FUTURE COLLIDERS PROJECTS

2ND PART

BARBARA DALENA Paris-Saclay University and CEA Paris-Saclay

OUTLINE 2ND PART

- Futures Circular Colliders Projects
 - HL-LHC
 - FCC-ee/FCC-hh
 - Novel techniques

High Luminosity-LHC

A peak luminosity of $L_{peak} = 5 \times 10^{34}$ cm⁻²s⁻¹ with levelling, allowing an integrated luminosity of 250 fb⁻¹ per year, enabling the goal of $L_{int} = 3000$ fb⁻¹ twelve years after the upgrade.

This luminosity is more than ten times the luminosity reach of the first 10 years of the LHC lifetime.

Ultimate performance established use of **engineering margins**:

 $L_{peak\ ult}\cong 7.5\ 10^{34}\ cm^{-2}s^{-1}$ and Ultimate Integrated $L_{int\ ult}\sim 4000\ fb^{-1}$

LHC should not be the limit, would Physics programs require more...

Parameter	Nominal LHC	HL-LHC (standard)	HL-LHC (BCMS)	HL-LHC (8b+4e)
Beam energy in collision [TeV]	7	7	7	7
Particles per bunch, N [10 ¹¹]	1.15	2.2	2.2	2.2
Number of bunches per beam	2808	2760	2748	1968
Number of collisions in IP1 and IP5*	2808	2748	2736	1960
Half-crossing angle in IP1 and IP5 [μrad]	142.5	250	250	250
Minimum β* [m]	0.55	0.15	0.15	0.15
e _n [μm]	3.75	2.50	2.50	2.50
Total reduction factor R $_{ extsf{0}}$ without crab cavities at min. $oldsymbol{eta}^*$	0.836	0.342	0.342	0.342
Total reduction factor R $_1$ with crab cavities at min. $oldsymbol{eta}^*$	-	0.716	0.716	0.716
Beam-beam tune shift/IP [10 ⁻³]	3.1	8.6	8.6	8.6
Peak luminosity without crab cavities L _{peak} [10 ³⁴ cm ⁻² s ⁻¹]	1.00	8.11	8.07	5.78
Peak luminosity with crab cavities $L_{peak} \times R_1/R_0$ [10 ³⁴ cm ⁻² s ⁻¹]	-	17.0	16.9	12.1
Levelled luminosity [10 ³⁴ cm ⁻² s ⁻¹]	-	5.0	5.0	3.6
Events/crossing m (with levelling and crab cavities)	27	131	132	131

R. De Maria ICHEP 2022

COMPENSATION OF GEOMETRIC REDUCTION FACTOR

$$L = \frac{kN^2 f \gamma}{4\pi \beta^* \varepsilon} \left(F \right) \frac{1}{\sqrt{1 + \left(\frac{\sigma_s}{\sigma_x} \frac{\phi}{2}\right)^2}}$$

- Crossing angle at HL-LHC must be larger than at LHC, due to higher intensity and higher beam divergence
 - Would cause very large loss in luminosity: $F \approx 0.35$
- To compensate: use "crab cavities" that tilt the bunches longitudinally and ensure overlap at the collision point
- Prototypes tests in the SPS!

Schematic view of RFD (top) and DQW (bottom) crab cavity. Image credit: R Leuxe/CERN

LEVELLING MECHANISMS

 Levelling techniques will be a vital ingredient for HL-LHC operation and have been used successfully in operation:

 β^* : Main levelling mechanism during the fill. Operational in 2018

Crossing angle: Might be needed to optimize beam lifetime and as mean to reduce pile-up density given the reduced crabbing angle. Operational in 2017

Separation: Will be used in ALICE and LHCb and for fine adjustments (separations < 1 σ) in ATLAS and CMS \rightarrow Operational since Run 1

R. De Maria ICHEP 2022

~1.2 KM OF NEW HARDWARE IN LHC

- New final focus quadrupoles around ATLAS and CMS:
 - Ni₃Sn technology (See S. I. Bermudez's lecture) for more aperture Radiation damage
- Matching section: separation dipoles, first double aperture magnet and correctors (See S. I. Bermudez's Lecture)
- **Crab Cavities**
- Cryogenics plants
- SC links and rad. Mitigation
- 11 T Nb3Sn dipole for collimation

FUTURE CIRCULAR COLLIDERS

International FCC collaboration (CERN as host lab) to study:

- pp-collider (FCC-hh) → main emphasis, defining infrastructure requirements
- ~100 km tunnel infrastructure in Geneva area, site specific
- e⁺e⁻ collider (FCC-ee), as potential first step
- **HE-LHC** with FCC-hh technology
- p-e (FCC-he) option, IP integration, e- from ERL

CDRs published in European Physical Journal C (Vol 1) and ST (Vol 2 – 4)

Summary documents provided to EPPSU SG

•FCC-integral, FCC-ee, FCC-hh, HE-LHC

•Accessible on http://fcc-cdr.web.cern.ch/

Cost: ~28.6 BCHF

	LHC	HL-LHC	FCC-hh		
			Initial	Ultimate	
c.m. Energy [TeV]	14		100		
Peak luminosity $[10^{34} \text{ cm}^{-2} s^{-1}]$	1.0	5.0	5.0	< 30.0	
Optimum integrated lumi / day [fb ⁻¹]	0.47	2.8	2.2	8	
Circumference [km]	26.7		97.75		
Arc filling factor	0.79 0.8		0.8		
Straight sections	8×528 $6 \times$		6×140	$6 \times 1400 \text{ m} + 2 \times 2800 \text{ m}$	
Number of IPs	2 + 2		2 + 2		
Injection energy [TeV]	0.45		3.3		

- stage 1: FCC-ee (Z, W, H, tt) as Higgs factory, electroweak & top factory at highest luminosities
- stage 2: FCC-hh (~100 TeV) as natural continuation at energy frontier, with ion and eh options
- complementary physics
- common civil engineering and technical infrastructures, reusing CERN's existing infrastructure
- FCC integrated program allows continuation of HEP after completion of the HL-LHC program

M. Giovannozzi ICHEP 2022

FEASIBILITY STUDY GOALS AND ROADMAP

Financial feasibility

Technical and administrative feasibility of tunnel: no show-stopper for ~100 km tunnel Technologies of machine and experiments:

- magnets; minimized environmental impact; energy efficiency & recovery
- Establish a list of alternative technologies that could have significant impact on cost or performance

Gathering scientific, political, societal and other support

>2045 first >2038 ee collisions >2030 machine start tunnel installation construction ~2028 approval >2030 - 37 2026/7 element production >2026 - 30 full technical design 2025/26 Financing model **Operation concept** 2020-25

FCC Feasibility Study FCCIS H2020 DS

 $\sigma_{_{y}} \sim \! [36\text{-}51] \; \mathsf{nm}$

FCC-ee PARAMETERS

Running mode	Z	W	ZH	${ m t} { m ar t}$
Number of IPs	4	4	4	4
Beam energy (GeV)	45.6	80	120	182.5
Bunches/beam	11200	1780	440	60
Beam current [mA]	1270	137	26.7	4.9
Luminosity/IP $[10^{34} \text{ cm}^{-2} \text{ s}^{-1}]$	141	20	5.0	1.25
Energy loss / turn [GeV]	0.0394	0.374	1.89	10.42
Synchrotron Radiation Power [MW]			100	
RF Voltage 400/800 MHz [GV]	0.08/0	1.0/0	2.1/0	2.1/9.4
Rms bunch length (SR) [mm]	5.60	3.47	3.40	1.81
Rms bunch length (+BS) [mm]	15.5	5.41	4.70	2.17
Rms horizontal emittance ε [nm]	0.71	2.17	0.71	1.59
Rms vertical emittanc ε_y [pm]	1.9	2.2	1.4	1.6
Longitudinal damping time [turns]	1158	215	64	18
Horizontal IP beta β_x^* [mm]	110	200	240	1000
Vertical IP beta β_y^* [mm]	0.7	1.0	1.0	1.6
Beam lifetime (q+BS+lattice) [min.]	50	42	100	100
Beam lifetime (lum.) [min.]	22	16	14	12
Int. annual luminosity / IP $[ab^{-1}/yr]$	17 [†]	2.4^{\dagger}	0.6	0.15^{\ddagger}

 \Rightarrow High efficient RF system, small emittance and short lifetime beam

BASIC DESIGN CHOICES

Double ring e+e- collider

Two or four experiments

- Asymmetric Interaction Region layout and optics to limit synchrotron radiation towards the detector
- Horizontal crossing angle of 30 mrad and crab waist collision scheme

Perfect 4-fold superperiodicity allowing 2 or 4 IPs;

Synchrotron radiation power 50 MW/beam at all beam energies

Top-up injection scheme for high luminosity

Implies booster synchrotron in collider tunnel

M. Hofer ICHEP 2022

K. Oide, J. Gutleber

Aim of the project

- Arc half-cell: most recurrent assembly of mechanical hardware in the accelerator (~1500 similar FODO cells in the FCC-ee)
- Mock-up \rightarrow Functional prototype(s) \rightarrow Pre-series \rightarrow Series
- Building a mock-up allows optimizing and testing fabrication, integration, installation, assembly, transport, maintenance
- Working with demonstrators of the different equipment,
 and/or structures with equivalent volumes, weights, stiffness

F. Carra et al

Arc perspective view, F. Valchkova-Georgieva

OPTICS CORRECTIONS STRATEGY (FCC-EE BOOSTER)

Motivation

- > Evaluate specifications of the main magnets misalignment of the High Energy Booster arcs cells and of magnets field error
- > Definition of the orbit correction strategy and of correctors specifications for the booster

Orbit correction using beam position monitors reading

errors	Case	Plane	3 x Analytical RMS	3 x Mean RMS/seeds
MQ offset = 150 µm	Desidual adeit [11m]	х	188	174
MB field err $=10^{-3}$ MB roll $=$ 300 μ rad	Residual orbit [µm] Correctors stengths [mTm]	у	192	188
BPM offset = 150 µm MS offset = 150 µm		х	16	17
BPM resolution = 50 µm		у	16	17

Improvements and related work to do:

- > Other methods than SVD Al?
- Demonstrate full emittance tuning
- Study the impact of booster support vibrations on emittance (dynamic imperfections)
- Study the impact of energy ramp during the booster cycle

FCC-ee KEY TECHNOLOGIES: SRF-CAVITIES

We need to replenish energy loss by synchrotron radiation: Superconductive RF most efficient way

see W. Venturini Lectures on RF superconductivity

- SRF technology building on LHC studies and collaborative R&D (F. Peauger et al.)
 - 5-cell 800 MHz cavity without damping built and tested at 2K by Jefferson lab with excellent results
 - o 400 MHz cavities based on LHC studies of Cu-coated Nb cavities at 4.5K
 - Alternative slotted waveguide elliptical cavity with f=600 MHz

SWELL 2-cell 600 MHz cavity for Z, W, H

Model for 2-cell 400 MHz for WW and ZH

RF placement optimized for infrastructure requirements (F. Valchkova-Georgieva et al)

FCC-ee KEY TECHNOLOGIES: INTERACTION REGION

Canted-Cosine-Theta magnets

- Elegant 2-layer design for inner quadrupoles
- Working to fit within 100 mrad stay-clear cone
- Prototype built and warm-tested
- Complex integration of SC quadrupoles,
 LumiCal, shielding, diagnostics...
- Mock-up under discussion

FCC-ee interaction region

- L* is 2.2 m.
- \circ The 10 mm central radius is for \pm 9 cm from the IP.
- The two symmetric beam pipes with radius of 15 mm are merged at 1.2 m from the IP
- Low impedance vacuum chamber
- Synchrotron Radiation Background and photon dumps

SUPERKEKB AS FCC-EE TEST FACILITY

world's highest luminosity 4.7x10³⁴ cm⁻²s⁻¹ & lowest β*

D .	
L)esian	parameters
Design	parameters

2017/September/1	LER	HER	unit
E	4.000	7.007	GeV
1	3.6	2.6	Α
Number of bunches	2,5	500	
Bunch Current	1.44	1.04	mA
Circumference	3,01	6.315	m
εχ/εγ	3.2(1.9)/8.64(2.8)	4.6(4.4)/12.9(1.5)	nm/pm
Coupling	0.27	0.28	
β_x^*/β_y^*	32/0.27	25/0.30	mm
Crossing angle	8	3	mrad
α_p	3.20×10 ⁻⁴	4.55×10 ⁻⁴	
σδ	7.92(7.53)×10 ⁻⁴	6.37(6.30)×10 ⁻⁴	
V _c	9.4	15.0	MV
σ_{z}	6(4.7)	5(4.9)	mm
Vs	-0.0245	-0.0280	
Vx/Vy	44.53/46.57	45.53/43.57	
U ₀	1.76	2.43	MeV
$\tau_{x,y}/\tau_s$	45.7/22.8	58.0/29.0	msec
ξ _x /ξ _y	0.0028/0.0881	0.0012/0.0807	
Luminosity	8x:	10 ³⁵	cm ⁻² s ⁻¹

- $\beta_v^* = 0.8 \text{ mm demonstrated}$
- Collision with large crossing angle compensated by sextupoles schemes (as in DAFNE and as foreseen in FCC-ee)
- Design luminosity not reached so far due to intensity limitation (fast beam losses) in Super KEKB

FCC-hh parameters

parameter	FCC-hh		HL-LHC	LHC
collision energy cms [TeV]	96		14	14
dipole field [T]	16		8.33	8.33
circumference [km]	91		26.7	26.7
beam current [A]	0.5		1.1	0.58
bunch intensity [10 ¹¹]	1	1	2.2	1.15
bunch spacing [ns]	25	25	25	25
synchr. rad. power / ring [kW]	2400		7.3	3.6
SR power / length [W/m/ap.]	28.4		0.33	0.17
long. emit. damping time [h]	0.54		12.9	12.9
beta* [m]	1.1	0.3	0.15 (min.)	0.55
normalized emittance [mm]	2.2		2.5	3.75
peak luminosity [10 ³⁴ cm ⁻² s ⁻¹]	5	30	5 (lev.)	1
events/bunch crossing	170	1000	132	27
stored energy/beam [GJ]	8.4		0.7	0.36

 $[\]Rightarrow$ SR comparable to light sources, beam losses, high field magnets

BASIC DESIGN CHOICES

The main drivers

- Placement studies
- Exact four-fold symmetry (FCC-ee layout)
- Four experiments (A, D, G, & J)
- Two collimation insertions
 - betatron cleaning (F)
 - momentum cleaning (H)
- Extraction insertion + injection (B)
- RF insertion + injection (L)
- Last part of transfer lines in the ring tunnel, using normal-conducting magnets
- Compatible with LHC or SPS as injector

ARC CONCEPT (CDR)

FCC-hh KEY TECHNOLOGIES: HIGH FIELD MAGNETS

Need 16 T to reach 48 TeV /beam

- ⇒ Move from NbTi (LHC technology) to Nb₃Sn 14.3 m long dipoles
- ⇒ **HL-LHC** experience is fundamental, but further step are needed to reduce the cost
- ⇒ Exploring HTS superconductors (See S. I. Bermudez Lecture)

HL-LHC 11T First Nb₃Sn magnet, FRESCA2 dipole

Magnet is key cost driver

- Improve cable performance
- Reduce cable cost
- Improve fabrication of magnet
- Minimize amount of cables
- Push lattice filling factor
- Field Quality

Short models in 2018 – 2023 Prototypes 2026 – 2032

Synergies with other fields

15 T dipole demonstrator
60-mm aperture
4-layer graded coil

FCC-hh KEY TECHNOLOGY: MACHINE PROTECTION

Small to make magnet cheap (aperture 50 mm)

Extract photons for good vacuum

Strong to withstand quench

Hide pumping holes from beam and

REBCO-Cu longitudinal coating for low impedance

Laser treatment / carbon coating against e-cloud

The loss of even a tiny fraction of the beam could cause a magnet quench or even damage

~8 GJ kinetic energy per beam in FCC-hh O(20) times LHC

- Boing 747 at cruising speed or 400 kg of chocolate (Run 25,000 km to spent calories)
- Use carbon-based materials for highest robustness
- Very challenging engineering task to design these collimators

Designed shielding to cope with the 500 kW collision debris per experiment

Collimation system design

- Designed system that can cope with the losses
- Detailed studies and optimization of performance

Beam dump design

Machine protection (See F. Salvat Lecture)

NOVEL TECHNIQUES

"The particle physics community should ramp up its R&D effort focused on advanced accelerator technologies"

- High Field Magnets
- Super conductive cavities
- Plasma accelerations and other techniques
- Energy Recovery Linacs (ERL)
- Muons Colliders

PLASMA WAKE ACCELERATORS PRINCIPLE

$$E_{cm} \approx L_{linac} G_{acc}$$

They have the potential to overcome the length and the accelerating gradient limitations of the linear colliders

M. Ferrario et al.

From Maxwell's equations, the electric field in a (positively) charged sphere with uniform density n_i at location \mathbf{r} is

$$\vec{E}(r) = \frac{q_i n_i}{3 \epsilon_0} r$$

The field is **increasing** inside the sphere

Let's put some numbers

$$n_i=10^{16} \text{ cm}^{-3}$$
 $R=0.5 \ \lambda_p=150 \ \mu\text{m}$
 $E\approx 10 \frac{GV}{m}$

PLASMA WAKEFIELD R&D

- Specific topics to be addressed:
 - Positron acceleration
 - Technological issue (efficiency, cooling, polarization,...)
- The world wide R&D focus on beam quality, beam stability, staging and continuous operation

LINEAR COLLIDER WITH ERL

Multi-pass linac

The concept become really viable with recent advances in SRF technology: reach high cavity quality factors ($Q_0 \ge 10^{10}$) enabling high average current operation

Demonstration facilities around the world are pursuing to gain experimental experience of this technique

MUONS COLLIDERS

 $\Delta E \propto \left(\frac{E}{m}\right)^4 \frac{1}{R}$

Muons are heavier than electrons \Rightarrow they loose less energy because of synchrotron radiation can reach \sim 10 TeV energy in the center of mass with leptons!

Would be easy if the muons did not decay: lifetime is $\tau = \gamma \times 2.2 \mu s$

Short, intense proton bunch (Drives the **beam quality**)

Ionisation cooling of muon in matter (requires both high fields magnets and high gradient cavities)

Protons produce pions which decay into muons muons are captured

Acceleration to collision energy (**cost** and **power consumption** limited, cycle of the order of ~10 ms)

Collision

Dense neutrino
flux, beam
induced
backgrounds

- High Energy Accelerator Field is very active!
 - Plenty of different projects are under study to be ready to address different and complementary physics questions
 - Many beam dynamics challenges to be addressed
 - Key technology R&D roadmaps have been created:
 - A lot of synergies with other fields (energy, medicine, etc...)
- There is always room for new ideas!

You are very welcome to join us!

THANK YOU!

Barbara Dalena CERN Summer Students Lectures

11/7/2023

28

TIMELINE

LHC / HL-LHC Plan

11/7/2023

EIC

Hadron Storage Ring: 40 - 275 GeV

- RHIC Yellow+Blue Ring and Injector Complex
- Many Bunches, 1160 @ 1A Beam Current
- Bright Vertical Beam Emittance $\varepsilon xp = 1.5 \text{ nm}$
- Requires Strong Cooling (CeC)

Electron Storage Ring: 2.5 - 18 GeV (new)

- Many Bunches, Large Beam Current 2.5 A
- 9 MW Synchrotron Radiation, SRF Cavities
- Needs injection of polarized bunches

Electron Rapid Cycling Synchrotron: (new) 0.4-18 GeV

- Spin Transparent Due to High Periodicity
- 1-2 Hz cycle for On-Energy Injection into ESR

Double-ring design based on existing RHIC complex

High Luminosity Interaction Region(s) (new)

- 25 mrad Crossing Angle with Crab Cavities
- Superconducting Magnets
- Spin Rotators for Longitudinal Spin at IP
- Forward Hadron Instrumentation

COLLIMATORS AND ALIGNMENT

31

- Losses from the beam are inevitable, and could cause magnet quenches or even damage
- With higher intensity in the HL-LHC, need to enforce machine protection
- New collimators to be installed to better protect the machine. LS2 upgrade:
 - Dispersion suppressor cleaning for ALICE
 - Low-impedance primary and secondary (coated) collimators in IR7
 - Passive absorbers for IR7

Collimation upgrade

Full remote alignment system (FRAS)

will be deployed to keep the machine well aligned.

- All components equipped with alignment sensors and supported by motorized adjustment solutions
- Remote alignment of ± 2.5 mm, to reposition the machine w.r.t. the IP, to correct ground motion.

R. De Maria ICHEP 2022

Barbara Dalena CERN Summer Students Lectures

FCC-ee KEY TECHNOLOGIES: VACUUM SYSTEM

- Consider discrete absorbers space every <6 m or continuous absorbers along chamber wall
- NEG coated Cu vacuum chamber
- Need shielding to minimize tunnel radiation levels

R. Kersevan FCCIS workhop 2021

FCC-hh KEY TECHNOLOGIES: HIGH FIELD MAGNETS

Doubling the operating current density brings a reduction of the superconductor area to one third

The most promising route to fill the performance gap is the Internal Oxidation

Parrell et al., AIP Conf. Proc. <u>711</u> (2004) 369 Boutboul et al., IEEE TASC <u>19</u> (2009) 2564 Xu et al., APL <u>104</u> (2014) <u>082602</u> L. Rossi ICHEP 2022

FCC-hh KEY TECHNOLOGIES: MAGNETS R&D

L. Rossi ICHEP 2022

High Field Magnet technolgy can always serve for a HE-LHC

MAGNETS FIELD QUALITY AND PARTICLES PHASE SPACE STABILITY REGION

$$DA(N) = \frac{2}{\pi} \int_0^{\pi/2} r_s(\theta; N) d\theta$$

Replace CPU costly tracking simulations with fast surrogate model of the time evolution of Dynamic Aperture

FCC-hh KEY TECHNOLOGY: MACHINE PROTECTION

8-1012 6-1012

FCC-hh: 8.3 GJ – kinetic energy of

Airbus A380 (empty) cruising at 880 km/h

HL-LHC: 680 MJ - kinetic energy of

TGV train cruising at 215 km/h

FCC-hh COLLIMATION

- The loss of even a tiny fraction of the beam could cause a magnet quench or even damage
- To safely intercept any losses and protect the machine: use collimation system (see lecture a. Lechner)
 - Should be the smallest aperture limitation in the ring
- 500 kw of continuous losses from collisions, downstream of experiments
- Design requirement: safely handle beam lifetime of 12-minute during \sim 10 s from instabilities, operational mistakes, orbit jitters....
 - Corresponds to power load of about 11.6 MW from the beam losses
 - Collimators must digest these losses without breaking, while protecting the superconducting magnets

Beam lifetime:

usually defined as time needed for reduction of intensity by factor 1/e assuming losses proportional to intensity (often true, but not always)

$$-\frac{dN}{dt} \propto N(t) \Rightarrow N(t) = N_0 e^{-t/T_0}$$

FCC-hh COLLIMATORS ROBUSTNESS

- Use carbon-based materials for highest robustness, with hardware design based on LHC but developed further
- Very important to study material response to the high loads
- Typically 3-stage simulations:
 - Generation of impact coordinates of lost particles
 - Energy deposition studies (e.G. FLUKA, see lecture A. Lechner)
 - Thermo-mechanical study using e.G. ANSYS of dynamic material response
 - Study peak temperatures, deformations, melting, detachment of material
- Very challenging engineering task to design these collimators

MUONS DEMOSTRATOR FACILITY

Planning demonstrator facility with muon production target and cooling stations Suitable site on CERN land exists that can use PS proton beam

could combine with NuStorm or other option
 Other sites should be explored (FNAL?)

Target
+ horn (1st phase) / Collimation and
+ superconducting solenoid
(2nd phase) upstream diagnostics
area

stream diagnostics Downstream ea diagnostics ar<mark>ea</mark>

Momentum selection chicane

Cooling area

FCC-ee COLLIDER OPTICS AND BEAM-BEAM

- Novel 'virtual' crab waist combining local vertical chromaticity correction
 - Crab waist was demonstrated at DAFNE
 - Crab waist is also being used at SuperKEKB
- Optimized optics configurations for each of the 4 working points

Crab waist scheme https://arxiv.org/abs/physics/0702033

CDR optics, ttbar 182.5 GeV

BEAM-BEAM AND COLLECTIVE EFFECTS

- Beam-beam at high luminosity drives the ring parameters (limits Luminosity)
- Developing impedance model for the ring based on vacuum components
- Single bunch instabilities can be calculated based on impedance, beam-beam, and ring optics but there is complicated interplay
- Multibunch instabilities constrain bunch spacing
- Large ring circumference limits feedback gain
 - Developing integrated simulations for collective effects with feedback

FCC-ee COLLIDER OPTICS AND COLLECTIVE EFFECTS

combines local vertical chromaticity correction with crab waist of lepton factories

$$\beta_y^* pprox rac{2\sigma_x}{ heta} \ll \sigma_z$$
 ($heta$ = half crossing angle)

- Sextupoles settings are chosen to control vertical beam size chromatic aberrations at the IP
- Two external sextupoles control also the beam divergence at the IP (crab waist)
 - ⇒ Luminosity is enhanced and beam beam resonances suppressed
 - Crab waist was demonstrated at DAFNE
 - Crab waist is also being used at SuperKEKB

- Single bunch instabilities can be calculated based on impedance, beam-beam, and ring optics but there is complicated interplay
- Developing impedance model for the ring based on vacuum components and integrated simulations for collective effects with feedback

CEPC/SPPC

- □ 2013-2025: Key technology R&D, from CDR to TDR, site selection, international collaboration etc.
- ☐ Ideal case: Approval in the 15th Five-Year Plan, and start construction (~8 years)

Pre-Studies Key Tech. R&D Engineering Design Construction Construction Data Taking SPPC (pp/ep/eA)

Technically very similar project to FCC
The start with lepton collider followed
then by Hadron Collider has been
always the plan of China since 2013.

The choice for SC Magnet R&D is unique: IBS —iron based SC an HTS potentially **much lower cost**, but lower performance than REBCO.

Design of a ERL based 50 GeV electron beam in collision with the 7 TeV LHC protons.

Fully Modular Concept

- Imbedded in a LHC Interaction Region
- Influence on optics & orbit compensated
- Flexibility of the LHC rings checked
- Asymmetric beam optics for ultimate e-p luminosity
- Non-colliding p-beam well separated
- Negligible beam-beam force on both proton beams

Low energy test facility PERLE

B. Holzer ICHEP 2022

	Electrons	Protons
Energy (GeV)	50	7000
N /bunch	3.1 10 ⁹	2.2 1011
bunch distance (ns)	25	
I (mA)	20	1100
Emittance (nm)	0.31	0.33
Beam size @ IP (µm)	6/6	
Luminosity (cm ⁻² s ⁻¹)	9*10 ³³	

wall plug power: 100 MW

FCC-eh

ERL & IR can be imbedded at any straight section

60 GeV (electron) x 50 TeV (proton) -> 1.5 TeV collider

ou Gev	(electron) x 50	iev (profor	$n_1 \rightarrow 1.5 \text{ ie}$	v comaer

	Electrons	Protons
Energy	60 GeV	50 TeV
N /bunch	3.1 10 ⁹	2.2 1011
bunch distance (ns)	25	
I (mA)	20	1100
Emittance (nm)	0.31	0.05
Beam size @ IP (µm)	2.5 / 2.5	
Luminosity (cm ⁻² s ⁻¹)	1.5*10 ³⁴	

FCC-CDR: Eur. Phys. J. ST 228 (2019, 4.775)

ERL PRINCIPLE

W. KAABI ICHEP 2022

- ERL concept was proposed first in 1965 by Maury Tigner 1 (Cornell University) for colliders...
- ¹ M. Tigner: "A Possible Apparatus for Electron Clashing-Beam Experiments", Il Nuovo Cimento Series 10, Vol. 37, issue 3, pp 1228-1231,1 Giugno 1965
- o The concept was experimented first in 1986 at SCA/FEL in Stanford, accelerating beams at rather low power.
- O The concept become really viable with recent advances in SRF technology in the last decades, quantified by reaching high cavity quality factors ($Q_0 \ge 10^{10}$) enabling high average current operation.

MUON COLLIDER SUSTAINABILITY

Muon Collider:

Acceleration and collision in multiple turns in rings promises

- Power efficiency
- Compact tunnels, 10 TeV similar to 3 TeV CLIC
- Cost effectiveness
- Natural staging is natural

Synergies exist (neutrino/higgs)

Unique opportunity for a high-energy, high-luminosity lepton collider

\sqrt{S}	$\int \mathcal{L}dt$
3 TeV	$1 {\rm ~ab^{-1}}$
10 TeV	$10 {\rm \ ab^{-1}}$
14 TeV	20 ab^{-1}

Previous studies in US (now very strong interest again), experimental programme in UK and alternatives studies by INFN

New strong interest:

Focus on high energy

Replace this

- 10+ TeV
- potential initial energy stage
- Technology and design advanced

New collaboration started

Initial integrated luminosity targets

- could be reached in 5 years
- to be refined with physics studies

\sqrt{s}	$\int \mathcal{L}dt$
3 TeV	$1 {\rm \ ab^{-1}}$
10 TeV	$10 {\rm \ ab^{-1}}$
14 TeV	20 ab^{-1}

D. Schulte

Muon Collider, ICHEP, July 2022

Discovery reach

14 TeV lepton collisions are comparable to 100-200 TeV proton collisions for production of heavy particle pairs

MOUNS COLLIDER SCHEME

Would be easy if the muons did not decay: lifetime is $\tau = v \times 2.2 \mu s$

Short, intense proton bunch

lonisation cooling of muon in matter

Acceleration to collision energy

Collision

Protons produce pions which decay into muons muons are captured

KEY CHALLENGES

Also impacts beam quality

COOLING PRINCIPLE AND R&D

Principle of ionization cooling with no RF has been demonstrated in MICE at RAL

Nature vol. 578, p. 53-59 (2020)

Needs cooling of orders of magnitude in 6D

Demonstrated 10% ε reduction in 2D (consistent with prediction)

Planning **demonstrator facility** with muon production target and cooling stations Suitable site on CERN land exists that can use PS proton beam

could combine with NuStorm or other option
 Other sites should be explored (FNAL?)

