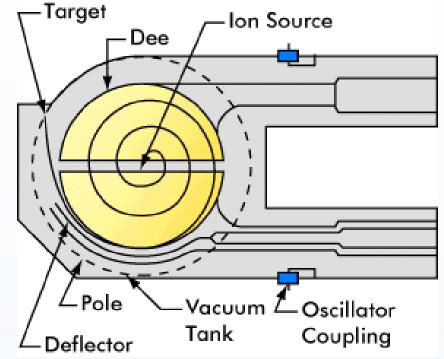
F. Asvesta | Particle Accelerators & Beam Dynamics

13


Linear accelerators (LINAC)

- Ising's Original idea (1924), first built by Wideröe (1928) and first high energy linac (1.3MeV) built by Sloan and Lawrence (1931)
- Line of drift tubes alternatingly connected to high frequency (RF) power supplies
- Particles accelerated in the gaps, but insulated in the tubes (no field act as a Faraday cage)
- As the voltage changes sign, the particles are accelerated every time they enter a gap
- The length of the tubes, increases with acceleration for a given/constant frequency up to the relativistic limit
- Synchronization to the field is achieved via *phase focusing*
- Beams (1933) first linac with waveguides. Hansen and Varian brothers (1937) invented the klystron (up to 10GHz)

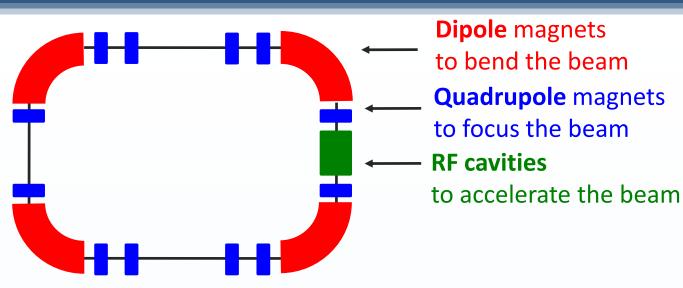




04/07/2023

Cyclotron

- Lawrence's and Edlefsen's original idea (1930), first built by **Lawrence** and **Livingston**(1932)
- Constant magnetic field B from an H-shaped magnet with a cyclotron frequency and a radius that increases with velocity, for non-relativistic particles: $\omega_c = qB/m$ (spiral orbits)
- The accelerating voltage is synchronous to the particles crossing $\omega_{RF} = (2n+1)\omega_c$ the gap:
- Heavy particles accelerated up to ~20 MeV
- For higher energies (relativistic particles) the frequency reduces with the mass.
- Synchro-cyclotron principle (McMillan and Veksler, 1945): $\omega_{RF} \propto 1/\gamma \rightarrow$ different frequencies for different particle species | compensation for relativistic effects
- Isochronous cyclotron principle: $\omega_{RF} \propto B/\gamma \rightarrow Magnetic$ field increases with radius | Energies up to 600 MeV – prone to losses (field errors) 04/07/2023


Cyclotron

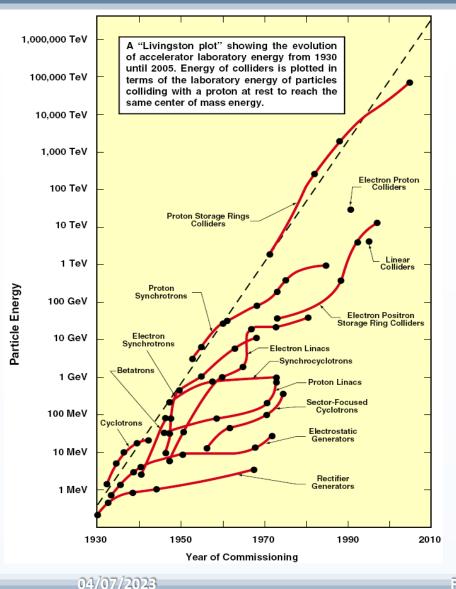
184-inch cyclotron:

1 single dipole with 467 cm diameter Berkeley campus, 1942

Synchrotron

Could we further push the energy? Colliders

- Two beams circulating at the Synchrotron's energy
- The beams are brought to collision
- ✓ energy at the *centre of mass* gets **double**


Developed in the 1950s | The CERN PS built in 1959 is still in operation!

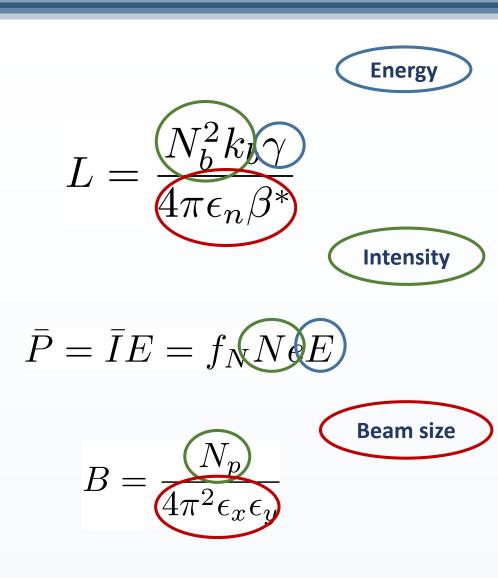
Fixed trajectory: R = constant

Magnets only in the vicinity of the beam

- Electric fields used to accelerate and magnetic fields to steer the beam (bending & focusing)
- Magnetic field increases synchronously with the beam energy keeping the radius fixed!
- Beam rigidity: $B\rho = \frac{p}{q}$

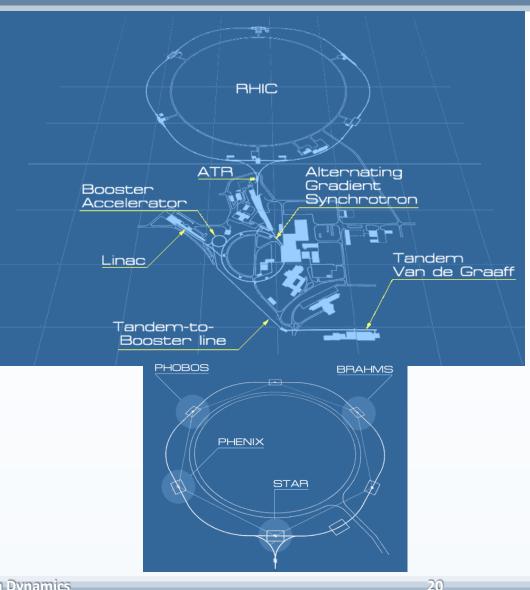
Livingston Plot – evolution of energy reach

- The **Livingston** plot shows an exponential increase of energy with time
- Energy is increased by one order of magnitude each 6-10 years
- New technologies replace the old ones to achieve higher energies, until saturation. By then new technological advancements allow replacing the existing ones
- And the process continues...
- Energy is not the only relevant figure of merit:
 - Beam intensity
 - Beam emittance (size)


Accelerators and performance indicators

The design of an accelerator focuses on high performance

- Colliders high energy physics
 - Luminosity: event production rate
 - N_b # of particles per bunch
 - **k**_b # of bunches
 - $\gamma = \mathbf{E}/(m_0c^2)$ Lorentz factor
 - $\boldsymbol{\epsilon}_n$ normalized emittance
 - β^* betatron amplitude at interaction point
- Spallation sources target experiments
 - Average beam power
 - **Ī** average current
 - E energy
 - **f**_n repetition rate
 - N # of particles per pulse


• Synchrotron radiation sources – spectroscopy

- Brightness: photon density
 - N_b # of photons
 - $\boldsymbol{\epsilon}_{\mathbf{x},\mathbf{y}}$ horizontal and vertical emittance

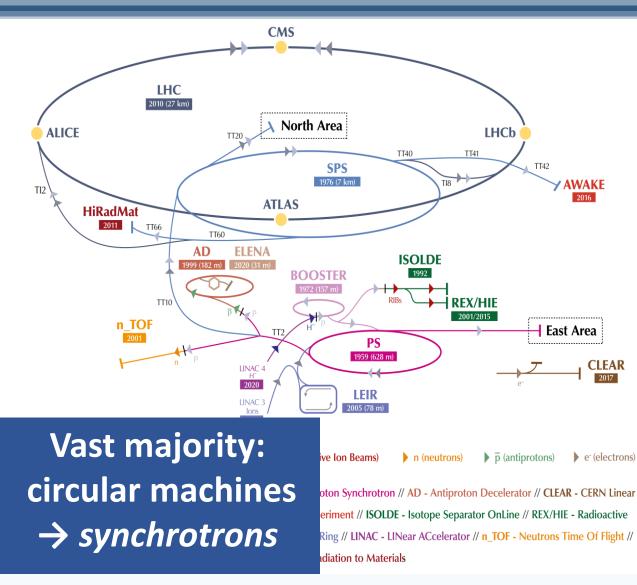
Relativistic Heavy Ion Collider (RHIC - BNL)

- **Ion collider** (gold, copper and polarized protons) with energies up to 100 GeV/u
- The beams are counter-rotated in a 2.4 mile (~4km) storage ring driven by 1740 superconducting dipoles
- The beams collide at 6 points in 4 of which the detectors of the **4 main experiments** (BRAHMS, PHENIX, PHOBOS, STAR) are placed
- The main purpose of the accelerator is the production, detection and study of quark gluon plasma

Spallation Neutron Source (SNS - ORNL)

- Collaboration project of **6 laboratories** (LBNL, LANL, JLAB, BNL, ANL, ORNL)
- Spallation Neutron Source with a power of 1.4 MW
- The complex includes an H⁻ source, a 300m linear accelerator, with superconducting RF cavities, a proton accumulator ring with a perimeter of 248m and a liquid mercury target for the production of neutrons.
- The main purpose is neutron scattering spectroscopy experiments at 24 stations (magnetic structure of materials, nanotechnology, etc.)



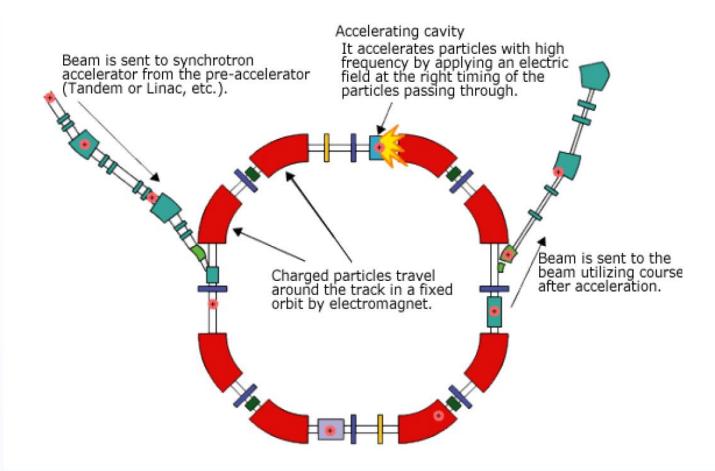

European Synchrotron Radiation Facility (ESRF)

- The **first and brightest** 3rd generation synchrotron radiation source in Europe
- 50 experimental beamlines using "hard" X-rays produced by interfering magnetic elements (magnetic amplifiers and oscillators) and dipole magnets
- **3500 users/year** from 14 member states perform X-ray spectroscopy experiments for materials science, chemistry, biology, geology, medicine, archaeometry, etc.
- The complex includes a **linear electron** accelerator, a 300-meter booster synchrotron and an 844-meter storage ring.
- The storage ring shows **record availability of 98%** with an average time between outages of more than 2 days.

CERN Accelerator Complex

CERN Proton chain

- 1. LINAC-4 160MeV (H-)
- 2. Proton Synchrotron Booster 2GeV
- 3. Proton Synchtrotron 26GeV
- 4. Super Proton Synchrotron 450 GeV
- 5. Large Hadron Collider 7Tev


CERN Ion chain

- 1. LINAC-3
- 2. Low Energy Ion Ring
- 3. Proton Synchtrotron
- 4. Super Proton Synchrotron
- 5. Large Hadron Collider

<u>Other facilities & experiments</u>: n_TOF, ISOLDE, East Area, North Area, HiRadMat, AWAKE, CLEAR (electrons), AD & ELENA (Antiprotons)

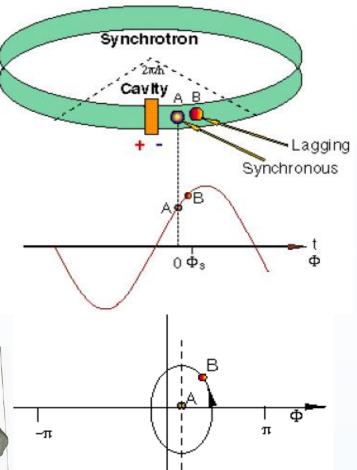
04/07/2023

Main principles of a Synchrotron

The beam needs to be controlled to allow:

- Long storage times
- Preservation of beam quality

Focusing allows better control:


- *Phase focusing* | RF cavities
- Weak focusing | Dipoles
- Strong focusing | Quadrupoles

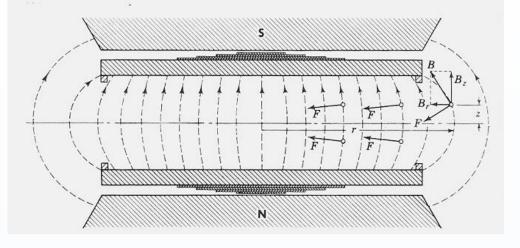
Phase focusing

- Developed independently by McMillan and Veksler (1945)
- The RF cavity is set such as the particle at the centre of the bunch (synchronous particle) receives the needed energy
- Voltage in the cavity: $V = V_0 \sin(2\pi\omega_{RF}t) = V_0 \sin(\varphi(t))$
- For no acceleration, synchronous particle phase: $\varphi_s = 0$
- For acceleration, synchronous particle phase: $0 < \varphi_s < \pi$ in order to achieve: $\Delta E = V_0 \sin(\varphi(t))$
- Particles arriving late: $\varphi > \varphi_s$, \rightarrow Energy increase larger than the synchronous particle
- Particles arriving **early**: $\varphi < \varphi_s$, \rightarrow Energy increase **smaller** than the synchronous particle

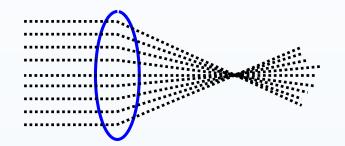
→ Particles are grouped – *bunches!*

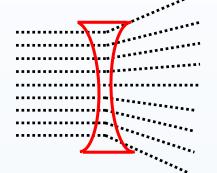


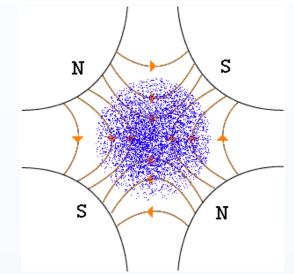
Weak focusing


- Particles entering transversely into a homogenous magnetic field follow circular orbits
- Magnet errors can cause the particles to drift until they get lost
- \rightarrow A recovering or "*focusing*" force is needed!

Such a **focusing** is introduced at the edges of the magnet
due to the disruption of the magnetic field


- Particles perform linear harmonic oscillations (betatron) with frequencies:
- ncies: $\omega_x = \frac{v}{R}\sqrt{1-n}, \omega_y = \frac{v}{R}\sqrt{n}$


• For stable oscillations, **Steenbeck's** condition: 0<n<1


Strong focusing

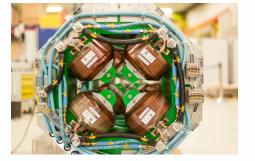
- Principle developed independently by Christofilos (1950) and Courant, Livingston and Snyder (1953)
- **No fields** can have a focusing effect in both transverse planes of motion.
- Focusing elements (quadrupoles): act as focusing in one plane but defocusing in the other
- A sequence of such focusing and defocusing fields can give an overall strong focusing
- The force is proportional to the distance from the axis of the beam
- A succession of *focusing and defocusing elements* allow the particles to follow stable trajectories, performing small betatronic oscillations around the circular periodic orbit

Building Blocks of a Synchrotron

Main components:

Dipole Magnets:

Bending


Quadrupole Magnets:

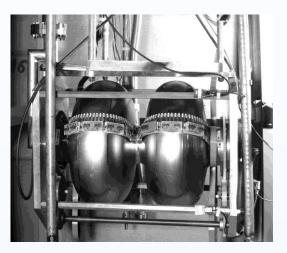
(De-)Focusing

Higher order magnets:

Corrections

RF cavities:

Acceleration


04/07/2023

28

How do particles move under the influence of these elements?

→ Transverse & Longitudinal Beam Dynamics

