

Experimental Physics at Hadron Colliders CERN Summer Students Lectures, July 17-21, 2023 - Lecture 1/4

Markus KLUTE (<u>markus.klute@kit.edu</u>) Institute of Experimental Particle Physics (ETP)

CERN Summer Student Lecture Program 2023

- Particle World David Tong
- Detectors Wernes Ziegler
- From Raw Data to Physics Results Paul Laycock
- Accelerator Technology Part I Susana Bermudez
- The Standard Model Christophe Grojean
- Foundation of Statistics Glen Cowan
- Particle Accelerators Foteini Avesta
- Nuclear Physics at CERN Magdalena Kowalska
- Theoretical Concepts in Particle Physics Tim Cohen
- Future High Energy Collider Projects Barbara Dalena
- Cosmology Valerie Domcke
- Heavy Ion Physics Francesca Bellini

https://indico.cern.ch/event/1254879/timetable/

Markus Klute 2

- Accelerator Technology Part 2 Walter Delsolaro
- Experimental Physics at Hadron Colliders -Markus Klute
- Flavour Physics Mark Williams
- Physics and Medical Applications Manuela Cirilli
- Accelerator Technology Part 3 Francesc Pujol
- Astroparticle Physics Bradley Kavanagh
- Predictions at Hadron Colliders Alexander Huss
- Lepton Colliders Frank Simon
- Antimatter in the Laboratory Jack Devlin
- Physics Beyond the Standard Model Tevong You
- Electronics, DAQ and Trigger Tommaso Colombo
- What is String Theory? Timo Weigand

Learning Objectives

- Understanding basics concepts of experimental particle physics at hadron colliders
- Knowledge of the broad and diverse LHC Physics program, including the vast number of opportunities at the LHC

What will I learn?

How do I learn?

Particle Physics at Colliders

most fundamental level.

- High-energy particle collisions enable
 - Discovery of new and massive particles
 - Probing the structure of matter
 - Exploring fundamental forces of nature
 - Recreating the early universe

The objective of particle physics is to uncover the fundamental laws of nature and gain a comprehensive understanding of the universe at its

Work Plans

Lecture 1: Introduction, fundamentals, cross sections

Lecture 2: Standard model measurements

Lecture 3: Higgs physics

Lecture 4: Searches for new physics

Markus Klute 5

https://videos.cern.ch/record/2020780

https://home.cern/science/accelerators/accelerator-complex

Markus Klute 7

https://videos.cern.ch/record/2020780

https://home.cern/science/accelerators/accelerator-complex

Linear accelerator 4 (Linac 4) accelerates negative hydrogen ions (H-) to 160 MeV

IS

https://videos.cern.ch/record/2020780

https://home.cern/science/accelerators/accelerator-complex

IS

'n

- Linear accelerator 4 (Linac 4) accelerates negative hydrogen ions (H-) to 160 MeV
- Ions are stripped of their two electrons during injection into the **Proton Synchrotron Booster**
- Booster is using four superimposed synchrotron rings to accelerate to 2 GeV

n TOF 2001 LINAC 4 2020 LINAC 3 lons 1994

TT10

https://videos.cern.ch/record/2020780

https://home.cern/science/accelerators/accelerator-complex

- Linear accelerator 4 (Linac 4) accelerates negative hydrogen ions (H-) to 160 MeV
- Ions are stripped of their two electrons during injection into the **Proton Synchrotron Booster**
- Booster is using four superimposed synchrotron rings to accelerate to 2 GeV
- Proton Synchrotron (PS) uses conventional electromagnets and accelerates to 26 GeV

IS

'n

https://videos.cern.ch/record/2020780

https://home.cern/science/accelerators/accelerator-complex

- Super Proton Synchrotron (SPS) uses conventional electromagnets and accelerates protons to 450 GeV
- Discovery of the W and Z boson in 1983.

https://videos.cern.ch/record/2020780

https://home.cern/science/accelerators/accelerator-complex

12 Markus Klute

CMS

North

Area

ATLAS

- LHC: 8 arcs and 8 straight sections
- Proton-proton collisions at 13.6 TeV, also pA and AA collisions
- ARCs (2.45km)
 - 23 arc 'cells' with main dipoles, quadrupoles and other multipoles
- Straight sections (528m)
 - Experiments, beam injection, RF acceleration, beam dump

https://videos.cern.ch/record/2020780

https://home.cern/science/accelerators/accelerator-complex

https://videos.cern.ch/record/2020780

https://home.cern/science/accelerators/accelerator-complex

Why Protons and not Electrons?

- Energy loss by Bremsstrahlung ultimately limits the center-of-mass energy of circular lepton colliders
 - LEP reached 209 GeV with an energy loss per of 3.5 GeV
 - Energy loss per turn for the LHC is 7 keV
- Hadron collider limitation is the bending power
 - LHC effective radius is 2.7 km requiring a field of 8.5 T
 - At LEP (209 GeV) only about 0.1T was required.

Why not Protons on Anti-Protons?

- Producing an anti-protons beam is challenging
- Studying collisions of proton constituents, i.e. quarks and gluons
- The probability to find a Parton with momentum fraction x is captured in parton distribution functions (PDFs)
 - PDFs are measured in experiments
 - Q² evolution is calculated with Altarelli-Parisi equations
 - Example: top pair production

Momentum sum rule

$$\sum_{i} \int_0^1 dx \ x f_i(x, Q^2) = 1$$

Flavour conservation sum rules

$$\int_{0}^{1} (f_u(x, Q^2) - f_{\overline{u}}(x, Q^2)) dx = 2$$
$$\int_{0}^{1} (f_d(x, Q^2) - f_{\overline{d}}(x, Q^2)) dx = 1$$
$$\int_{0}^{1} (f_s(x, Q^2) - f_{\overline{s}}(x, Q^2)) dx = 0$$

Hadron Collider History

Collider	Location	Operating	Dimensions	Beam Energy	Туре	Luminosity	Legacy
ISR	CERN	1971-84	~1km	31 GeV	рр	2*10 ³¹ cm ⁻² s ⁻¹	First of its kind
SPS	CERN	1981-93	~6.9km	450 GeV	p-anti-p	5*10 ³⁰ cm ⁻² s ⁻¹	W and Z boson
HERA	DESY	1992-2007	~6.3km	920 GeV	ep	5*10 ³¹ cm ⁻² s ⁻¹	PDFs
Tevatron	FERMILAB	1992-2011	~6.2km	980 GeV	p-anti-p	4*10 ³² cm ⁻² s ⁻¹	Top quark discovery
SSC	Texas	Never completed	~87km	20 TeV	рр	10 ³³ cm ⁻² s ⁻¹	_
RHIC	Brookhaven	Since 2000	~3.8km	100 GeV	pp, pA, AA	10 ³² cm ⁻² s ⁻¹	Quark-gluor plasma
LHC	CERN	Since 2008	LEP tunnel ~27km	6.8 TeV	pp, pA, AA	2*10 ³⁴ cm ⁻² s ⁻¹	Higgs bosor discovery
EIC	Brookhaven	~2032	RHIC infrastructure	275 GeV	ep, eA	10 ³⁴ cm ⁻² s ⁻¹	_
FCC-hh	CERN	~2060	FCC-ee tunnel	50 TeV	pp, pA, AA	3*10 ³⁵ cm ⁻² s ⁻¹	_

Hadron-Hadron Collision

Broadband beam of various parton types with various energies

Challenge: reliable calculations of observables

Hadron-Hadron Collision

The Proton

as seen from the impinging parton at scale Q^2

R = 0.8 fm

21 Markus Klute

Prototype Process: Drell-Yan Production $pp \rightarrow l^+l^- + X$

- Hadron production of lepton pairs
- Factorising "hard" and "soft" components
 - Calculate hard partonic subprocess
 - Weight cross section with probability to end parsons with momenta x1 and x2
 - Integrate over all possible parton momenta
 - Sum over all possible parton flavors

$$\sigma_{\rm DY} = \sum_{i,j} \int \mathrm{d}x_i \mathrm{d}x_j f_i(x_i) f_j(x_j) \cdot \hat{\sigma}(q_i q_j \to l^+ l^-)$$

Factorisation scale µ_f

- Attribution ambiguous
 - Leads to soft and / or collinear divergences (long-distance effects!)
 - Solution: introduce a new scale to separate short- and long-distance effects
 - Effects are absorbed into PDFs and determined experimentally
- Markus Klute 23

Where does this belong to?

The PDF?

Or the parton process?

 $\hat{\sigma}_{ij}(x_i, x_j, \mu_r^2, \alpha_s(\mu_r^2)) \rightarrow \hat{\sigma}_{ij}(x_i, x_j, \mu_f^2, \mu_r^2, \alpha_s(\mu_r^2))$ $f_i(x_i) \to f_i(x_i, \mu_f^2)$

Hadron-Hadron Cross Section

Factorisation valid for more general final states, e.g. jet production

Luminosity

$$\frac{\mathrm{d}N}{\mathrm{d}t} = \mathcal{L}(t)\sigma$$

Events per second for a given cross section

Cross section in barn (10⁻²⁴ cm⁻²) Luminosity in cm⁻²s⁻¹

- Luminosity depends on
 - Number of protons per bunch
 - Beam size at interaction point
 - Number of bunches

47 G, Gy

- Luminosity measurements
 - Crucial for absolute cross section measurements or to set limits on physics beyond the SM
 - Calibration performed using "Van der Meer scans"
 - Uncertainty of order 1-2%
- Luminosity monitoring

Luminosity

f f	Np2 f NB	Np2	
	47 G, Gy	41	

Parameter	2010	2011	2012	2016	2017	2018	Nominal	HL-LHC
CoM Energy	7 TeV	7 TeV	8 TeV	13 TeV	13 TeV	13 TeV	14 TeV	14 TeV
Np	1.1 10 ¹¹	1.4 10 ¹¹	1.6 10 ¹¹	1.2 10 ¹¹	1.2 10 ¹¹	1.2 10 ¹¹	1.15 10 ¹¹	2.2 1011
Bunches k	368	1380	1380	2300	2450	2500	2808	2760
Spacing	150 ns	50 ns	50 ns	25 ns	25 ns	25 ns	25 ns	25ns
ε (mm rad)	2.4-4	1.9-2.3	2.5	2.6	2.3	2.6	3.75	2.5
β* (m)	3.5	1.5-1	0.6	0.4	0.3-0.4	0.4	0.55	0.15
L (cm ⁻² s ⁻¹)	2x10 ³²	3.3x10 ³³	~7x10 ³³	1.5x10 ³³	2.0x10 ³⁴	2x10 ³⁴	10 ³⁴	8x10 ³⁴
PU	~2	~10	~30	~30	~50	~50	~25	~130

Luminosity (beam size) expressed using beam parameters

Integrated Luminosity and Pile-Up

Mean number of interactions per crossing

Event rates at the LHC

Total cross sections

- ~1.6*10⁹ /s (80mb, 2*10³⁴cm⁻²s⁻¹)
- Bunch crossing rate of 40MHz
- Jets (E_T^{jet} > 100 GeV)
 - ~40000 Hz
- W & Z bosons
 - ~4000 Hz, ~1000 Hz
- Top Quarks
 - ~20 Hz
- Jets (E_T^{jet} > 650 GeV)
 - ~6 Hz
- Higgs bosons
 - ~1 Hz (50pb, 2*10³⁴cm⁻²s⁻¹)

Cross Section Measurements

- Luminosity
- Selection efficiency (objects, kinematics, binning)
- Acceptance (extrapolation from fiducial volume)
- Background estimation

Work Plans

Lecture 1: Introduction, fundamentals, cross sections

Lecture 2: Standard model measurements

Lecture 3: Higgs physics

Lecture 4: Searches for new physics

30 Markus Klute

Quiz

- Why don't we collide electrons and positrons or protons and anti-protons at the LHC?
- What is the minimal energy of a proton hitting a proton target at rest to produce an anti-proton?
- How many proton-proton collisions does the LHC produce per second?
- How can we estimated the expected number of pile-up events?
- How many Higgs Bosons have been produced in Run 2?
- If the hunt for the Higgs Boson can be compared to the search of a needle in the haystack, how big is the haystack?

References and further reading

Textbooks

- Modern Particle Physics by Mark Thomson
- QCD at Colliders by Ellis, Stirling, and Weber

Pictures

- CERN Document Server
- Wikipedia
- Or reference on page
- References
 - Previous CERN Summer Lectures https://indico.cern.ch/category/97/
 - MIT's OCW 8.701 and 8.811
 - KIT's Particle Physics master courses (you can contact me)
 - Or reference on page
- 32 Markus Klute

