DATA ACQUISITION Electronics & Trigger

Tommaso Colombo CERN

Summer Student Lectures Programme CERN, 28 July 2023

DATA COLLECTION OVERVIEW

SCALE

- In a large experiment, all of these systems are separate and have to be interconnected
- For smaller experiments, many functions can be combined (computers are general-purpose machines after all)

T. Colombo ► Data acquisition 3/3

DATA COLLATION OR: EVENT BUILDING

EVENT BUILDING IN THEORY

- Readout unit (RU): receives processed signals from some sensors
- Builder unit (BU): assembles all signals corresponding to the same observed phenomenon

EVENT BUILDING NETWORKS

- The BUs collect data from different RUs
 → Many-to-one communication
- Data transfers are driven by the availability of the data from the detector
 → Synchronous, bursty traffic
- When many sources send synchronous microbursts of data to a destination → Congestion
 - \rightarrow The network buffers are overflown
- Must be kept under control, otherwise: "Catastrophic throughput collapse"

EVENT BUILDING NETWORKS

- The BUs collect data from different RUs
 → Many-to-one communication
- Data transfers are driven by the availability of the data from the detector
 → Synchronous, bursty traffic
- When many sources send synchronous microbursts of data to a destination
 → Congestion
 - \rightarrow The network buffers are overflown
- Must be kept under control, otherwise: "Catastrophic throughput collapse"

ACK-BASED CONGESTION CONTROL

T. Colombo ► Data acquisition 3/3

CERN, 28 Jul 2023

THROUGHPUT-RTT PRODUCT

From sources Funneling Switc 10 Gbps Bandwidth mismatch 1 Gbps To destinations

- What determines how many in-flight bytes are "enough"?
 - The slowest / most used link!
- Calculation:
 - Minimum unused link throughput (B/s): R_{free}
 - Round-trip time: T_{RTT}
 - Optimal amount of in-flight packets: $R_{free}T_{RTT}$
 - A.k.a.: bandwidth-delay product (BDP)

LOCAL DECISIONS, GLOBAL IMPACT

- Can a sender measure R_{free} ? Not really!
- Instead: gradually increase the amount of in-flight data until something goes wrong
- With many synchronous senders "something wrong" will occur at the same time for all of them
 → all of them will slow down

(too much!)

PULL-BASED TRANSFERS TO THE RESCUE

- In DAQ, we can precisely control how we use the network
- BU pulls data from RUs: Can prevent too many RUs from sending to the same BU at the same time
- Tuning needed:
 - Shaping too aggressive
 → bottleneck
 - Shaping too lax
 - \rightarrow congestion

T. Colombo ► Data acquisition 3/3

EVEN STRICTER TRAFFIC SHAPING

- With *N* RUs, the building of *N* events is divided into *N* phases
- In every phase one RU sends data to one BU, and every BU receives data from one RU
- During phase n, RU m sends data to BU $(m+n) \mod N$
- All the units switch synchronously from phase n to phase n+1

• On the right network topology, this can avoid congestion altogether

BUFFERS, AGAIN

- Traffic shaping techniques require waiting for the "right" moment to send data into the network
- Waiting == buffering
- Thankfully, the RUs are computers outside of the detector
 - Very large buffers (RAM) are relatively cheap
 - No sensitive volume "stolen"

 ✓ Optimise trigger for low latency, data collection for high throughput

DATA FILTER

Left as an exercise for the reader user

STORAGE

- Parity bit: count the 1s in a string of bits
 - Even number of 1s \rightarrow Parity = 0
 - Odd number of 1s \rightarrow Parity = 1

 Can be used to add redundancy without full copies

Bit 1	Bit 2	Bit 3	Parity
0	1	1	
0	0	0	
1	0	0	
1	1	1	

- Parity bit: count the 1s in a string of bits
 - Even number of 1s \rightarrow Parity = 0
 - Odd number of 1s \rightarrow Parity = 1

 Can be used to add redundancy without full copies

Bit 1	Bit 2	Bit 3	Parity
0	1	1	0
0	0	0	0
1	0	0	1
1	1	1	1

• Oh no! The bits in the third position were on a broken memory

Bit 1	Bit 2	- Bit 3-	Parity
0	1	-1-	0
0	0	-0-	0
1	0	-0-	1
1	1	-1-	1

- Oh no! The bits in the third position were on a broken memory
- But we still have parity!

Parity of bit 1, bit 2, and the original parity

Bit 1	Bit 2	- Bit 3-	Parity	
0	1	-1-	0	1
0	0	-0-	0	0
1	0	-0-	1	0
1	1	-1-	1	1

- Any of the original bits can be recovered this way
- If we lose more than one bit at the same time, we're out of luck, though

Bit 1	Bit 2	Bit 3	Parity
0	1	£	0
0	0	θ	0
1	0	θ	1
1	1	1	1

ERASURE CODING IS EVERYWHERE

- Not limited to parity: whole families of error correcting codes exist
 - Operate on
 (and can recover)
 more than 1 bit
 - Can use more than one at the same time
 - Most common:
 Reed-Solomon

- Used in:
 - Many kinds of links (optical or not)
 - Storage (from RAM to hard disks)

RAID 6

From C. Burnett, https://commons.wikimedia.org/wiki/File:RAID_6.svg

PICK THE RIGHT TECHNOLOGY

WILL I EVER SHUT UP ABOUT BUFFERS?

 Faster storage technologies can be used as derandomising buffers for slower but cheaper tech

CONTROLS

ONE CONTROL SYSTEM TO RULE THEM ALL

- All parts of the experiment must work as one: a central "conductor" system is a must
- Monitoring:

detect problems as soon as possible

- Configuration:
 - Get the experiment to the desired state
 - Sequencing and synchronisation of operations across components
- Automation:
 - Avoid human mistakes
 - Speed up standard procedures

SCADA

- Can be based on commercial SCADA systems (Supervisory Control and Data Acquisition)
- Commonly used for:
 - Industrial automation
 - Control of factories, power plants, etc.
- Providing:
 - Run-time database
 - Display and archiving of monitoring data
 - Alarm definition and reporting tools
 - User interface design tools

SCALE, ONE LAST TIME

- In a large experiment, many independent low-probability faults can result in abysmal DAQ efficiency
- Example:
 - 1000 sensors
 - Each of them has a 0.1% probability of failure
 - Any failure stops the DAQ
 - Probability that the DAQ is stopped: 37%!

SCALE, ONE LAST TIME

- In a large experiment, many independent low-probability faults can result in abysmal DAQ efficiency
- Failures should be non-fatal as much as possible
- Maintenance windows (i.e.: when the experiment is stopped to fix faults) heavily influence the design of the detector and DAQ

GRAZIE PER L'ATTENZIONE!

AND THANKS TO MY PREDECESSORS N. NEUFELD, W. VANDELLI, R. FERRARI, E. MESCHI FOR THE "INSPIRATION" I GOT FROM THEIR LESSONS

FOR MORE IN-DEPTH LESSONS AND LABS: https://isotdaq-schools.web.cern.ch/

A GREAT INTRODUCTION TO DETECTOR ELECTRONICS: https://www-physics.lbl.gov/~spieler/

COMPUTE

Reports of the death of Moore's Law have been greatly exaggerated

CERN, 28 Jul 2023

NETWORK

- 25 Tb/s
 single-ASIC
 switches
 available today
- 50 Tb/s is around the corner
- Evolution driven by cloud and ML

- By 2032, our estimated requirement of 160 Tb/s will look minuscule
- Even if evolution stopped in 2025 we would be more than OK

LHCb DAQ

