

CERN Summer Student Lectures 2023

Heavy Ions 2/3

Francesca Bellini

University and INFN, Bologna, Italy Contact: francesca.bellini@cern.ch

Production and characterization of the QGP at the LHC

Kinematic variables

Momentum and transverse momentum: $p = \sqrt{p_L^2 + p_T^2}$

Transverse mass: $m_T := \sqrt{m^2 + p_T^2}$

Rapidity (generalizes longitudinal velocity $\beta_L = p_L/E$): $y := \operatorname{arctanh} \beta_L = \frac{1}{2} \ln \frac{1+\beta_L}{1-\beta_L} = \frac{1}{2} \ln \frac{E+p_L}{E-p_L}$

- In a collider where 2 beams of different ions: $y_{CM} = \frac{1}{2} \ln \frac{Z_1 A_2}{A_1 Z_2}$
- In fixed-target mode: $y_{CM} = (y_{\text{target}} + y_{\text{beam}})/2 = y_{\text{beam}}/2$

The rapidity can be approximated by **pseudorapidity** in the ultrarelativistic limit (*p>>m):*

$$
y = \frac{1}{2} \ln \frac{E + p \cos \vartheta}{E - p \cos \vartheta} \approx \frac{1}{2} \ln \frac{1 + \cos \vartheta}{1 - \cos \vartheta} = \frac{1}{2} \ln \frac{2 \cos^2 \frac{\vartheta}{2}}{2 \sin^2 \frac{\vartheta}{2}} = -\ln \left[\tan \frac{\vartheta}{2} \right] =: \eta
$$

$$
\cos(2\alpha) = 2 \cos^2 \alpha - 1 = 1 - 2 \sin^2 \alpha
$$

where ϑ is the angle between the direction of the beam and the particle.

In general $y \neq \eta$, especially at low momenta.

Geometry of heavy-ion collisions 1/2

We can control **a posteriori** the geometry of the collision by selecting in **centrality**.

Centrality = fraction of the total hadronic cross section of a nucleus-nucleus collision, typically expressed in percentile, and related to the impact parameter (**b**)

Other variables related to centrality:

- N_{coll} , number of binary nucleon-nucleon collisions
- N_{part} number of participating nucleons

Geometry of heavy-ion collisions 2/2

- More **central**, ie. "head-on" collisions
- \rightarrow smaller impact parameter
- \rightarrow larger overlap region
- \rightarrow more participants
- \rightarrow more particles produced

More **peripheral** collision

- \rightarrow larger impact parameter
- \rightarrow smaller overlap region
- \rightarrow less participants
- \rightarrow fewer particles produced

Centrality is determined by counting the number of particles (multiplicity) or measuring the energy deposition in a region of phase space *independent* from the measurement, to avoid biases/autocorrelations in the results.

Rapidity distributions in HI collisions

Before the collision: beams with given rapidity

E.g. at RHIC:

- p_{BEAM} = 100 GeV/c per nucleon
- $E_{\rm BEAM}$ = $\sqrt{(m_{\rm p}^2+p_{\rm BEAM}^2)}$ = 100.0044 per nucleon
- $\beta = 0.999956$, γ_{BEAM} ≈100
- y_{BEAM1} = - y_{BEAM2} = 5.36 → Δy = 10.8

After the collision, 2 possible scenarios

- **1. Nuclei stopping**
	- $-$ For $\sqrt{s_{NN}} \sim 5$ -10 GeV (AGS,...)
- **2. Transparency**
	- $-$ For $\sqrt{s_{NN}}$ > 100 GeV (RHIC, LHC)
	- nuclei slow down to lower γ and y
	- particles are produced with a ''plateau'' at midrapidity

Charged particle multiplicity vs centrality

ALI-PUB-115086

ALICE, Phys.Lett. B 772 (2017) 567-577

Charged particle production in central HI collisions

Particle production per participant in HI collisions follows a steeper power law than in pp, pA and increases by 2-3x from RHIC to the LHC

Heavy-ion collisions are more efficient in transferring energy from beam- to mid- rapidity than pp

How many particles are created in a collision?

In a central Pb-Pb collision at the LHC, more than 20000 charged tracks must be reconstructed.

 \rightarrow High granularity tracking systems, primary importance of tracking, vertexing calibration

Particle "spectra"

$\textsf{Low}\ p_{\tau} \left(< 2 \text{ GeV/c} \right)$

- Particle spectra are described by a Boltzmann distribution \rightarrow "thermal", \sim exp(-1/k_BT)
- "Bulk" dominated by light flavor particles
- Non-perturbative QCD regime

High p*^T (> 8-10 GeV/c)*

- Particle spectra described by a power law
- Dominated by parton fragmentation (jets)
- Perturbative QCD regime

Mid p_T (2 to 8 GeV/c)

Interplay of parton fragmentation and recombination of partons from QGP

Heavy-ion and high-energy physics have different goals and thus different detector requirements.

Observables:

- soft (low p_T) and hard (high p_T) probes
- hadron production rates (needs PID)
- flow (needs acceptance coverage)
- photon/W/Z (calorimetry)
- jets (coverage, high p_T)

In HI physics also emphasis on:

- **midrapidity** measurements
- **identification** of hadron species
- soft (non-perturbative) regime, i.e. **low p**_T
- **minimum bias** events

Complementarity of the LHC experiments

- **ALICE**
	- Low p_T
- PID
- Low material budget next to IP

ATLAS/CMS

- **ATLAS**
- Wide pseudorapidity coverage
- High p_T jets

LHCb

- Forward pseudorapidity
- PID
- **Fixed target**

F. Bellini | SSL 2023 | Heavy Ions 11

The [s](http://madai.phy.duke.edu/indexaae2.html?page_id=503)tandard model of heavy-ion collision

Probes 1/2

1 fm/c = $3x10^{-24}$ s, 1 MeV \sim 10¹⁰ K

High-pT partons (→ jets), charm and beauty quarks (→ open HF, quarkonia) produced in the early stages in hard processes,

traverse the QGP interacting with its constituents = colored probes in a colored medium

- **→ rare, calibrated probes, perturbative QCD**
- → **in-medium interaction (energy loss) and transport properties**
- → in-medium modification of the strong force and of fragmentation

Probes 2/2

1 fm/c = $3x10^{-24}$ s, 1 MeV \sim 10¹⁰ K

Low-p_T particles, light flavour hadrons (u,d,s, +nuclei)

produced from hadronization of the strongly-interacting, thermalized QGP constitute the bulk of the system

- **→ non-perturbative QCD regime**
- **→ thermodynamical, hydrodynamical and transport properties**

How does the presence of a colored QGP affect particle production?

Jets

In the early stages of the collision, hard scatterings produce back-to-back recoiling partons, which fragment into collimated ''sprays'' of hadrons.

→ in-vacuum fragmentation

ATLAS, pp collision event display

Jets

In the early stages of the collision, hard scatterings produce back -to -back recoiling partons, which fragment into collimated ''sprays'' of hadrons .

 \rightarrow in-vacuum fragmentation

When a QGP is formed, the colored partons traverse and interact with a colored medium.

→ in-medium fragmentation \rightarrow jet ''quenching'' (energy loss)

Goal: understand the nature of this energy loss to characterize the strongly -interacting QGP

The nuclear modification factor, R_{AA}

$$
R_{AA}(p_T) = \frac{1}{\langle N_{coll} \rangle} \frac{dN_{AA} / dp_T}{dN_{pp} / dp_T}
$$

If a AA collision is a incoherent superposition of independent pp collisions, the p_T spectra in AA collisions can be obtained by scaling the p_T spectra in pp collisions by the number of nucleon-nucleon collisions, N_{coll} :

 $dN_{AA} / dp_T = N_{coll} \times dN_{pp} / dp_T$

and $R_{AA} = 1$ at high p_T \rightarrow the medium is transparent to the passage of partons

If R_{AA} < 1 at high p_T

 \rightarrow the medium is opaque to the passage of partons **→ parton-medium final state interactions, energy**

loss, modification of fragmentation in the medium

A strong suppression of high- p_T hadrons and jets is observed in central Pb-Pb collisions. No suppression observed in p-Pb collisions, nor for the color-less Z bosons and photons. → Jet quenching is explained as **parton energy loss in a strongly interacting plasma**

Radiative energy loss

In the BDMPS (*Baier-Dokshitzer-Mueller-Peigné-Schiff*) approach, the energy loss depends on

- the **color-charge** via the Casimir factors C_r
	- $C_r = C_A = 3$ for g interactions
	- $C_r = C_F = 4/3$ for q,qbar interactions
- the **strong coupling**
- the **path length** L
- the **transport coefficient** \hat{q} ("q-hat")
	- gives an estimate of the "strength" of the jet quenching
	- is not directly measurable \rightarrow from data through model(s)

Baier-Dokshitzer-Mueller-Peigné-Schiff, Nucl. Phys. B. 483 (1997) 291

How much energy is lost?

From the BDMPS formula :

$$
\langle \Delta E \rangle = \frac{1}{4} \alpha_s C_R \hat{q} L^2
$$
 Dimensional analysis $\langle \Delta E \rangle = \frac{\alpha_s C_R \hat{q} L^2}{4 \hbar c}$

If we take

- \hat{q} ~ 5 GeV²/fm
- $-\alpha_s$ = 0.2, strong coupling for Q² = 10 GeV
- $-C_R = 4/3$
- $L = 7.5$ fm

we obtain <∆E> ~ 95 GeV

Only partons with $E \gtrsim 105$ GeV can traverse a 7.5 fm radius fireball and exit with $p_T \gtrsim 10$ GeV/c

In other words, it takes a \sim 7.5 fm radius QGP droplet to stop a jet of ~ 100 GeV (or ~1.5m of hadronic calorimeter)

Jet transport coefficient \widehat{q}

A recent combined analysis of the RHIC and the LHC data on jet quenching (inclusive hadron R_{AA}) allowed to extract a value for the \hat{q} parameter

$$
\frac{\hat{q}}{T^3} \approx \begin{cases} 4.6 \pm 1.2 & \text{at RHIC,} \\ 3.7 \pm 1.4 & \text{at LHC,} \end{cases}
$$

For a quark jet with $E = 10$ GeV

$$
\hat{q} \approx \begin{cases}\n1.2 \pm 0.3 \\
1.9 \pm 0.7\n\end{cases}
$$
 GeV²/fm at T=370 MeV
T=470 MeV

 \rightarrow Still large uncertainties, but important step **towards a quantitative characterisation** of the QGP.

In-medium jets: main questions

Related to the nature and properties of the medium

- Density of the medium and transport properties
- Nature of the scattering centers
- Distribution of the radiated energy
- …

Related to the nature of the energy loss mechanism

- Path length dependence
- **Broadening effects**
- Microscopic mechanism for energy loss

→ Study the **shape and structure of jets** for insight into the details of jet modification mechanisms due to interactions with the plasma

- Flavour dependence
	- \rightarrow **measure charm and beauty R**_{AA}

Charm and beauty

Heavy flavours: m(charm) \sim 1.3 GeV/ c^2 m(beauty) \sim 4.7 GeV/ c^2

are ideal probes of the QGP at the LHC:

- **large production cross sections**
- Produced in **initial hard** parton scatterings
- **controlled** values of mass and colour charge of the propagating parton
- "brownian" motion through the medium, **diffusion**
- sensitive to QGP **hadronisation** (baryon/meson)

Energy loss of charm and beauty

Charm and beauty loose energy via **gluon radiation** + **elastic collisions**

Due to the large masses, radiative energy loss is subject to the **dead cone effect** = suppression of the gluon radiation emitted by a (slow) heavy quark at small angles, $9 < \theta_{DC} \sim m_q/E_q$

 \rightarrow **hierarchy** in energy loss: $\Delta E_a > \Delta E_c > \Delta E_b$

 \rightarrow radiative energy loss reduced by 25% (c) and 75% (b) [μ = 1 GeV/c²]

Baier-Dokshitzer-Mueller-Peigné-Schiff, Nucl. Phys. B. 483 (1997) 291

```
\langle \Delta E \rangle \propto \alpha_s C_r \hat{q} L^2
```
Average transverse momentum transfer Mean free path \sim 1/density

Nuclear modification of charm and beauty

A strong suppression is observed in the R_{AA} of D mesons J/psi from b decay. J/ψ from beauty is less suppressed than D mesons from charm $\rightarrow \Delta E_c > \Delta E_b$

Collisional energy loss

It depends on

- **path length** through the medium, L (linearly)
- **parton type**
	- For light quarks
	- $-$ For heavy quarks

$$
E_{q,g} \sim \alpha_s C_R \mu^2 \left[\frac{E T}{\mu^2} \right]
$$

$$
+ \alpha_s^2 T^2 C_R \mu^2 \left[\frac{E T}{\mu^2} \right]
$$

- **temperature** of the medium, T
- **mass** of the heavy quark M
- average transverse momentum transfer **µ** in the medium

 \rightarrow Data are well described by models that include both collisional and radiative E_{loss}

Summary 1/2

Evidence of the creation of a strongly-interacting

medium in central heavy ion collisions comes from the observed strong suppression of particle production, explained by the energy loss of colored partons in the colored QGP.

- Radiative energy loss dominates at high p_T for light flavours, gluons and charm
- Collisional and radiative energy loss play similar role for beauty

A **quantitative characterization** of the properties of the medium (e.g. transport coefficient, …) requires **models**.

How does the presence of a colored QGP affect hadron formation?

Quarkonia

c-cbar (J/Ψ, Ψ',..) and b-bar (ϒ', ϒ'', ϒ''') pairs are a laboratory for QCD:

- Small decay width (~keV), significant BR into dileptons
- Intrinsic separation of energy scales: m_{Ω} >> Λ_{QCD} and m_{Ω} >> B_F
- A variety of states characterized by different binding energies

Quarkonium as a thermometer for QGP

Charmonium suppression $(J/\psi, \psi', \dots)$ suggested as ''smoking gun'' signatures for the QGP back in the 1980's.

In vacuum (T=0), qqbar is bound by the Cornell potential.

$$
V(r) = -\frac{\alpha}{r} + kr
$$

When the qqbar is immersed in the dense and hot QGP (**T>0**), the surrounding color charges screen the binding potentials (color Debye screening), resulting in

 e^{-r/λ_D} *r* $V(r) = -\frac{\alpha}{c} e^{-r/\lambda_1}$

The effective coupling between q and qbar at large distances gets reduced \rightarrow **q-qbar melting**

J/ψ suppression

- observed at the SPS ($\sqrt{s_{NN}}$ = 17 GeV)
- later measured at RHIC ($\sqrt{s_{NN}}$ =200 GeV) up to very high multiplicities

For similar multiplicities the suppression at SPS is similar to that at RHIC despite the energy difference

At the LHC ($\sqrt{s_{NN}}$ = 2.76 TeV), J/ ψ is less suppressed, due to the larger charm cross section.

J/ψ production vs √*s*

The cross section for producing a c-cbar pair increases with \sqrt{s}

In a central event At SPS ~0.1 c-cbar At RHIC ~10 c-cbar At LHC $~100$ c-cbar

c from one c-cbar pair may combine with cbar from another c-cbar pair at hadronization to form a J/ψ à **regeneration!**

J/ψ suppression vs regeneration 1/2

(Re)generation of charmonium and charmed hadron production take place at the phase boundary or in QGP. Dissociation and regeneration work in opposite directions vs energy density.

P. Braun-Munzinger, J. Stachel., Nature 448, 302–309 (2007)

J/ψ suppression vs regeneration 2/2

ALICE data from 5.02 TeV Pb-Pb collisions confirm the J/ψ recombination picture:

- R_{AA} (LHC) > R_{AA} (RHIC)
- R_{AA} midrapidity > R_{AA} forward rapidity

 $→$ **Signature of de-confinement.**

Sequential melting of quarkonia 1/2

Measurements reveal a sequential suppression of high mass bottomonium states. The centrality dependence of the suppression is consistent with progressive suppression in a hotter medium.

Sequential melting of quarkonia 2/2

 $R_{AA}(Y(3S) \sim 0.5 R_{AA}(Y(2S)))$ \rightarrow Can be used to constrain models!

Increased suppression with increased collision energy \rightarrow no recombination at hadronisation

Heavy quarks in equilibrium?

ALI-DER-65274

Charm is partially equilibrated (thermalised) with the medium à **a partially-equilibrated probe of the late hadronization stages**

Beauty/bottomonia: no evidence that beauty is even partially equilibrated with the medium \rightarrow **non-equilibrium probe**

Summary 2/2

The study of quarkonium (ccbar, bbar) states provides information on the mechanisms of **dissociation and regeneration** of strongly-bound state in a medium (T>0).

- The high density of color charges in the QGP leads to melting of quarkonia
- The large abundance of charm quarks at LHC results in regeneration of the amount of J/ψ
- States with smaller binding energies are more suppressed

Bonus material

Characteristics of a heavy-ion detector: ALICE

Particle identification

- Direct identification: $π$, K , p , light (anti)nuclei
- Electron identification using calorimeters and transition radiation detectors
- Strange and heavy-flavour hadrons:
	- reconstruction of secondary vertex and weak decay topology + PID + invariant mass reconstruction
- Photons detected in calorimeters and through pair production
- Quarkonia through leptonic decays

Energy loss of long lived particles in TPC

Light ions at the LHC

Initial stage of heavy ion collisions

F. Bellini | SSL 2023 | Heavy Ions

Glauber model

Nucleus-nucleus interaction as **incoherent** superposition of nucleon-nucleon collisions calculated in a probabilistic approach *[M. L. Miller et al., An. Rev. Nucl. Part. Sci. 57 (2007) 205-243]*

- nucleons in nuclei are considered as point-like and non-interacting
- nuclei (and nucleons) have straight-line trajectories (no deflection)

Input:

- Nucleon-nucleon inelastic cross section
- Nuclear density distribution, e.g. Fermi

 ρ^0 = density in the nucleus center R = nucleus radius $a =$ skin depth $w =$ deviations from spherical shape

Glauber model (2)

Output:

- Interaction probability
- Number of elementary nucleon-nucleon collisions (N_{coll})
- Number of participant nucleons (N_{part})
- **Number of spectator nucleons**
- Size of the nuclei overlap region

These variables are fundamental to study the scaling properties of observables in HIC – **Rule of thumb**:

- N_{part} scaling of soft particle production \rightarrow bulk of the system
- N_{coll} scaling of high p_{T} particle production \rightarrow hard partons produced early in the collision

