

Standard	Model
Standard	woder

Homework 4

Date: 06.07.2023

Feel free to send me (christophe.grojean@desy.de) your solutions and I'll give you feed-back.

Exercice 1: Standard Model: interactions and conservation laws

Are the following decays permitted in the Standard Model? If not, why?

1. $n \rightarrow p\mu^- \bar{\nu}_{\mu}$ 2. $\mu^- \rightarrow e^- e^- e^+$ 3. $n \rightarrow p \nu_e \bar{\nu}_e$ 4. $p \rightarrow e^+ \pi^0$ 5. $\pi^0 \rightarrow \gamma \gamma$ 6. $\tau^- \rightarrow \mu^- \gamma$ 7. $K^0 \rightarrow \mu^+ e^-$ (the kaon, K^0 , is a $d\bar{s}$ meson) 8. $\mu^- \rightarrow \pi^- \nu_{\mu}$ 9. $\mu \rightarrow e \gamma$ 10. $\mu \rightarrow e v_e \bar{\nu}_{\mu}$

Exercice 2: BSM proton decay

With the particle content of the SM, baryon number is an accidental symmetry when restricting to renormalisable (dimension-4) interactions. One can however build dimension-6 fourfermion interactions among quarks and leptons that do break the baryon and lepton numbers. On dimension ground, derive an estimate of the proton life-time as a function of the Fermiconstant of these interactions. Given that the current experimental lower bound on the life-time of the proton in 10^{34} years, find the lower bound on the scale governing these contact interactions.

Exercice 3: Bound of hypothetical scalar leptoquark

A leptoquark is a hypothetical bosonic field which transforms as a triplet of $SU(3)_C$, and consequently (with appropriate $SU(2)_L \times U(1)_Y$ quantum numbers) can couple to quark-lepton pairs. In this exercise, we add to the SM a single scalar field, *F*, that is a doublet of $SU(2)_L$ and has a hypercharge Y_F .

1) We require that the following Yukawa couplings are allowed: $\lambda^{QeF} \bar{Q}_L e_R F$. Determine Y_F and find the baryon and lepton numbers of F.

2) We denote the components of the *F*-doublet as (F_u, F_d) . What are the electric charges of F_u and F_d ?

3) The model is ruled out if $\langle F \rangle \neq 0$. Explain why this is the case. In what follows, we then assume that $\langle F \rangle = 0$.

4) Write explicitly, in the quark mass basis, the Yukawa interactions of F_u and F_d introduced in 1). Denote the Yukawa matrices by $\lambda_{ij}^{Fu\ell}$ and $\lambda_{ij}^{Fd\ell}$ respectively (*i*, *j* are the flavour indices).

5) The Higgs vacuum expectation value introduces a splitting between the masses of F_u and F_d . Write the mass-squared terms for F and the couplings to the Higgs field. Calculate the masses-squared of F_u and F_d , and explicitly write the mass-squared splitting. Note that there are two independent ways to contract the SU(2)_L indices in the terms that involve the Higgs and the F fields. Makre sure you include both of them.

From this point on, assume that the splitting between F_u and F_d is negligible.

6) In the Standard Model, the decay $b \rightarrow s\mu^+e^-$ is forbidden. Explain why.

7) *F* mediates the decay $b \rightarrow s\mu^+ e^-$. Draw the tree-level Feynman diagram for this decay and estimate the amplitude.

8) Estimate the *F*-mediated amplitude $b \rightarrow s\mu^- e^+$.

Next, we derive a lower bound on m_F . To do so, we compare the rate of the *F*-mediated $b \rightarrow s\mu^+e^-$ decay rate to that of the *W*-mediated $b \rightarrow ce^-\bar{v}_e$.

9) Draw the tree-level diagram for $b \rightarrow ce^- \bar{v}_e$.

10) Estimate the ratio $\Gamma(b \to s\mu^+ e^-)/\Gamma(b \to ce^- \bar{\nu}_e)$ in terms of $\lambda^{Fd_\ell}, m_F, g, m_W$ and the CKM matrix elements. Assume that $m_F \gg m_b$ and neglect phase space effects. Make sure you write explicitly the flavour structure of the couplings.

11) Assuming that $\lambda_{ij}^{QeF} \sim g$ for all *i* and *j*, and using the experimental data: Br $(b \rightarrow ce^- \bar{v}_e) \sim 10^{-1}$, $|V_{cb}^{CKM}| \sim 0.04$ and Br $(b \rightarrow s\mu^+ e^-) < 10^{-5}$, estimate the lower bound on m_F .