Statistics for Particle Physicists Lecture 3: Hypothesis Tests, Confidence Intervals

Summer Student Lectures CERN 4 – 7 July 2023

https://indico.cern.ch/event/1254879/timetable/

Glen Cowan Physics Department Royal Holloway, University of London g.cowan@rhul.ac.uk www.pp.rhul.ac.uk/~cowan

Outline

Lecture 1: Introduction, probability,

Lecture 2: Parameter estimation

 Lecture 3: Hypothesis tests and confidence intervals (some exercises <u>here</u>).

Lecture 4: Introduction to Machine Learning

Frequentist hypothesis tests

Suppose a measurement produces data x; consider a hypothesis H_0 we want to test and alternative H_1

 H_0 , H_1 specify probability for \mathbf{x} : $P(\mathbf{x}|H_0)$, $P(\mathbf{x}|H_1)$

A test of H_0 is defined by specifying a critical region w of the data space such that there is no more than some (small) probability α , assuming H_0 is correct, to observe the data there, i.e.,

$$P(\mathbf{x} \in w \mid H_0) \le \alpha$$

Need inequality if data are discrete.

 α is called the size or significance level of the test.

If x is observed in the critical region, reject H_0 .

Definition of a test (2)

But in general there are an infinite number of possible critical regions that give the same size α .

Use the alternative hypothesis H_1 to motivate where to place the critical region.

Roughly speaking, place the critical region where there is a low probability (α) to be found if H_0 is true, but high if H_1 is true:

Classification viewed as a statistical test

Suppose events come in two possible types:

s (signal) and b (background)

For each event, test hypothesis that it is background, i.e., $H_0 = b$.

Carry out test on many events, each is either of type s or b, i.e., here the hypothesis is the "true class label", which varies randomly from event to event, so we can assign to it a frequentist probability.

Select events for which where H_0 is rejected as "candidate events of type s". Equivalent Particle Physics terminology:

background efficiency
$$\varepsilon_{\mathbf{b}} = \int_{W} f(\mathbf{x}|H_0) \, d\mathbf{x} = \alpha$$

signal efficiency $arepsilon_{\mathbf{s}} = \int_W f(\mathbf{x}|H_1) \, d\mathbf{x} = 1 - eta = ext{power}$

G. Cowan / RHUL Physics

Example of a test for classification

For each event in a mixture of signal (s) and background (b) test

 H_0 : event is of type b

using a critical region W of the form: $W = \{x : x \le x_c\}$, where x_c is a constant that we choose to give a test with the desired size α .

G. Cowan / RHUL Physics

Classification example (2)

Suppose we want $\alpha = 10^{-4}$. Require:

$$\alpha = P(x \le x_{c}|b) = \int_{0}^{x_{c}} f(x|b) \, dx = \frac{4x^{4}}{4} \Big|_{0}^{x_{c}} = x_{c}^{4}$$

and therefore $x_{\rm c} = \alpha^{1/4} = 0.1$

For this test (i.e. this critical region W), the power with respect to the signal hypothesis (s) is

$$M = P(x \le x_{\rm c}|{\rm s}) = \int_0^{x_{\rm c}} f(x|{\rm s}) \, dx = 2x_{\rm c} - x_{\rm c}^2 = 0.19$$

Note: the optimal size and power is a separate question that will depend on goals of the subsequent analysis.

G. Cowan / RHUL Physics

Classification example (3)

Suppose that the prior probabilities for an event to be of type s or b are:

 $\pi_{\rm s} = 0.001$ $\pi_{\rm b} = 0.999$

The "purity" of the selected signal sample (events where b hypothesis rejected) is found using Bayes' theorem:

$$P(\mathbf{s}|x \le x_{\mathbf{c}}) = \frac{P(x \le x_{\mathbf{c}}|\mathbf{s})\pi_{\mathbf{s}}}{P(x \le x_{\mathbf{c}}|\mathbf{s})\pi_{\mathbf{s}} + P(x \le x_{\mathbf{c}}|\mathbf{b})\pi_{\mathbf{b}}}$$

= 0.655

G. Cowan / RHUL Physics

Testing significance / goodness-of-fit

Suppose hypothesis *H* predicts pdf f(x|H) for a set of observations $x = (x_1,...,x_n)$.

We observe a single point in this space: x_{obs} .

 X_i

How can we quantify the level of compatibility between the data and the predictions of *H*?

Decide what part of the data space represents equal or less compatibility with H than does the point x_{obs} . (Not unique!)

p-values

Express level of compatibility between data and hypothesis (sometimes 'goodness-of-fit') by giving the *p*-value for *H*:

 $p = P(\mathbf{x} \in \omega_{\leq}(\mathbf{x}_{obs})|H)$

- probability, under assumption of H, to observe data
 with equal or lesser compatibility with H relative to the
 data we got.
- probability, under assumption of H, to observe data as discrepant with H as the data we got or more so.

Basic idea: if there is only a very small probability to find data with even worse (or equal) compatibility, then *H* is "disfavoured by the data".

If the *p*-value is below a user-defined threshold α (e.g. 0.05) then *H* is rejected (equivalent to hypothesis test of size α as seen earlier).

The *p*-value of H is not the probability that *H* is true!

In frequentist statistics we don't talk about P(H) (unless H represents a repeatable observation).

If we do define P(H), e.g., in Bayesian statistics as a degree of belief, then we need to use Bayes' theorem to obtain

$$P(H|\vec{x}) = \frac{P(\vec{x}|H)\pi(H)}{\int P(\vec{x}|H)\pi(H) \, dH}$$

where $\pi(H)$ is the prior probability for *H*.

For now stick with the frequentist approach; result is p-value, regrettably easy to misinterpret as P(H). The Poisson counting experiment Suppose we do a counting experiment and observe *n* events.

Events could be from *signal* process or from *background* – we only count the total number.

Poisson model:

$$P(n|s,b) = \frac{(s+b)^n}{n!}e^{-(s+b)}$$

s = mean (i.e., expected) # of signal events

b = mean # of background events

Goal is to make inference about *s*, e.g.,

test s = 0 (rejecting $H_0 \approx$ "discovery of signal process")

test all non-zero *s* (values not rejected = confidence interval)

In both cases need to ask what is relevant alternative hypothesis.

Poisson counting experiment: discovery *p*-value Suppose b = 0.5 (known), and we observe $n_{obs} = 5$. Should we claim evidence for a new discovery?

Give *p*-value for hypothesis s = 0:

$$p$$
-value = $P(n \ge 5; b = 0.5, s = 0)$
= $1.7 \times 10^{-4} \ne P(s = 0)!$

G. Cowan / RHUL Physics

Significance from *p*-value

Often define significance Z as the number of standard deviations that a Gaussian variable would fluctuate in one direction to give the same p-value.

$$p = \int_{Z}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx = 1 - \Phi(Z)$$

 $Z = \Phi^{-1}(1-p)$

in ROOT: p = 1 - TMath::Freq(Z) Z = TMath::NormQuantile(1-p)

in python (scipy.stats): p = 1 - norm.cdf(Z) = norm.sf(Z) Z = norm.ppf(1-p)

Result Z is a "number of sigmas". Note this does not mean that the original data was Gaussian distributed.

G. Cowan / RHUL Physics

Poisson counting experiment: discovery significance Equivalent significance for $p = 1.7 \times 10^{-4}$: $Z = \Phi^{-1}(1-p) = 3.6$ Often claim discovery if Z > 5 ($p < 2.9 \times 10^{-7}$, i.e., a "5-sigma effect")

In fact this tradition should be revisited: *p*-value intended to quantify probability of a signallike fluctuation assuming background only; not intended to cover, e.g., hidden systematics, plausibility signal model, compatibility of data with signal, "look-elsewhere effect" (~multiple testing), etc.

Confidence intervals by inverting a test

In addition to a 'point estimate' of a parameter we should report an interval reflecting its statistical uncertainty.

Confidence intervals for a parameter θ can be found by defining a test of the hypothesized value θ (do this for all θ):

Specify values of the data that are 'disfavoured' by θ (critical region) such that $P(\text{data in critical region} | \theta) \le \alpha$ for a prespecified α , e.g., 0.05 or 0.1.

If data observed in the critical region, reject the value θ .

Now invert the test to define a confidence interval as:

set of θ values that are not rejected in a test of size α (confidence level CL is $1 - \alpha$).

Relation between confidence interval and *p*-value

Equivalently we can consider a significance test for each hypothesized value of θ , resulting in a *p*-value, p_{θ} .

If $p_{\theta} \leq \alpha$, then we reject θ .

The confidence interval at $CL = 1 - \alpha$ consists of those values of θ that are not rejected.

E.g. an upper limit on θ is the greatest value for which $p_{\theta} > \alpha$.

In practice find by setting $p_{\theta} = \alpha$ and solve for θ .

For a multidimensional parameter space $\theta = (\theta_1, \dots, \theta_M)$ use same idea – result is a confidence "region" with boundary determined by $p_{\theta} = \alpha$.

Coverage probability of confidence interval

If the true value of θ is rejected, then it's not in the confidence interval. The probability for this is by construction (equality for continuous data):

 $P(\text{reject } \theta | \theta) \leq \alpha = \text{type-I error rate}$

Therefore, the probability for the interval to contain or "cover" θ is

P(conf. interval "covers" $\theta | \theta \ge 1 - \alpha$

This assumes that the set of θ values considered includes the true value, i.e., it assumes the composite hypothesis $P(\mathbf{x}|H,\theta)$.

Frequentist upper limit on Poisson parameter

Consider again the case of observing $n \sim \text{Poisson}(s + b)$. Suppose b = 4.5, $n_{\text{obs}} = 5$. Find upper limit on s at 95% CL. Relevant alternative is s = 0 (critical region at low n) p-value of hypothesized s is $P(n \le n_{\text{obs}}; s, b)$ Upper limit s_{up} at $\text{CL} = 1 - \alpha$ found from

$$\alpha = P(n \le n_{\text{obs}}; s_{\text{up}}, b) = \sum_{n=0}^{n_{\text{obs}}} \frac{(s_{\text{up}} + b)^n}{n!} e^{-(s_{\text{up}} + b)}$$
$$s_{\text{up}} = \frac{1}{2} F_{\chi^2}^{-1} (1 - \alpha; 2(n_{\text{obs}} + 1)) - b$$

$$=\frac{1}{2}F_{\chi^2}^{-1}(0.95;2(5+1))-4.5=6.0$$

$n \sim \text{Poisson}(s+b)$: frequentist upper limit on s

For low fluctuation of *n*, formula can give negative result for s_{up} ; i.e. confidence interval is empty; all values of $s \ge 0$ have $p_s \le \alpha$.

Limits near a boundary of the parameter space

Suppose e.g. b = 2.5 and we observe n = 0.

If we choose CL = 0.9, we find from the formula for s_{up}

$$s_{\rm up} = -0.197$$
 (CL = 0.90)

Physicist:

We already knew $s \ge 0$ before we started; can't use negative upper limit to report result of expensive experiment!

Statistician:

The interval is designed to cover the true value only 90% of the time — this was clearly not one of those times.

Not uncommon dilemma when testing parameter values for which one has very little experimental sensitivity, e.g., very small *s*.

Expected limit for s = 0

Physicist: I should have used CL = 0.95 — then $s_{up} = 0.496$

Even better: for CL = 0.917923 we get $s_{up} = 10^{-4}$!

Reality check: with b = 2.5, typical Poisson fluctuation in n is at least $\sqrt{2.5} = 1.6$. How can the limit be so low?

Approximate confidence intervals/regions from the likelihood function

Suppose we test parameter value(s) $\theta = (\theta_1, ..., \theta_n)$ using the ratio

$$\lambda(\theta) = \frac{L(\theta)}{L(\hat{\theta})} \qquad \qquad 0 \le \lambda(\theta) \le 1$$

Lower $\lambda(\theta)$ means worse agreement between data and hypothesized θ . Equivalently, usually define

$$t_{\theta} = -2\ln\lambda(\theta)$$

so higher t_{θ} means worse agreement between θ and the data.

p-value of θ therefore

$$p_{\theta} = \int_{t_{\theta,\text{obs}}}^{\infty} f(t_{\theta}|\theta) \, dt_{\theta}$$
need pdf

Confidence region from Wilks' theorem

Wilks' theorem says (in large-sample limit and provided certain conditions hold...)

 $f(t_{\theta}|\theta) \sim \chi_n^2 \qquad \begin{array}{l} \text{chi-square dist. with $\#$ d.o.f. =} \\ \# \text{ of components in $\theta = (\theta_1, ..., \theta_n)$.} \end{array}$

Assuming this holds, the *p*-value is

$$p_{m{ heta}} = 1 - F_{\chi^2_n}(t_{m{ heta}}) \quad \leftarrow \text{set equal to } lpha$$

To find boundary of confidence region set $p_{\theta} = \alpha$ and solve for t_{θ} :

$$t_{\theta} = F_{\chi_n^2}^{-1}(1-\alpha)$$

Recall also

$$t_{\theta} = -2\ln\frac{L(\theta)}{L(\hat{\theta})}$$

G. Cowan / RHUL Physics

Confidence region from Wilks' theorem (cont.)

i.e., boundary of confidence region in θ space is where

$$\ln L(\theta) = \ln L(\hat{\theta}) - \frac{1}{2}F_{\chi_n^2}^{-1}(1-\alpha)$$

For example, for $1 - \alpha = 68.3\%$ and n = 1 parameter,

$$F_{\chi_1^2}^{-1}(0.683) = 1$$

and so the 68.3% confidence level interval is determined by

$$\ln L(\theta) = \ln L(\hat{\theta}) - \frac{1}{2}$$

Same as recipe for finding the estimator's standard deviation, i.e.,

 $[\hat{\theta} - \sigma_{\hat{\theta}}, \hat{\theta} + \sigma_{\hat{\theta}}]$ is a 68.3% CL confidence interval.

Example of interval from $\ln L(\theta)$

For n=1 parameter, CL = 0.683, $Q_{\alpha} = 1$.

Multiparameter case

For increasing number of parameters, $CL = 1 - \alpha$ decreases for confidence region determined by a given

$$Q_{\alpha} = F_{\chi_n^2}^{-1}(1-\alpha)$$

Q_{lpha}	1-lpha						
	n = 1	n = 2	n = 3	n = 4	n = 5		
1.0	0.683	0.393	0.199	0.090	0.037		
2.0	0.843	0.632	0.428	0.264	0.151		
4.0	0.954	0.865	0.739	0.594	0.451		
9.0	0.997	0.989	0.971	0.939	0.891		

Multiparameter case (cont.)

Equivalently, Q_{α} increases with *n* for a given $CL = 1 - \alpha$.

$1 - \alpha$	\widehat{Q}_{lpha}						
	n = 1	n = 2	n = 3	n = 4	n = 5		
0.683	1.00	2.30	3.53	4.72	5.89		
0.90	2.71	4.61	6.25	7.78	9.24		
0.95	3.84	5.99	7.82	9.49	11.1		
0.99	6.63	9.21	11.3	13.3	15.1		

Obvious where to put *W*?

In the 1930s there were great debates as to the role of the alternative hypothesis.

Fisher held that one could test a hypothesis H_0 without reference to an alternative.

Suppose, e.g., H_0 predicts that x (suppose positive) usually comes out low. High values of x are less characteristic of H_0 , so if a high value is observed, we should reject H_0 , i.e., we put W at high x:

Or not so obvious where to put W?

But what if the only relevant alternative to H_0 is H_1 as below:

Here high x is more characteristic of H_0 and not like what we expect from H_1 . So better to put W at low x.

Neyman and Pearson argued that "less characteristic of H_0 " is well defined only when taken to mean "more characteristic of some relevant alternative H_1 ".

G. Cowan / RHUL Physics

Type-I, Type-II errors

Rejecting the hypothesis H_0 when it is true is a Type-I error.

The maximum probability for this is the size of the test:

 $P(x \in W \mid H_0) \leq \alpha$

But we might also accept H_0 when it is false, and an alternative H_1 is true.

This is called a Type-II error, and occurs with probability

 $P(x \in \mathbf{S} - W \mid H_1) = \beta$

One minus this is called the power of the test with respect to the alternative H_1 :

Power = $1 - \beta$

G. Cowan / RHUL Physics

Distribution of the *p*-value

The *p*-value is a function of the data, and is thus itself a random variable with a given distribution. Suppose the *p*-value of *H* is found from a test statistic t(x) as

$$p_H = \int_t^\infty f(t'|H)dt'$$

The pdf of p_H under assumption of H is

$$g(p_H|H) = \frac{f(t|H)}{|\partial p_H/\partial t|} = \frac{f(t|H)}{f(t|H)} = 1 \quad (0 \le p_H \le 1)$$

In general for continuous data, under assumption of H, $p_H \sim$ Uniform[0,1] and is concentrated toward zero for some (broad) class of alternatives.

G. Cowan / RHUL Physics

CERN Academic Training / Statistics for PP Lecture 2

Using a *p*-value to define test of H_0

One can show that under assumption of a hypothesis H_0 , its p-value, p_0 , follows a uniform distribution in [0,1].

So the probability to find p_0 less than a given α is

$$P(p_0 \le \alpha | H_0) = \alpha$$

So we can define the critical region of a test of H_0 with size α as the set of data space where $p_0 \le \alpha$.

Formally the *p*-value relates only to H_0 , but the resulting test will have a given power with respect to a given alternative H_1 .