

FUTURE COLLIDERS PROJECTS 2 ND PART

BARBARA DALENA Paris-Saclay University and CEA Paris-Saclay

- Futures Circular Colliders Projects
	- HL-LHC
	- FCC-ee/FCC-hh
	- Novel techniques

High Luminosity-LHC

 $L = \frac{kN^2 f \gamma}{\gamma} \cdot F$ $\pi \beta \varepsilon$ γ Γ *2 ϵ 4

A peak luminosity of $L_{peak} = 5 \times 10^{34}$ cm⁻²s⁻¹ with **levelling**, allowing an integrated luminosity of **250 fb-1 per year**, enabling the goal of **Lint = 3000 fb-1** twelve years after the upgrade.

This luminosity is more than ten times the luminosity reach of the first 10 years of the LHC lifetime.

Ultimate performance established use of **engineering margins: Lpeak ult 7.5 10³⁴ cm-2s -1** and Ultimate Integrated $L_{int,ult} \sim 4000$ fb⁻¹

LHC should not be the limit, would Physics programs require more…

COMPENSATION OF GEOMETRIC REDUCTION FACTOR

 $L = \frac{kN^2 f \gamma}{4\pi \beta^* \varepsilon}$ $\overline{(F)}$ $\frac{1}{\sqrt{1 + (\frac{\sigma_s}{\sigma_x} \frac{\phi}{2})^2}}$ $\gamma \bigcap_{\Gamma}$ $\qquad \qquad$ $*$ $\begin{array}{ccc} \hline \end{array}$ 2 ϵ $4\pi\beta \varepsilon \vee \sqrt{1+}$

- Crossing angle at HL-LHC must be larger than at LHC, due to higher intensity and higher beam divergence
	- Would cause very large loss in luminosity: F≈0.35
- To compensate: use "crab cavities" that tilt the bunches longitudinally and ensure overlap at the collision point
- Prototypes tests in the SPS!

Schematic view of RFD (top) and DQW (bottom) crab cavity. Image credit: R Leuxe/CERN

LEVELLING MECHANISMS

Levelling techniques will be a vital ingredient for HL-LHC operation and have been used successfully in operation:

***: Main levelling mechanism during the fill. Operational in 2018**

Reducing heat load on the IT triplet (quench and cooling limits) Limiting pile up in the detectors

Crossing angle: Might be needed to optimize beam lifetime and as mean to reduce pile-up density given the reduced crabbing angle. Operational in 2017

Separation: Will be used in ALICE and LHCb and for fine adjustments (separations \lt 1 σ) in ATLAS **and CMS** ➔ **Operational since Run 1**

R. De Maria ICHEP 2022

~1.2 KM OF NEW HARDWARE IN LHC

• New final focus quadrupoles around ATLAS and CMS:

Ni₃Sn technology (See S. I. Bermudez's lecture) for more aperture Radiation damage

- Matching section: separation dipoles, first double aperture magnet and correctors (See S. I. Bermudez's Lecture)
- Crab Cavities
- Cryogenics plants
- SC links and rad. Mitigation
- 11 T Nb3Sn dipole for collimation

FUTURE CIRCULAR COLLIDERS

International FCC collaboration (CERN as host lab) to study:

- *pp***-collider (***FCC-hh***)** → main emphasis, defining infrastructure requirements
- **~100 km tunnel infrastructure** in Geneva area, site specific
- *e* **+***e* **- collider (***FCC-ee***),** as potential first step
- **HE-LHC** with *FCC-hh* technology
- p-e (FCC-he) option, IP integration, e⁻ from ERL

CDRs published in **European Physical Journal C (Vol 1)** and ST (Vol $2 - 4$)

Summary documents provided to EPPSU SG

•**FCC-integral, FCC-ee, FCC-hh, HE-LHC**

•Accessible on <http://fcc-cdr.web.cern.ch/>

 $Cost: ~28.6$ BCHF

PREPARING FOR NEXT STRATEGY

Comprehensive long-term program maximizing physics opportunities

- **stage 1: FCC-ee (Z, W, H, tt) as Higgs factory, electroweak & top factory at highest luminosities** ҧ
- **stage 2: FCC-hh (~100 TeV) as natural continuation at energy frontier, with ion and eh options**
- complementary physics
- common civil engineering and technical infrastructures, reusing CERN's existing infrastructure
- FCC integrated program allows continuation of HEP after completion of the HL-LHC program

FEASIBILITY STUDY GOALS AND ROADMAP

High efficient RF system, small emittance and short lifetime beam

FCC-ee KEY TECHNOLOGIES: ARCS

Aim of the project

- **Example 2 Arc half-cell:** most recurrent assembly of mechanical hardware in the accelerator (\sim 1500 similar FODO cells in the FCC-ee)
- **Mock-up** → Functional prototype(s) → Pre-series → Series
- Building a mock-up allows optimizing and testing **fabrication**, **integration, installation, assembly, transport, maintenance**
- Working with demonstrators of the different equipment, and/or structures with equivalent volumes, weights, stiffness

F. Carra et al *Arc perspective view, F. Valchkova-Georgieva*

OPTICS CORRECTIONS STRATEGY (FCC-EE BOOSTER)

Motivation

- ➢ Evaluate specifications of the main **magnets misalignment** of the High Energy Booster arcs cells **and of magnets field error**
- ➢ Definition of the **orbit correction strategy and of correctors specifications** for the booster

Orbit correction using beam position monitors reading

.S

Improvements and related work to do:

- \triangleright Other methods than SVD AI?
- ➢ Demonstrate full emittance **tuning**
- \triangleright Study the impact of booster support vibrations on emittance (dynamic imperfections)
- Study the impact of energy ramp during the booster cycle

FCC-ee KEY TECHNOLOGIES: SRF-CAVITIES

We need to replenish energy loss by synchrotron radiation: see W. Venturini Lectures on RF superconductivity Superconductive RF most efficient way

- **SRF technology building on LHC studies and collaborative R&D** (F. Peauger et al.)
	- o 5-cell 800 MHz cavity without damping built and tested at 2K by Jefferson lab with excellent results
	- o 400 MHz cavities based on LHC studies of Cu-coated Nb cavities at 4.5K
	- \circ Alternative slotted waveguide elliptical cavity with $f=600$ MHz

SWELL 2-cell 600 MHz cavity for Z, W, H

Model for 2-cell 400 MHz for WW and ZH

• **RF placement optimized for infrastructure requirements** (F. Valchkova-Georgieva et al)

FCC-ee KEY TECHNOLOGIES: INTERACTION REGION

• **Canted-Cosine-Theta magnets**

- Elegant 2-layer design for inner quadrupoles
- o Working to fit within 100 mrad stay-clear cone
- o Prototype built and warm-tested
- o Complex integration of SC quadrupoles, LumiCal, shielding, diagnostics…

Mock-up under discussion

• **FCC-ee interaction region**

- o **L*** is **2.2 m**.
- \circ The 10 mm central radius is for \pm 9 cm from the IP.
- \circ The two symmetric beam pipes with radius of 15 mm are merged at 1.2 m from the IP
- o Low impedance vacuum chamber
- o Synchrotron Radiation Background and photon dumps

Integration within the detector

SUPERKEKB AS FCC-EE TEST FACILITY

- $\beta_y^* = 0.8$ mm demonstrated
- Collision with large crossing angle compensated by sextupoles schemes (as in DAFNE and as foreseen in FCC-ee)
- Design luminosity not reached so far due to intensity limitation (fast beam losses) in Super KEKB

FCC-hh parameters

SR comparable to light sources, beam losses, high field magnets

BASIC DESIGN CHOICES

The main drivers

- Placement studies
- **Exact four-fold symmetry (FCC-ee layout)**
- Four experiments (A, D, G, & J)
- Two collimation insertions
	- betatron cleaning (F)
	- momentum cleaning (H)
- Extraction insertion + injection (B)
- RF insertion $+$ injection (L)
- **Last part of transfer lines in the ring tunnel, using normal-conducting magnets**
- Compatible with LHC or SPS as injector

ARC CONCEPT (CDR)

FCC-hh KEY TECHNOLOGIES: HIGH FIELD MAGNETS

Need 16 T to reach 48 TeV /beam

- \Rightarrow Move from NbTi (LHC technology) to Nb₃Sn 14.3 m long dipoles
- ⇒ HL-LHC experience is fundamental, but further step are needed to reduce the cost
- \Rightarrow Exploring HTS superconductors (See S. I. Bermudez Lecture)

11T First Nb₃Sn magnet, FRESCA2 dipole Synergies with other fields

Magnet is key cost driver

- Improve cable performance
- Reduce cable cost
- Improve fabrication of magnet
- Minimize amount of cables
- Push lattice filling factor
- **Field Quality**

Short models in 2018 – 2023 Prototypes 2026 – 2032

춘 Fermilab 15 T dipole demonstrator 60-mm aperture 4-layer graded coil **U.S. MAGNET DEVELOPMENT** PROGRAM

FCC-hh KEY TECHNOLOGY: MACHINE PROTECTION

30 W/M SYNCHROTRON RADIATION (LHC: 1 W/M)

Extract photons for good vacuum Strong to withstand quench Hide pumping holes from beam and REBCO-Cu longitudinal coating for low impedance Small to make magnet cheap (aperture 50 mm)

Laser treatment / carbon coating against e-cloud

~8 GJ kinetic energy per beam in FCC-hh O(20) times LHC

- Boing 747 at cruising speed or 400 kg of chocolate (Run 25,000 km to spent calories)
- Use carbon-based materials for highest robustness
- **Very challenging engineering task** to design these collimators

Designed shielding to cope with the 500 kW collision debris per experiment

Tests at KARA/KIT

Collimation system design

 $FCC \cup H$ \parallel H CHC

• Designed system that can cope with the losses

K

• Detailed studies and optimization of performance **Beam dump** design

Machine protection (See F. Salvat Lecture)

NOVEL TECHNIQUES

"The particle physics community should ramp up its R&D effort focused on advanced accelerator technologies"

- High Field Magnets
- Super conductive cavities
- Plasma accelerations and other techniques
- Energy Recovery Linacs (ERL)
- Muons Colliders

PLASMA WAKE ACCELERATORS PRINCIPLE

 $E_{cm} \approx L_{linac} G_{acc}$

They have the potential to overcome the length and the accelerating gradient limitations of the linear colliders

From Maxwell's equations, the electric field in a (positively) charged sphere with uniform density n_i at location r is

The field is **increasing** inside the sphere Let's put some numbers

$$
n_{i} = 10^{16} \text{ cm}^{-3}
$$

$$
R = 0.5 \lambda_{p} = 150 \mu m
$$

$$
E \approx 10 \frac{GV}{m}
$$

M. Ferrario et al.

PLASMA WAKEFIELD R&D

- Specific topics to be addressed:
	- Positron acceleration
	- Technological issue (efficiency, cooling, polarization,…)
- The world wide R&D focus on beam quality, beam stability, staging and continuous operation

Open-source simulation ecosystem for laptop to Exascale modeling of high-gradient accelerators J.-L. Vay - Accelerator Modeling Program - Berkeley Lab Expert Panel on High-Gradient Accelerator (Plasma/Laser) Townhall - May 31, 2021 ENERGY Some **SERKELEY LAB ATAP**

The concept become really viable with recent advances in SRF technology: reach high cavity quality factors ($Q_0 \geq 10^{10}$) enabling high average current operation

Demonstration facilities around the world are pursuing to gain experimental experience of this technique

MUONS COLLIDERS

Muons are heavier than electrons \Rightarrow they loose less energy because of synchrotron radiation can reach \sim 10 TeV energy in the center of mass with leptons!

Would be easy if the muons did not decay: lifetime is $τ = γ × 2.2 μs$

 $\Delta E \propto \left(\frac{E}{m}\right)^4 \frac{1}{R}$

CONCLUSIONS

- High Energy Accelerator Field is very active !
	- Plenty of different projects are under study to be ready to address different and complementary physics questions
	- Many beam dynamics challenges to be addressed
	- Key technology R&D roadmaps have been created:
		- A lot of synergies with other fields (energy, medicine, etc...)
- There is always room for new ideas!

You are very welcome to join us!

THANK YOU!

Barbara Dalena CERN Summer Students Lectures 28

 \circ

TIMELINE

LHC/HL-LHC Plan

 $\sqrt{2}$

EIC

- RHIC Yellow+Blue Ring and Injector Complex
- Many Bunches, 1160 @ 1A Beam Current
- Bright Vertical Beam Emittance εxp= 1.5 nm
- Requires Strong Cooling (CeC)

Electron Rapid Cycling Synchrotron: (new) **0.4-18 GeV**

- Spin Transparent Due to High Periodicity
- 1-2 Hz cycle for On-Energy Injection into ESR

Double-ring design based

on existing RHIC complex

High Luminosity Interaction Region(s) (new)

Electron Storage Ring: 2.5 - 18 GeV (new)

• Many Bunches, Large Beam Current - 2.5 A

• 9 MW Synchrotron Radiation, SRF Cavities

• Needs injection of polarized bunches

- 25 mrad Crossing Angle with Crab Cavities
- Superconducting Magnets
- Spin Rotators for Longitudinal Spin at IP
- Forward Hadron Instrumentation

COLLIMATORS AND ALIGNMENT

- Losses from the beam are inevitable, and could cause magnet quenches or even damage
- With higher intensity in the HL-LHC, need to enforce machine protection
- New collimators to be installed to better protect the machine. LS2 **upgrade:**
	- Dispersion suppressor cleaning for ALICE
	- Low-impedance primary and secondary (coated) collimators in IR7
	- Passive absorbers for IR7

Full **remote alignment system** (**FRAS**)

will be deployed to keep the machine well aligned.

Collimation upgrade

- All components equipped with alignment sensors and supported by motorized adjustment solutions
- Remote alignment of ± 2.5 mm, to reposition the machine w.r.t. the IP, to correct ground motion.

R. De Maria ICHEP 2022

FCC-ee KEY TECHNOLOGIES: VACUUM SYSTEM

• **Specifying vacuum system**

- o Consider discrete absorbers space every <6 m or continuous absorbers along chamber wall
- o NEG coated Cu vacuum chamber
- o Need shielding to minimize tunnel radiation levels

FCC-hh KEY TECHNOLOGIES: HIGH FIELD MAGNETS

The most promising route to fill the performance gap is the Internal Oxidation

L. Rossi ICHEP 2022

Xu et al., APL 104 (2014) 082602 Parrell et al., AIP Conf. Proc. 711 (2004) 369 Boutboul et al., IEEE TASC 19 (2009) 2564

Barbara Dalena CERN Summer Students Lectures 11/7/2023 33

FCC-hh KEY TECHNOLOGIES: MAGNETS R&D

MAGNETS FIELD QUALITY AND PARTICLES PHASE SPACE STABILITY REGION

Replace CPU costly tracking simulations with fast surrogate model of the time evolution of Dynamic Aperture

FCC-hh KEY TECHNOLOGY: MACHINE PROTECTION

 2.10^{12} 4.10¹²

HL-LHC: 680 MJ - kinetic energy of

TGV train cruising at 215 km/h

FCC-hh: 8.3 GJ – kinetic energy of

Airbus A380 (empty) cruising at 880 km/h

FCC-hh COLLIMATION

- The loss of even a tiny fraction of the beam could cause a magnet quench or even damage
- To safely intercept any losses and protect the machine: use collimation system (see lecture a. Lechner)
	- Should be the smallest aperture limitation in the ring
- 500 kw of continuous losses from collisions, downstream of experiments
- Design requirement: safely handle beam lifetime of 12-minute during \sim 10 s from instabilities, operational mistakes, orbit jitters….
	- Corresponds to power load of about 11.6 MW from the beam losses
	- Collimators must digest these losses without breaking, while protecting the superconducting magnets

Beam lifetime:

usually defined as time needed for reduction of intensity by factor 1/e assuming losses proportional to intensity (often true, but not always)

FCC-hh COLLIMATORS ROBUSTNESS

- Use carbon-based materials for highest robustness, with hardware design based on LHC but developed further
- Very important to study material response to the high loads
- Typically 3-stage simulations:
	- Generation of impact coordinates of lost particles
	- Energy deposition studies (e.G. FLUKA, see lecture A. Lechner)
	- Thermo-mechanical study using e.G. ANSYS of dynamic material response
		- Study peak temperatures, deformations, melting, detachment of material
- Very challenging engineering task to design these collimators

MUONS DEMOSTRATOR FACILITY

Planning demonstrator facility with muon production target and cooling stations Suitable site on CERN land exists that can use PS proton beam

• could combine with NuStorm or other option Other sites should be explored (FNAL?)

FCC-ee COLLIDER OPTICS AND BEAM-BEAM

• **Novel 'virtual' crab waist combining local vertical chromaticity correction**

- o Crab waist was demonstrated at DAFNE
- o Crab waist is also being used at SuperKEKB
- **Optimized optics configurations for each of the 4 working points**

Crab waist scheme https://arxiv.org/abs/physics/0702033

CDR optics, ttbar 182.5 GeV

BEAM-BEAM AND COLLECTIVE EFFECTS

- **Beam-beam at high luminosity drives the ring parameters (limits Luminosity)**
- **Developing impedance model for the ring based on vacuum components**
- **Single bunch instabilities can be calculated based on impedance, beam-beam, and ring optics but there is complicated interplay**
- **Multibunch instabilities constrain bunch spacing**
- **Large ring circumference limits feedback gain**
	- o **Developing integrated simulations for collective effects with feedback**

FCC-ee COLLIDER OPTICS AND COLLECTIVE EFFECTS

 $\Delta \mu_x = 2\pi$ $\Delta \mu_{v} = 2.5 \pi$

• **Novel 'virtual' crab waist**

combines local vertical chromaticity correction with crab waist of lepton factories

$$
\beta_{y}^{*} \approx \frac{2\sigma_{x}}{\theta} \ll \sigma_{z} \qquad \text{(6)}
$$

- θ = half crossing angle)
- Sextupoles settings are chosen to control vertical beam size chromatic aberrations at the IP
- Two external sextupoles control also the beam divergence at the IP (crab waist)

\Rightarrow Luminosity is enhanced and beam beam resonances suppressed

- Crab waist was demonstrated at DAFNE
- o Crab waist is also being used at SuperKEKB

• Single bunch instabilities can be calculated based on impedance, beam-beam, and ring optics but there is complicated interplay

IP

• Developing impedance model for the ring based on vacuum components and integrated simulations for collective effects with feedback

CEPC/SPPC

Technically very similar project to FCC The start with lepton collider followed then by Hadron Collider **has been always the plan of China since 2013.**

The choice for SC Magnet R&D is unique: IBS –iron based SC an HTS potentially **much lower cost**, but lower performance than REBCO.

Barbara Dalena CERN Summer Students Lectures 43

LHeC

Design of a ERL based 50 GeV electron beam in collision with the 7 TeV LHC protons. Fully Modular Concept

- Imbedded in a LHC Interaction Region
- Influence on optics & orbit compensated
- Flexibility of the LHC rings checked
- Asymmetric beam optics for ultimate e-p luminosity
- Non-colliding p-beam well separated
- Negligible beam-beam force on both proton beams

Low energy test facility PERLE

wall plug power: 100 MW

Barbara Dalena CERN Summer Students Lectures 44

FCC-eh

ERL & IR can be imbedded at any straight section

60 GeV (electron) x 50 TeV (proton) \rightarrow 1.5 TeV collider

FCC-CDR: Eur. Phys. J. ST 228 (2019, 4.775)

B. Holzer ICHEP 2022

o ERL concept was proposed first in **1965 by Maury Tigner** ¹(Cornell University) for colliders…

¹ M. Tigner: "A Possible Apparatus for Electron Clashing-Beam Experiments", Il Nuovo Cimento Series 10, Vol. 37, issue 3, pp 1228-1231,1 Giugno 1965

- o The concept was experimented first in 1986 at SCA/FEL in Stanford, accelerating beams at rather low power.
- o The concept become really viable with recent advances in SRF technology in the last decades, quantified by reaching high cavity quality factors ($Q_0 \geq 10^{10}$) enabling high average current operation.

Muon Collider:

Acceleration and collision in multiple turns in rings promises

- **Power efficiency**
- **Compact tunnels,** 10 TeV similar to 3 TeV CLIC
- **Cost effectiveness**
- **Natural staging** is natural
- S**ynergies** exist (neutrino/higgs)

Unique opportunity for a **high-energy, high-luminosity lepton collider**

MUON COLLIDERS

Previous studies in US (now very strong interest again), experimental programme in UK and alternatives studies by INFN

 $\mathcal{L}dt$

 1 ab⁻¹

 10 ab^{-1}

 20 ab^{-1}

New strong interest:

- Focus on high energy \bullet
- $10+TeV$ Replace this
	- potential initial energy stage ۰
	- Technology and design advanced

New collaboration started

Initial integrated luminosity targets

- could be reached in 5 years
- to be refined with physics studies

 \sqrt{s}

3 TeV

 10 TeV

 14 TeV

D. Schulte

heavy particle pairs

Discovery reach

14 TeV lepton collisions are comparable to

100-200 TeV proton collisions for production of

Muon Collider, ICHEP, July 2022

Minternational
Collaboration

MOUNS COLLIDER SCHEME

Would be easy if the muons did not decay: lifetime is $τ = γ × 2.2 μs$

COOLING PRINCIPLE AND R&D

Principle of ionization cooling with no RF has been demonstrated in **MICE at RAL**

Nature vol. 578, p. 53-59 (2020)

Needs cooling of orders of magnitude in 6D Demonstrated 10% ε reduction in 2D (consistent with prediction)

R. Losito et al.

Planning **demonstrator facility** with muon production target and cooling stations Suitable site on CERN land exists that can use PS proton beam

• could combine with NuStorm or other option Other sites should be explored (FNAL?)