

Heavy lons 2/3

Francesca Bellini

University and INFN, Bologna, Italy Contact: francesca.bellini@cern.ch

Production and characterization of the QGP at the LHC

Kinematic variables

Momentum and transverse momentum: $p = \sqrt{p_L^2 + p_T^2}$

Transverse mass:
$$m_T := \sqrt{m^2 + p_T^2}$$

Rapidity (generalizes longitudinal velocity $\beta_L = p_L / E$): $y := \operatorname{arctanh} \beta_L = \frac{1}{2} \ln \frac{1 + \beta_L}{1 - \beta_L} = \frac{1}{2} \ln \frac{E + p_L}{E - p_L}$

- In a collider where 2 beams of different ions: $y_{CM} = \frac{1}{2} \ln \frac{Z_1 A_2}{A_1 Z_2}$
- In fixed-target mode: $y_{CM} = (y_{\mathrm{target}} + y_{\mathrm{beam}})/2 = y_{\mathrm{beam}}/2$

The rapidity can be approximated by **pseudorapidity** in the ultra-relativistic limit (p>>m):

$$y = \frac{1}{2} \ln \frac{E + p \cos \vartheta}{E - p \cos \vartheta} \stackrel{p \gg m}{\approx} \frac{1}{2} \ln \frac{1 + \cos \vartheta}{1 - \cos \vartheta} = \frac{1}{2} \ln \frac{2 \cos^2 \frac{\vartheta}{2}}{2 \sin^2 \frac{\vartheta}{2}} = -\ln \left[\tan \frac{\vartheta}{2} \right] =: \eta$$

$$\cos(2\alpha) = 2 \cos^2 \alpha - 1 = 1 - 2 \sin^2 \alpha$$

where ϑ is the angle between the direction of the beam and the particle.

In general $y \neq \eta$, especially at low momenta.

Geometry of heavy-ion collisions 1/2

We can control a posteriori the geometry of the collision by selecting in centrality.

Centrality = fraction of the total hadronic cross section of a nucleus-nucleus collision, typically expressed in percentile, and related to the impact parameter (b)

Other variables related to centrality:

- N_{coll}, number of binary nucleon-nucleon collisions
- N_{part} number of participating nucleons

Geometry of heavy-ion collisions 2/2

More central, ie. "head-on" collisions

- → smaller impact parameter
- → larger overlap region
- → more participants
- → more particles produced

More **peripheral** collision

- → larger impact parameter
- → smaller overlap region
- → less participants
- → fewer particles produced

Centrality is determined by counting the number of particles (multiplicity) or measuring the energy deposition in a region of phase space *independent* from the measurement, to avoid biases/autocorrelations in the results.

ALICE, PRL 106 (2011) 032301, PRC 91 (2015) 064905

Rapidity distributions in HI collisions

Before the collision: beams with given rapidity

E.g. at RHIC:

- $p_{BEAM} = 100 \text{ GeV/c per nucleon}$
- $E_{BEAM} = \sqrt{(m_p^2 + p_{BEAM}^2)} = 100.0044$ per nucleon
- β = 0.999956, γ _{BEAM} ≈100
- y_{BEAM1} = - y_{BEAM2} = 5.36 → Δy = 10.8

After the collision, 2 possible scenarios

1. Nuclei stopping

- For $\sqrt{s_{NN}}$ ~ 5 -10 GeV (AGS,...)

2. Transparency

- For $\sqrt{s_{NN}}$ > 100 GeV (RHIC, LHC)
- nuclei slow down to lower γ and y
- particles are produced with a "plateau" at midrapidity

F. Bellini | SSL 2023 | Heavy Ions

5

Charged particle multiplicity vs centrality

ALI-PUB-115086

ALICE, Phys.Lett. B 772 (2017) 567-577

Charged particle production in central HI collisions

Particle production per participant in HI collisions follows a steeper power law than in pp, pA and increases by 2-3x from RHIC to the LHC

Heavy-ion collisions are more efficient in transferring energy from beam- to mid- rapidity than pp

How many particles are created in a collision?

In a central Pb-Pb collision at the LHC, more than 20000 charged tracks must be reconstructed.

→ High granularity tracking systems, primary importance of tracking, vertexing calibration

Particle "spectra"

Low $p_T (< 2 \text{ GeV/c})$

- Particle spectra are described by a Boltzmann distribution → "thermal", ~ exp(-1/k_BT)
- "Bulk" dominated by light flavor particles
- Non-perturbative QCD regime

High p_T (> 8-10 GeV/c)

- Particle spectra described by a power law
- Dominated by parton fragmentation (jets)
- Perturbative QCD regime

Mid p_T (2 to 8 GeV/c)

Interplay of parton fragmentation and recombination of partons from QGP

Heavy-ion and high-energy physics have different goals and thus different detector requirements.

Observables:

- soft (low p_T) and hard (high p_T) probes
- hadron production rates (needs PID)
- flow (needs acceptance coverage)
- photon/W/Z (calorimetry)
- jets (coverage, high p_T)

In HI physics also emphasis on:

- midrapidity measurements
- identification of hadron species
- soft (non-perturbative) regime, i.e. low p_T
- minimum bias events

Complementarity of the LHC experiments

ALICE

- Low p_T
- PID
- Low material budget next to IP

ATLAS/CMS

- Wide pseudorapidity coverage
- High p_T jets

LHCb

- Forward pseudorapidity
- PID
- Fixed target

LHCb

The standard model of heavy-ion collisions

No direct observation of the QGP is possible → rely on emerging particles as "probes"

- [1] F. Gardim et al. Nature Phys. 16 (2020) 6, 615-619
- [2] A. Bazavov et al., Phys. Lett. B 795 (2019)
- [3] Borsaniy et al. PRL 125 (2020) 5, 052001
- [4] A. Andronic et al., Nature 561 (2018) 7723, 321-330

Probes 1/2

1 fm/c = $3x10^{-24}$ s, 1 MeV ~ 10^{10} K

High- p_T partons (\rightarrow jets), charm and beauty quarks (\rightarrow open HF, quarkonia) produced in the early stages in hard processes,

traverse the QGP interacting with its constituents = colored probes in a colored medium

- → rare, calibrated probes, perturbative QCD
- → in-medium interaction (energy loss) and transport properties
- → in-medium modification of the strong force and of fragmentation

Probes 2/2

1 fm/c = $3x10^{-24}$ s, 1 MeV ~ 10^{10} K

Low-p_T particles, light flavour hadrons (u,d,s, +nuclei) produced from hadronization of the strongly-interacting, thermalized QGP constitute the bulk of the system

- → non-perturbative QCD regime
- → thermodynamical, hydrodynamical and transport properties

How does the presence of a colored QGP affect particle production?

Jets

In the early stages of the collision, hard scatterings produce back-to-back recoiling partons, which fragment into collimated "sprays" of hadrons.

→ in-vacuum fragmentation

ATLAS, pp collision event display

Jets

In the early stages of the collision, hard scatterings produce back-to-back recoiling partons, which fragment into collimated "sprays" of hadrons.

→ in-vacuum fragmentation

When a QGP is formed, the colored partons traverse and interact with a colored medium.

- → in-medium fragmentation
- → jet "quenching" (energy loss)

Goal: understand the nature of this energy loss to characterize the strongly-interacting QGP

The nuclear modification factor, R_{AA}

$$R_{AA}(p_T) = \frac{1}{\langle N_{coll} \rangle} \frac{dN_{AA} / dp_T}{dN_{pp} / dp_T}$$

If a AA collision is a incoherent superposition of independent pp collisions, the p_T spectra in AA collisions can be obtained by scaling the p_T spectra in pp collisions by the number of nucleon-nucleon collisions, N_{coll} :

$$dN_{AA}/dp_T = N_{coll} \times dN_{pp}/dp_T$$

and $R_{AA} = 1$ at high p_T

→ the medium is transparent to the passage of partons

If R_{AA} < 1 at high p_T

- → the medium is opaque to the passage of partons
- → parton-medium final state interactions, energy loss, modification of fragmentation in the medium

Evidence of parton energy loss in QGP

A strong suppression of high- p_T hadrons and jets is observed in central Pb-Pb collisions. No suppression observed in p-Pb collisions, nor for the color-less Z bosons and photons.

→ Jet quenching is explained as parton energy loss in a strongly interacting plasma

Radiative energy loss

In the BDMPS (Baier-Dokshitzer-Mueller-Peigné-Schiff) approach, the energy loss depends on

- the color-charge via the Casimir factors C_r
 - $C_r = C_A = 3$ for g interactions
 - $C_r = C_F = 4/3$ for q,qbar interactions
- the strong coupling
- the path length L
- the transport coefficient \hat{q} ("q-hat")
 - gives an estimate of the "strength" of the jet quenching
 - is <u>not directly measurable</u> → from data through model(s)

$$\frac{dE}{dx} = -C_r \alpha_s \hat{q} L$$

$$\hat{q} = rac{\mu^2}{\lambda}$$
 Average transverse momentum transfer Mean free path

$$\lambda \propto \frac{1}{\rho}$$
 Density

Baier-Dokshitzer-Mueller-Peigné-Schiff, Nucl. Phys. B. 483 (1997) 291

How much energy is lost?

From the BDMPS formula:

$$\langle \Delta E \rangle = \frac{1}{4} \alpha_s \ C_R \ \hat{q} \ L^2$$
 Dimensional analysis $\langle \Delta E \rangle = \frac{\alpha_s \ C_R \ \hat{q} \ L^2}{4 \hbar c}$

If we take

- $-\hat{q} \sim 5 \text{ GeV}^2/\text{fm}$
- $-\alpha_S$ = 0.2, strong coupling for Q² = 10 GeV
- $C_R = 4/3$
- L = 7.5 fm

we obtain $<\Delta E> \sim 95$ GeV

Only partons with E \gtrsim 105 GeV can traverse a 7.5 fm radius fireball and exit with $p_T \gtrsim$ 10 GeV/c

In other words, it takes a ~7.5 fm radius QGP droplet to stop a jet of ~ 100 GeV (or ~1.5m of hadronic calorimeter)

Jet transport coefficient \hat{q}

A recent combined analysis of the RHIC and the LHC data on jet quenching (inclusive hadron R_{AA}) allowed to extract a value for the \hat{q} parameter

$$\frac{\hat{q}}{T^3} pprox \left\{ egin{array}{ll} 4.6 \pm 1.2 & ext{at RHIC,} \\ 3.7 \pm 1.4 & ext{at LHC,} \end{array}
ight.$$

For a quark jet with E = 10 GeV

$$\hat{q} \approx \begin{cases} 1.2 \pm 0.3 \\ 1.9 \pm 0.7 \end{cases} \text{ GeV}^2/\text{fm at } \begin{array}{c} \text{T=370 MeV} \\ \text{T=470 MeV} \end{array}$$

→ Still large uncertainties, but important step towards a quantitative characterisation of the QGP.

S. Cao et al., PRC 104, 024905 (2021)

In-medium jets: main questions

Related to the nature and properties of the medium

- Density of the medium and transport properties
- Nature of the scattering centers
- Distribution of the radiated energy
- ...

Related to the nature of the energy loss mechanism

- Path length dependence
- Broadening effects
- Microscopic mechanism for energy loss
 - → Study the **shape and structure of jets** for insight into the details of jet modification mechanisms due to interactions with the plasma
- Flavour dependence
 - → measure charm and beauty R_{AA}

Charm and beauty

Heavy flavours: m(charm) ~ 1.3 GeV/c² m(beauty) ~ 4.7 GeV/c²

are ideal probes of the QGP at the LHC:

- large production cross sections
- Produced in initial hard parton scatterings
- controlled values of mass and colour charge of the propagating parton
- "brownian" motion through the medium, diffusion
- sensitive to QGP hadronisation (baryon/meson)

Energy loss of charm and beauty

Charm and beauty loose energy via gluon radiation + elastic collisions

Due to the large masses, radiative energy loss is subject to the **dead cone effect** = suppression of the gluon radiation emitted by a (slow) heavy quark at small angles, $\vartheta < \vartheta_{DC} \sim m_q/E_q$

- \rightarrow hierarchy in energy loss: $\Delta E_g > \Delta E_c > \Delta E_b$
- \rightarrow radiative energy loss reduced by 25% (c) and 75% (b) [μ = 1 GeV/c²]

Baier-Dokshitzer-Mueller-Peigné-Schiff, Nucl. Phys. B. 483 (1997) 291

$$\langle \Delta E \rangle \propto \alpha_s C_r \hat{q} L^2$$

$$\hat{q} = rac{\mu^2}{\lambda}$$
 Average transverse momentum transfer Mean free path ~1/density

Nuclear modification of charm and beauty

A strong suppression is observed in the R_{AA} of D mesons J/psi from b decay. J/ ψ from beauty is less suppressed than D mesons from charm $\rightarrow \Delta E_c > \Delta E_b$

Collisional energy loss

It depends on

- path length through the medium, L (linearly)
- parton type
 - For light quarks

$$\Delta E_{q,g} \sim \alpha_S C_R \mu^2 L \ln \frac{ET}{\mu^2}$$

For heavy quarks

$$+ \alpha_s^2 T^2 C_R \mu^2 L \ln \frac{ET}{M^2}$$

- temperature of the medium, T
- mass of the heavy quark M
- average transverse momentum transfer µ in the medium
- → Data are well described by models that include both collisional and radiative E_{loss}

Summary 1/2

Evidence of the creation of a strongly-interacting medium in central heavy ion collisions comes from the observed strong suppression of particle production, explained by the energy loss of colored partons in the colored QGP.

- Radiative energy loss dominates at high p_T for light flavours, gluons and charm
- Collisional and radiative energy loss play similar role for beauty

A **quantitative characterization** of the properties of the medium (e.g. transport coefficient, ...) requires **models**.

How does the presence of a colored QGP affect hadron formation?

Quarkonia

c-cbar (J/Ψ, Ψ',..) and b-bar (Y', Y", Y"") pairs are a laboratory for QCD:

- Small decay width (~keV), significant BR into dileptons
- Intrinsic separation of energy scales: $m_Q >> \Lambda_{QCD}$ and $m_Q >> B_E$
- A variety of states characterized by different binding energies

30

Quarkonium as a thermometer for QGP

Charmonium suppression (J/ ψ , ψ ',...) suggested as "smoking gun" signatures for the QGP back in the 1980's.

In vacuum (T=0), qqbar is bound by the Cornell potential. α

 $V(r) = -\frac{\alpha}{r} + kr$

When the qqbar is immersed in the dense and hot QGP (T>0), the surrounding color charges screen the binding potentials (color Debye screening), resulting in

 $V(r) = -\frac{\alpha}{r} e^{-r/\lambda_D}$

The effective coupling between q and qbar at large distances gets reduced → q-qbar melting

J/ψ suppression

- observed at the SPS ($\sqrt{s_{NN}}$ = 17 GeV)
- later measured at RHIC (√s_{NN}=200 GeV) up to very high multiplicities

For similar multiplicities the suppression at SPS is similar to that at RHIC despite the energy difference

At the LHC ($\sqrt{s_{NN}}$ = 2.76 TeV), J/ ψ is less suppressed, due to the larger charm cross section.

J/ψ production vs \sqrt{s}

The cross section for producing a c-cbar pair increases with \sqrt{s}

In a central event At SPS ~0.1 c-cbar At RHIC ~10 c-cbar At LHC ~100 c-cbar

c from one c-cbar pair may combine with cbar from another c-cbar pair at hadronization to form a J/ψ

→ regeneration!

J/ψ suppression vs regeneration 1/2

(Re)generation of charmonium and charmed hadron production take place at the phase boundary or in QGP.

Dissociation and regeneration work in opposite directions vs energy density.

P. Braun-Munzinger, J. Stachel., Nature 448, 302–309 (2007)

J/ψ suppression vs regeneration 2/2

ALICE data from 5.02 TeV Pb-Pb collisions confirm the J/ψ recombination picture:

- $R_{AA}(LHC) > R_{AA}(RHIC)$
- R_{AA} midrapidity > R_{AA} forward rapidity
- → Signature of de-confinement.

Sequential melting of quarkonia 1/2

Measurements reveal a sequential suppression of high mass bottomonium states.

The centrality dependence of the suppression is consistent with progressive suppression in a hotter medium.

Sequential melting of quarkonia 2/2

 $R_{AA}(Y(3S) \sim 0.5 R_{AA}(Y(2S))$ \rightarrow Can be used to constrain models!

Increased suppression with increased collision energy

→ no recombination at hadronisation

Heavy quarks in equilibrium?

Beauty/bottomonia: no evidence that beauty is even partially equilibrated with the medium → non-equilibrium probe

Summary 2/2

The study of quarkonium (ccbar, bbar) states provides information on the mechanisms of dissociation and regeneration of strongly-bound state in a medium (T>0).

- The high density of color charges in the QGP leads to melting of quarkonia
- The large abundance of charm quarks at LHC results in regeneration of the amount of J/ψ
- States with smaller binding energies are more suppressed

Bonus material

Characteristics of a heavy-ion detector: ALICE

ALICE is the dedicated heavy-ion detector at the LHC, designed and built specifically for this purpose.

Solenoid: magnetic field B = 0.5 T

Inner Tracking System + Time Projection — Chamber: vertexing and tracking + identification (TPC) down to very low $p_T \sim 0.1 \text{ GeV/}c$

Time-Of-Flight, TRD, HMPID, etc.: Particle identification detectors

Electromagnetic calorimeters

+ Forward rapidity detectors and ZDC: trigger, centrality, event time determination, ...

Particle identification

- Direct identification: π, K, p, light (anti)nuclei
- Electron identification using calorimeters and transition radiation detectors
- Strange and heavy-flavour hadrons:
 - reconstruction of secondary vertex and weak decay topology
 + PID + invariant mass reconstruction
- Photons detected in calorimeters and through pair production
- Quarkonia through leptonic decays

Energy loss of long lived particles in TPC

Particle velocity from TOF measurement and momentum

Light ions at the LHC

From A. Mazeliauskas, EPS-HEP 2021:

Light-ions (e.g. O, Ar, Kr) Yellow report (2018) [17]:

- High achievable luminosity.
- Short oxygen run planned in LHC Run 3.
- pO: strong interest from cosmic ray physics.
- \blacksquare OO comparable to pPb, but better geometry control.
- Many physics opportunities see OppOatLHC [indico]

Experimental projections and theory calculations show measurable energy loss signal in $10\,{\rm GeV} < p_T < 50\,{\rm GeV}$.

Huss, Kurkela, AM, Paatelainen, van der Schee, Wiedemann (2020) [41]

Opportunity to discover jet quenching in small systems.

ksas Mazeliauskas aleksa

Initial stage of heavy ion collisions

Color Glass Condensate: at high energy and small x, the hadron content is dominated by gluonic matter "packed" into high density

Saturation (momentum) scale Q_{sat} = inverse size scale of smallest gluons which are closely packed \rightarrow gluons of size larger than

1/Q_{sat} no longer fit

L. McLerran, https://bib-pubdb1.desy.de/record/296833/files/ismd08_mcl_intro-corr.pdf
+ more reviews in literature.

Glauber model

Nucleus-nucleus interaction as **incoherent** superposition of nucleon-nucleon collisions calculated in a probabilistic approach [M. L. Miller et al., An. Rev. Nucl. Part. Sci. 57 (2007) 205-243]

- nucleons in nuclei are considered as point-like and non-interacting
- nuclei (and nucleons) have straight-line trajectories (no deflection)

Input:

- Nucleon-nucleon inelastic cross section
- Nuclear density distribution, e.g. Fermi

$$\rho(r) = \rho_0 \frac{1 + w(r/R)^2}{1 + \exp\left(\frac{r-R}{a}\right)} \quad \begin{array}{l} \rho^0 = \text{density in the nucleus center} \\ \text{R = nucleus radius} \\ \text{a = skin depth} \\ \text{w = deviations from spherical shape} \end{array}$$

Examples of density distributions of nuclei

Glauber model (2)

Output:

- Interaction probability
- Number of elementary nucleon-nucleon collisions (N_{coll})
- Number of participant nucleons (N_{part})
- Number of spectator nucleons
- Size of the nuclei overlap region

These variables are fundamental to study the scaling properties of observables in HIC – **Rule of thumb**:

- N_{part} scaling of soft particle production
 → bulk of the system
- N_{coll} scaling of high p_T particle production
 → hard partons produced early in the collision

79