

ATLAS-CMS Comparison: Latest $t\bar{t}W$ Results

Marcel Niemeyer¹, Carlos Vico Villalba²

¹University of Göttingen ²Universidad de Oviedo

on behalf of the ATLAS and CMS Collaborations

June 7, 2023 LHC Top WG Meeting

GEFÖRDERT VOM

FSP ATLAS Erforschung von Universum und Materie

2 / 27

$t\bar{t}W$ **Production**

- $t\bar{t}W$ is a background process in multi-lepton final states for many analyses:
 - tīH
 - 4 top production
 - searches: g2HDM, SUSY RPV models
- so far, measurements have consistently found an excess over predicted cross-sections
 - top right: tīW CR in 4 tops search^a
 - bottom right: tt W VR of 4 tops evidence paper, largest systematic in analysis^b
- modelling difficult due to higher order contributions
- have seen mismodelling, important to measure cross-section and differential distributions

^aEur. Phys. J. C 80 (2020) 75 ^bEur.Phys.J.C 80 (2020) 11, 1085

$t\bar{t}W$ Cross-Sections

Predictions

	£ [fb-1]	σ _{ref} [fb]		
tīW ATLAS Phys. Rev. D 99 (2019) 072009	36.1	600 ± 70	1.44 ± 0.32	1.44 ± 0.32
tŧW CMS arXiv:2208.06485	138	592 +155 .97 (NLO QCD + EW, QCD NNLL)	1.47 ± 0.11	1.49 ± 0.11
tTH ATLAS ATLAS-CONF-2019-045/	80	727 ± 92 (NLO QCD + <u>full NLO EW</u> , +0,1j@NLO)	1.39 +0.17 -0.16	1.68 +0.21 .0.19
t īH CMS Eur. Phys. J. C. 81 (2021) 378	137	650 (NLO QCD + full NLO EW [1] [2])	1.43 ± 0.21	1.55 ± 0.23
tītī BSM ATLAS arXiv:2211.01136	139	639 (Sherpa 2.2.10 NLO QCD + full NLO EW*)	1.3 ± 0.3	1.22 ± 0.28
tītī CMS Eur. Phys. J. C. 80 (2020) 75	137	610 (from <u>https://arxiv.org/abs/2010.05915</u>)	1.3 ± 0.2	1.3 ± 0.2
g2HDM ATLAS ATLAS-CONF-2022-039/	139	615 (Sherpa 2.2.10 NLO QCD + full NLO EW*)	1.50 ± 0.14	1.46 ± 0.14
SUSY RPV ATLAS Eur. Phys. J. C 81 (2021) 1023	139	Fully data	-driven	

Table by Tamara Vazquez Schroeder

- predictions are difficult due to large NLO corrections
- many different predictions available
- agreed on common reference cross-section for ttW by Frederix & Tsinikos ¹ during last LHC Top+Higgs WG meeting²:

$$\sigma^{ ext{NLO}+0,1,2 ext{j}}_{tar{t}W} = 722^{+70}_{-78}(ext{scale})\pm7(ext{PDF}) ext{ fb}$$

¹JHEP 11 (2021) 029

²https://indico.cern.ch/event/1219500

- highest BR in all hadronic and single lepton channels
 - large backgrounds
 - not yet used in analyses
- most sensitive channels are di-lepton same-sign and trilepton
 - used in the analyses presented here
 - significant backgrounds: $t\bar{t}H$, $t\bar{t}Z$, fake leptons
 - small branching ratio of 4.8% (2ISS) and 1.6% (3I)

Latest $t\bar{t}W$ Measurements

CMS Cross-Section:

Atlas Charge-Asymmetry:

Atlas Cross-Section:

Selections

CMS:

- 2ISS and 3I channel
- $m_{\ell\ell} > 30$ (12) GeV in 2ISS (31)
- Z veto on ee (2ISS) and $ee, \mu\mu$ (3I)
- $p_{\rm T}^{\rm miss} > 30 {
 m GeV}$
- $N_{\rm jets} \ge 2$
- $\geq 1 \ b$ -jet (85% efficiency) or $\geq 2 \ b$ -jets (90% efficiency) in 2ISS
- ≥ 1 *b*-jet (85% efficiency) in 31

Atlas:

- 2ISS and 3I channel
- $m_{\ell\ell}^{(\mathrm{OS+SF})} > 12$ in 2ISS (31)
- Z veto on $ee, \mu\mu$ pairs and $m_{\ell\ell\ell}$ in 31
- no cut on $p_{\rm T}^{\rm miss}/E_{\rm T}^{\rm miss}$
- $N_{\rm jets} \ge 2$
- $\geq 1 \ b$ -jet (60% efficiency) or $\geq 2 \ b$ -jets (77% efficiency)

- \Rightarrow Much looser *b*-tagging requirements in CMS measurement, approximately 2 times more statistics
 - Atlas measurement inclusive & differential, needs purer selection

Methodology

2ISS Channel

CMS:

- split into 8 regions based on lepton charge, flavour
- use DNN to distinguish 4 event categories: $t\bar{t}W$, $t\bar{t}H/Z$, $t\bar{t}\gamma$, non-prompt
- only use ttW node as discriminant between signal and background

Atlas:

- split channel into 48 regions according to lepton charge, flavour, (b-)jet multiplicity
- fitting total yield in each region
- background estimation via template fit

Methodology

31 Channel

CMS:

- use $m_{3\ell}$ as discriminant
- split into 12 regions according to (b-)jet multiplicity, charge

Atlas:

 3l channel split into 8 regions according to lepton charge, (b-)jet multiplicity

Both: Combined profile likelihood fit of all SRs and CRs to extract cross-section Marcel Niemever

Methodology

Background - Fakes/Non-Prompt

<u>CMS:</u>

- BDT for prompt lepton discrimination
- non-prompt estimation data-driven
 - misID rate from QCD multijet enriched region
 - prompt contribution subtracted from simulation
- validation region non-prompt enriched

<u>Atlas:</u>

- template fit method
- BDT to identify non-prompt leptons
- based on isolation and lifetime
- fakes CRs (HF*e*, HFµ) based on medium-not-tight WP
- 6 fake CRs, int/ext conversion CRs
- 4 free-floating normalisation factors

Methodology Background - Other

CMS:

$t\bar{t}Z$ and VV:

- 2 CRs: $WZ/t\overline{t}Z$ and $ZZ/t\overline{t}Z$
- inverting Z veto on nominal selection, 4 tight leptons in $ZZ/t\bar{t}Z$ CR
- all CRs present in final fit

Charge misassignment:

- rate from simulation of DY and $t\bar{t}$
- applied to 2IOS events to estimate background
- only applied to ee in 2l channel

Atlas:

- 2 CRs: $t\bar{t}Z$ and VV
- included in template fit method
- two additional normalisation factors
- template fit combined with cross-section extraction
- rate from data, DY enriched
- applied to 2IOS events to estimate background
- only applied to ee in 2l channel

Signal Modelling

nominal samples:

- CMS:
 - MadGraph5_aMC@NLO v2.6.0 FxFx + Pythia8 (LO1 + NLO1 and NLO3)
- Atlas:
 - Sherpa 2.2.10 QCD sample (LO1 + NLO1 and -3.9% from LO3+NLO2) and EW sample (NLO3)

systematic variations:

- both: μ_R , μ_F , alternative PDF & α_S
- CMS:
 - ISR & FSR scale
 - colour reconnection (from alternate models, 1%)
- Atlas:
 - generator uncertainty (Sherpa vs MG5_aMC@NLO +Pythia8 FxFx)
 - parton shower (Powheg+Pythia8 vs Powheg+Herwig7)

Inclusive Cross-Section

Results

CMS:

$$\sigma_{t \overline{t} W} = 868 \pm 40 ({
m stat}) \pm 51 ({
m syst})$$
 fb

Atlas:

$$\sigma_{t\bar{t}W} = 890 \pm 50({
m stat}) \pm 70({
m syst}) {
m ~fb} \ A^R_{C} = 0.32 \pm 0.05({
m stat}) \pm 0.03({
m syst})$$

$\frac{\text{LHC reference:}}{\sigma_{t\bar{t}W}^{\text{NLO}+0,1,2j}} = 722^{+70}_{-78}(\text{scale}) \pm 7(\text{PDF}) \text{ fb}$

Inclusive Cross-Section

Results

Source	Uncertainty [%]
Experimental uncertainties	
Integrated luminosity	1.9
b tagging efficiency	1.6
Trigger efficiency	1.2
Pileup reweighting	1.0
L1 inefficiency	0.7
Jet energy scale	0.6
Jet energy resolution	0.4
Lepton selection efficiency	0.4
Background uncertainties	
ttH normalization	2.6
Charge misidentification	1.6
Nonprompt leptons	1.3
VVV normalization	1.2
ttVV normalization	1.2
Conversions normalization	0.7
$t\bar{t}\gamma$ normalization	0.6
ZZ normalization	0.6
Other normalizations	0.5
ttZ normalization	0.3
WZ normalization	0.2
tZq normalization	0.2
tHq normalization	0.2
Modeling uncertainties	
tŧW scale	1.8
ttW color reconnection	1.0
ISR & FSR scale for tfW	0.8
ttγ scale	0.4
VVV scale	0.3
ttH scale	0.2
Conversions	0.2
Simulation statistical uncertainty	1.8
Total systematic uncertainty	5.8

	$\frac{\Delta\sigma(t\bar{t}W)}{\sigma(t\bar{t}W)}$ [%]
$t\bar{t}W$ ME and PS modelling	6.0
Prompt lepton bkg. norm.	2.6
Lepton isolation BDT	2.3
Fakes/ $VV/t\bar{t}Z$ norm. (free-floated)	2.3
Non-prompt lepton bkg. modelling	1.9
Trigger	1.9
MC statistics	1.5
$t\bar{t}W$ PDF	1.5
Jet energy scale	1.4
Prompt lepton bkg. modelling	1.3
Luminosity	1.0
Charge Mis-ID	0.7
Jet energy resolution	0.5
Flavour tagging	0.28
$t\bar{t}W$ Scale	0.21
Electron/photon reco.	0.15
MET	< 0.10
Muon	< 0.10
Pile-up	< 0.10
Total syst.	8
Data statistics	5
Total	9

- dominant systematics in CMS (left): luminosity, ttH normalisation, ttW scale
- dominant systematics in Atlas (right): ttW ME and PS
- closest categories in same colour
- Atlas w/o ttW ME and PS syst: 5.6%
- CMS: higher impact from *b*-tagging, pile-up, charge misassignment
- Atlas: higher impact from JES, trigger; similar impact from JER

Fiducial Cross-Section

	$\frac{\Delta\sigma(t\bar{t}W)}{\sigma(t\bar{t}W)}$ [%]	$\frac{\Delta \sigma_{\rm fid}(t\bar{t}W)}{\sigma_{\rm fid}} [\%]$
$t\bar{t}W$ ME and PS modelling	6.0	7.0
Prompt lepton bkg. norm.	2.6	2.5
Lepton isolation BDT	2.3	2.3
Fakes/ $VV/t\bar{t}Z$ norm. (free-floated)	2.3	2.7
Non-prompt lepton bkg. modelling	1.9	1.7
Trigger	1.9	1.8
MC statistics	1.5	1.6
$t\bar{t}W$ PDF	1.5	1.4
Jet energy scale	1.4	1.9
Prompt lepton bkg. modelling	1.3	1.3
Luminosity	1.0	1.0
Charge Mis-ID	0.7	0.7
Jet energy resolution	0.5	0.6
Flavour tagging	0.28	0.33
$t\bar{t}W$ Scale	0.21	0.9
Electron/photon reco.	0.15	0.2
MET	< 0.10	< 0.10
Muon	< 0.10	< 0.10
Pile-up	< 0.10	0.25
Total syst.	8	10
Data statistics	5	5
Total	9	11

- correct signal systematics for acceptances on particle level
- fiducial volume very close to detector level selection
- removal of acceptance effects often reduces total syst uncertainty
- $\sigma_{\rm fid} = 21.7 \pm 1.1 ({\rm stat})^{+2.1}_{-1.9} ({\rm syst})$ fb (11%, inclusive: 9%)
- uncertainty slightly larger due to MG5 FxFx acceptance (higher than nominal Sherpa sample)
- on detector level, differences between Sherpa and MG5 FxFx reconstruction efficiency
- effects have opposite impact and partially cancel on detector level, but not in fiducial fit

Differential Cross-Section Methodology

Atlas only

 using same fiducial volume as for the fiducial measurement (except N_{jets} ≥ 2 in 2ISS channel)

- 4 SRs, 2 ℓ SS (++/--) and 3 ℓ (+/-)
- same template fit for background estimation as for inclusive ttW
- profile likelihood unfolding to particle level for seven observables:
 - N_{jets} , $H_{\text{T,jets}}$, $H_{\text{T,lep}}$, $\Delta R_{\text{lb,lead}}$, $|\Delta \phi_{\text{ll,SS}}|$, $|\Delta \eta_{\text{ll,SS}}|$, $M_{\text{jj,lead}}$
- Tikhonov regularisation, constraint on discrete 2nd derivative of truth-bin POIs
- measure absolute and normalised cross-sections and differential A^R_C
- assess compatibility between data and predictions via χ^2 test
- overlay fixed order off-shell calculations in 3ℓ (Phys. Rev. D 105 (2022) 1, 014018)

N_{jets} - Asymmetry Parameterisation

- Ieft: absolute
- centre: normalised
- right: $A_C^R = \frac{\sigma^+ - \sigma^-}{\sigma^+ + \sigma^-}$
- statistics dominated in 3I and edges of 2ISS
- largest systematics: JES/JER and background modelling, (*tīW* modelling)

 $N_{\rm jets}$, $\Delta R_{\rm lb, lead}$ - split by charge

 $|\Delta\eta_{\text{II,SS}}|$ and χ^2 - split by charge

Observable	NDF	Sher	pa 2.2.10	2.10 Off-Shell		MG5aMC+Py8 FxFx		MG5aMC+Py8 Incl.		Powheg+Py8		Powheg+H7	
		χ^2	p-value	χ^2	p-value	χ^2	p-value	χ^2	p-value	χ^2	p-value	χ^2	p-value
N _{jets}	3	0.2	0.98	-	-	0.2	0.98	0.3	0.97	1.0	0.80	1.1	0.79
$H_{T,jets}$	4	1.4	0.84	-	-	0.9	0.92	1.9	0.75	2.4	0.66	3.3	0.51
$H_{T,lep}$	5	1.0	0.96	3.4	0.64	1.3	0.94	1.7	0.88	1.5	0.91	1.4	0.93
$\Delta R_{lb, lead}$	5	4.0	0.55	3.5	0.63	5.0	0.42	3.7	0.59	3.7	0.60	3.8	0.58
$ \Delta \phi_{11, SS} $	5	2.7	0.75	2.2	0.81	2.6	0.76	2.2	0.82	2.4	0.79	2.3	0.80
$ \Delta \eta_{\rm IL SS} $	5	2.6	0.77	5.6	0.35	2.9	0.72	2.3	0.80	2.0	0.84	2.1	0.83
$M_{ij, lead}$	5	0.1	1.00	-	-	0.2	1.00	0.4	0.99	0.7	0.98	1.0	0.96

Table for 2ISS selection in backup - ask a question if you want to see it

 $t\bar{t}W$ Cross-Section

- Atlas (9%) and CMS (6%) provided the most precise measurement of the production cross-section to date
- confirmed previous trend of higher than predicted cross-sections
- inclusive measurements limited by systematic uncertainties
 - signal modelling seems especially challenging, dominating Atlas measurement
 - have to better understand differences in implementation between different generators, e.g. Sherpa and MG5 FxFx
- ratio measurements of $t\bar{t}W^+$ and $t\bar{t}W^-$ limited by statistics
 - repeat in Run 3?
- first differential measurements limited by statistics
 - some mild tensions in parts of the normalised distributions
 - χ^2 doesn't show any incompatibilities

Overview

Definition:

$$A_{\mathcal{C}} = \frac{N(\Delta|y| > 0) - N(\Delta|y| < 0)}{N(\Delta|y| > 0) + N(\Delta|y| < 0)}$$

with

 $\Delta |y| = |y(t)| - |y(\bar{t})|$

- forward-backward asymmetry in $t\bar{t}$ production, in case of $q\bar{q}$ initial state
- at LHC, $t\bar{t}$ production is gg dominated, charge-symmetric initial state
- $t\bar{t}W$ production at LO is exclusively $q\bar{q}$ initial state, gg IS only at NNLO
- W emission polarises the initial q/\bar{q}

ŀ

ightarrow asymmetry should be larger in $t\bar{t}W$, but lower statistics

eptonic
$$A_C = A_C^\ell = rac{N(\Delta|\eta^\ell| > 0) - N(\Delta|\eta^\ell| < 0)}{N(\Delta|\eta^\ell| > 0) + N(\Delta|\eta^\ell| < 0)}$$

with $\Delta|\eta^\ell| = |\eta_\ell(t)| - |\eta_\ell(\overline{t})|$

Selection - arXiv:2301.04245

Selection

- three leptons, charge= ± 1
- $m_{\ell\ell}^{OSSF} \ge 30 \text{ GeV}$
- 4 SRs: split according to N_{b-jets} (1, \geq 2) and N_{jets} ([2,3], \geq 4)
- if = 1 *b*-jet, $E_{\mathrm{T}}^{\mathrm{miss}} \geq$ 50 GeV
- Z-veto

- consider 3I channel (2ISS has no dileptonic $t\bar{t}$ decay)
- define odd OS lepton, even SS leptons
- correctly assigning even lepton to top quark is challenging \rightarrow machine learning approach

Lepton-top assignment:

- use BDT to find correct assignments of even leptons to t/W
- BDT input variables: m_{lb} and ΔR_{lb} for two closest *b*-jets, lepton p_{T}
- if no 2 b-jets, jet with highest DL1r score or closest untagged jet
- estimated 71% correct assignments by highest BDT score

Background estimation:

- 4 CRs: $t\bar{t}Z$ (largest prompt bkg), fakes (HF e/μ), and γ conversions
- fit with 8 free-floating normalisation factors, one per CR and $\Delta |\eta^\ell|$ region

Cross-section extraction:

• profile-likelihood fit to event yields in SRs and CRs

nominal samples:

- Sherpa 2.2.10, same as in the cross-section measurement
- QCD sample (LO1+NLO1, NLO2+LO3 as weights) as signal
- EW sample (NLO3) as background

systematic variations:

- μ_R and μ_F scale variations
- alternative PDF sets and α_{S}
- generator uncertainty: Sherpa 2.2.10 vs MG5 FxFx + Pythia8
- parton shower uncertainty: Powheg+Pythia8 vs Powheg+Herwig7

comparison with cross-section analysis:

- very similar systematics scheme
- no EW fraction uncertainty
- different PDF variations, following PDF4LHC recommendations

$t\bar{t}W$ Charge-Asymmetry Results

- A_C^{ℓ} extracted directly, profiled uncertainties
- $t\bar{t}W$ NF 1.59 \pm 0.40 compatible with cross-section measurements
- split bkg NF can capture data asymmetries
 - separate uncertainty to cover potential spurious impact ($\Delta \eta^{\pm}$ CR dependency)

$$A_C^\ell = -0.12 \pm 0.14({
m stat}) \pm 0.05({
m syst})$$

$${\cal A}_{\cal C}^{\ell,{
m SM}}=-0.084^{+0.005}_{-0.003}({
m scale}){\pm}0.006({
m MC}~{
m stat})$$

ATLAS √s = 13 TeV, 139 fb⁻¹

			1.59 ± 0.40	N _{tīw} (Δη ⁻)			
			1.28 ± 0.15	$N_{t\bar{t}Z}$ ($\Delta\eta^+$)			
		-	1.05 ± 0.14	N _{tīz} (Δη ⁻)			
		• • •	1.04 ± 0.10	N_{HF}^{μ} ($\Delta\eta^{*}$)			
		•	0.98 ± 0.09	N^{μ}_{HF} ($\Delta\eta^-$)			
		•	0.98 ± 0.08	$N^{e}_{HF}\left(\Delta\eta^{*}\right)$			
	н	•	0.83 ± 0.09	$N_{HF}^{e}\left(\Delta\eta^{-} ight)$			
			1.27 ± 0.40	$N^{e}_{\gamma\text{-conv}}\left(\Delta\eta^{\scriptscriptstyle +}\right)$			
	•		0.74 ± 0.34	$N^{e}_{\gamma\text{-conv}}\left(\Delta\eta^{-} ight)$			
			-0.12 ± 0.14	$A_{c}^{\prime}\left(t\overline{t}W ight)$			
0	0.5	1 1.5 2	2.5 3 3.5				

Uncertainties

• analysis dominated by statistics and $\Delta \eta^{\pm}$ CR dependency

	$\Delta A_{\rm c}^{\ell}(t\bar{t}W)$
Experimental uncertainties	1
Jet energy resolution	0.013
Pile-up	0.007
b-tagging	0.005
Leptons	0.004
$E_{\mathrm{T}}^{\mathrm{miss}}$	0.004
Jet energy scale	0.003
Luminosity	0.001
MC modelling uncertainties	
$t\bar{t}W$ modelling	0.013
$t\bar{t}Z$ modelling	0.010
$HF_{e/\mu}$ modelling	0.006
$t\bar{t}H$ modelling	0.005
Other uncertainties	
$\Delta \eta^{\pm}$ CR-dependency	0.046
MC statistical uncertainty	0.019
Data statistical uncertainty	0.136
Total uncertainty	0.145

Fiducial volume definition:

- three leptons, $p_{
 m T} > 15$ GeV, $|\eta| < 2.5$
- *m*_{//}^{OSSF} > 25 GeV
- no Z candidate
- \geq 2 jets, $p_{\rm T}$ > 20 GeV, \geq 1 of them *b*-tagged

Unfolding:

- unregularised profile-likelihood unfolding
- introduce bias uncertainty via injection tests

$$A_C^\ell = -0.11 \pm 0.17({
m stat}) \pm 0.05({
m syst})$$

$${\cal A}_{C}^{\ell,{
m SM}}=-0.063^{+0.007}_{-0.004}({
m scale}){\pm}0.004({
m MC}~{
m stat})$$

	$\Delta A_{\rm c}^{\ell} (t \bar{t} W)^{\rm PL}$
Experimental uncertainties	
Leptons	0.014
Jet energy resolution	0.011
Pile-up	0.008
Jet energy scale	0.004
$E_{\rm T}^{\rm miss}$	0.002
Luminosity	0.001
Jet vertex tagger	0.001
MC modelling uncertainties	
$t\bar{t}W$ modelling	0.022
$t\bar{t}Z$ modelling	0.017
$HF_{e/\mu}$ modelling	0.015
Others modelling	0.015
WZ/ZZ + jets modelling	0.014
$t\bar{t}H$ modelling	0.006
Other uncertainties	
Unfolding bias	0.004
$\Delta \eta^{\pm}$ CR-dependency	0.039
MC statistical uncertainty	0.027
Response matrix	0.009
Data statistical uncertainty	0.170
Total uncertainty	0.179

- Atlas (9%) and CMS (6%) provided the most precise measurement of the production cross-section to date
- confirmed previous trend of higher than predicted cross-sections
- inclusive measurements limited by systematic uncertainties
 - need improvement of signal modelling uncertainties
- ratio measurements of $t\bar{t}W^+$ and $t\bar{t}W^-$ limited by statistics
- first differential measurements limited by statistics
 - some mild tensions in parts of the normalised distributions
 - χ^2 doesn't show any incompatibilities
- measurement of charge-asymmetry in Atlas showed no incompatibility with SM predictions (on detector level or particle level)
 - limited by statistical uncertainty

back-up

Selection

Muon							
Observable	Loose	Fakeable	Tight				
рт	$p_T > 10 \text{ GeV}$	$p_T^{\text{cone}} > 10 \text{ GeV}$	$p_T^{\rm cone} > 10 { m GeV}$				
$ \eta $	< 2.4	< 2.4	< 2.4				
d _{xy}	< 0.05 cm	< 0.05 cm	< 0.05 cm				
dz	< 0.1 cm	< 0.1 cm	< 0.1 cm				
d/σ_d	< 8	< 8	< 8				
minilso	< 0.4	< 0.4	< 0.4				
p _T ^{ratio}	-	-(> 0.45)	-				
Top lepton MVA	-	> 0.4 (< 0.4)	> 0.4				

The cuts in parentheses are applied only when leptons fail tight lepton MVA cut.

Electrons						
Observable	Loose	Fakeable	Tight			
p _T	$p_T > 10 \text{ GeV}$	$p_T^{\text{cone}} > 10 \text{ GeV}$	$p_T^{\text{cone}} > 10 \text{ GeV}$			
$ \eta $	< 2.5	< 2.5	< 2.5			
$ d_{xy} $	< 0.05 cm	< 0.05 cm	< 0.05 <i>cm</i>			
$ d_z $	< 0.1 cm	< 0.1 cm	< 0.1 <i>cm</i>			
d/σ_d	< 8	< 8	< 8			
minilso	< 0.4	< 0.4	< 0.4			
$\sigma_{i\eta i\eta}$	-	<{0.011/0.030}	<{0.011/0.030}			
H/E	-	< 0.10	< 0.10			
1/E - 1/p	-	> -0.04	> -0.04			
Missing hits	≤ 1	≤ 1	≤ 1			
p _T ^{ratio}	-	-(> 0.5)	-			
Top MVA	-	> 0.4(< 0.4)	> 0.4			

Same-sign dilepton

Three leptons

Lepton p_T	> 30 (25) GeV for leading $e~(\mu)$ > 20 GeV for sub-leading ℓ	> 25, 15, 15 GeV
m(l l)	> 30 GeV m(ee) - m(Z) > 15 GeV	> 12 GeV $ m(\ell^{\pm}\ell^{\mp}) - m(Z) > 10$ GeV
Jets	≥ 2 jets	≥ 2 jets
B-tagged jets	≥ 2 loose bJets or ≥ 1 medium bJets	≥ 1 medium bJets
p_T^{miss}	> 30 GeV	-
Categories	Flavour and charge of leptons	Jet, b-tagged jet multiplicities and lepton charge

Background Estimation

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Non-prompt backgrounds

- tight-to-loose ratio method
- lepton misidentification rate $f = P(\text{tight selection}|\text{loose}) = f(p_T, \eta)$
- measured in data enriched in QCD multijet events
- apply weight to events with > 1 loose-not-tight lepton

$$w = (-1)^{n+1} \prod_{i=1}^{n} \frac{f_i}{1-f_i}$$

- prompt contributions subtracted based on simulation
- validation in dedicated regions

Non-prompt Estimation weights - JHEP 07 (2022) 032

- application region: at least one loose-not-tight lepton
- T: tight, L: loose, P: prompt, F: fake; N_{TTT}: number of events with non-prompt leptons in analysis region

$$\begin{split} N_{TTT} &= f_1 N_{FPP} + f_2 N_{PFP} + f_3 N_{PPF} + f_1 f_2 N_{FFP} + f_2 f_3 N_{PFF} + f_1 f_3 N_{FPF} + f_1 f_2 f_3 N_{FFF} \\ N_{TTL} &= (1-f_3) N_{PPF} + f_2 (1-f_3) N_{PFF} + f_1 (1-f_3) N_{FPF} + f_1 f_2 (1-f_3) N_{FFF} \\ N_{TLT} &= (1-f_2) N_{PFP} + f_3 (1-f_2) N_{PFF} + f_1 (1-f_2) N_{FFP} + f_1 f_3 (1-f_2) N_{FFF} \\ N_{LTT} &= (1-f_1) N_{FPP} + f_2 (1-f_1) N_{FFP} + f_3 (1-f_1) N_{FFF} + f_3 f_2 (1-f_1) N_{FFF} \\ N_{TLL} &= (1-f_2) (1-f_3) N_{PFF} + f_1 (1-f_2) (1-f_3) N_{FFF} \\ N_{LTL} &= (1-f_1) (1-f_3) N_{FPF} + f_2 (1-f_1) (1-f_3) N_{FFF} \\ N_{LLT} &= (1-f_2) (1-f_1) N_{FFP} + f_3 (1-f_2) (1-f_1) N_{FFF} \\ N_{LLL} &= (1-f_1) (1-f_2) (1-f_3) N_{FFF} \end{split}$$

$$\begin{split} N_{TTT} &= \frac{f_1}{1 - f_1} N_{LTT} + \frac{f_2}{1 - f_2} N_{TLT} + \frac{f_3}{1 - f_3} N_{TTL} + \frac{f_1 f_2 f_3}{(1 - f_1)(1 - f_2)(1 - f_3)} N_{LLL} \\ &- \frac{f_1 f_2}{(1 - f_1)(1 - f_2)} N_{LLT} - \frac{f_1 f_3}{(1 - f_1)(1 - f_3)} N_{LTL} - \frac{f_2 f_3}{(1 - f_2)(1 - f_3)} N_{TLL} \end{split}$$

Background Estimation

- Backgrounds including Z
 - dominant processes including Z: WZ, ZZ, $t\bar{t}Z$
 - define 2 CRs by inverting Z veto in nominal selection and requiring 4 tight leptons (ZZ and $t\bar{t}Z$ CR)
 - WZ and $t\bar{t}Z$ CR split into 4 more categories according to lepton flavour
 - all CRs present in the final fit

Selection

Event selection:

- $\geq 2j \ (\geq 1j)$ in $2\ell SS \ (3\ell)$ channel,
- ≥ 1b (hybrid WP, =1b @ 60% OR ≥ 2 @ 77%)*
- Di-lepton Triggers (lowest unprescaled)
- $m_{\ell\ell} > 12 \text{ GeV}$, on-shell Z-veto (3 ℓ SR)

Overlap removal ("b-jet aware"):

- e/μ: OR if ΔR(e, μ) < 0.01 remove μ if calo-tagged, else remove e
- e/j: OR if ∆R(jet, e) < 0.2 remove jet if not b-tagged
- μ /**j**: OR if Δ R(jet, μ) < 0.4 (ghost-matched) remove jet if not b-tagged, < 3 tracks
- **j**/**e**, μ : *R* = 0.04 + 10 / *p*_T (e/ μ) < 0.4 remove e/ μ if OR within the above cone

Object selection:

- e, μ:

- \Rightarrow "Loose" definition (for OR and channel definition):
 - $p_T > 10$ GeV, FCLoose isolation, LooseLH (Loose) ID for e (µ), standard impact parameter cuts, e not in the LAr crack region (1.37 < $|\eta| < 1.52$)
- \Rightarrow "Tight" definition (in region definition):

- $p_T > 20 \text{ GeV} (SS)$, > 10 GeV (OS in 3 ℓ)

- e (SS): Tight LH, FCLoose isolation, ECIDS cut > 0.7, ambiguity cut, conversion cuts, PromptImprovedLeptonVeto (PLIV)
- μ (SS): Medium, FCLoose isolation, PromptImprovedLeptonVeto (PLIV)

- jets:

AntiKt4EMPFlowJets, passJVT, $p_T > 25$ GeV, DL1r b-tagging

* but = 0b in Zγ* control regions

Template fit

- Estimate background using a template fit method
- Use exclusive PLIV WP to construct CRs
- PLIV is a non-prompt lepton BDT
- takes isolation and lifetime information into account, p_T dependent
- Tight WP: efficiency of 60%-95%, rejection of 20 to 50
- VeryTight WP: efficiency of 55%-90%, rejection of 33 to 100

- Uses 6 free floating normalisation factors for
 - internal and external conversion
 - heavy flavour with non-prompt electron/muon
 - ttZ, and diboson backgrounds

Grouped Impacts

	$\frac{\Delta\sigma(t\bar{t}W)}{\sigma(t\bar{t}W)}$ [%]	$rac{\Delta \sigma_{ m fid}(tar{t}W)}{\sigma_{ m fid}} [\%]$	$\frac{\Delta R(t\bar{t}W)}{R(t\bar{t}W)}$ [%]	$rac{\Delta A_{ m C}^{ m rel}}{A_{ m C}^{ m rel}} [\%]$
$t\bar{t}W$ ME and PS modelling	6.0	7.0	6.0	8.0
Prompt lepton bkg. norm.	2.6	2.5	1.6	2.2
Lepton isolation BDT	2.3	2.3	1.0	1.2
Fakes/ $VV/t\bar{t}Z$ norm. (free-floated)	2.3	2.7	1.8	2.5
Non-prompt lepton bkg. modelling	1.9	1.7	2.3	3.1
Trigger	1.9	1.8	0.5	0.7
MC statistics	1.5	1.6	1.9	2.5
$t\bar{t}W$ PDF	1.5	1.4	2.1	2.8
Jet energy scale	1.4	1.9	0.8	1.1
Prompt lepton bkg. modelling	1.3	1.3	1.3	1.9
Luminosity	1.0	1.0	0.08	0.13
Charge Mis-ID	0.7	0.7	0.4	0.5
Jet energy resolution	0.5	0.6	0.7	0.31
Flavour tagging	0.28	0.33	0.5	1.0
$t\bar{t}W$ Scale	0.21	0.9	1.4	1.9
Electron/photon reco.	0.15	0.2	0.12	0.3
MET	< 0.10	< 0.10	0.17	0.4
Muon	< 0.10	< 0.10	< 0.10	0.4
Pile-up	< 0.10	0.25	< 0.10	0.3
Total syst.	8	10	8	10
Data statistics	5	5	10	16
Total	9	11	13	19

Fiducial Volume Definition:

Objects							
Electrons	$ ho_{T} \geq$ 10 GeV and $ \eta <$ 2.47 (excluding the LAr crack region with $1.37 < \eta <$ 1.52)						
Muons	$ ho_{T} \geq 10$ GeV and $ \eta < 2.5$						
Jets	anti- k_t $R = 0.4$ jets with $p_{\rm T} \ge 25$ GeV and $ \eta < 4.5$ (with $N_{\rm jets}$ restricted to $ \eta < 2.5$)						
<i>b</i> -jets	Tagged if jet contains a ghost-matched <i>b</i> -hadron with $p_{\rm T} > 5$ GeV						
E ^{miss}	Vector sum of $p_{\rm T}(\nu)$ for all neutrinos in the event not from hadron decays						
	Overlap removal						
Electron-jet	If $\Delta R(e, \text{jet}) < 0.2$ (excluding <i>b</i> -jets with $p_{\text{T}} > 200$ GeV) remove jet						
Jet-lepton	If $\Delta R(\ell, jet) < min(0.4, 0.04 + 10 GeV/p_{T,\ell})$ remove lepton						
	Selections						
2ℓ	Exactly two leptons with the same charge						
	Both leptons have $p_{\rm T} \ge 20$ GeV						
	$N_{\text{jets}} \ge 3$ ($N_{\text{jets}} \ge 2$) with at least one <i>b</i> -jet for inclusive (differential) fit						
	$m_{\ell\ell} > 12$ GeV for same-flavour pairs						
3ℓ	Exactly three leptons with a total charge of $\pm 1e$						
	Both leptons from the same-sign lepton pair are required to have $p_{T} \ge 20 \; GeV$						
	$N_{ m jets} \geq 1$ with at least one b -jet						
	$m_{\ell\ell} > 12 { m GeV} \& m_{\ell\ell} - m_Z > 10 { m GeV}$ (for $\ell\ell$ with same-flavour & opposite-charge)						
	$ m_{\ell\ell\ell}-m_Z >10~{ m GeV}$						

10 / 21

 $H_{T,jets}$, $H_{T,lep}$

12 / 21

14 / 21

 $|\Delta \phi_{\text{II,SS}}|$, $M_{\text{jj,lead}}$

17 / 21

Differential Results

Observable	NDF	Sher	Sherpa 2.2.10		MG5aMC+Py8 FxFx		MC+Py8 Incl.	Pow	heg+Pythia8	Powheg+Herwig7		
		χ^2	<i>p</i> -value	χ^2	p-value	χ^2	<i>p</i> -value	χ^2	<i>p</i> -value	χ^2	<i>p</i> -value	
N_{jets}	5	2.4	0.79	4.2	0.52	2.8	0.73	2.9	0.72	2.6	0.76	
$H_{T,iets}$	5	0.7	0.98	1.1	0.95	0.8	0.98	1.5	0.91	2.0	0.85	
$H_{T,lep}$	7	3.6	0.82	3.8	0.80	3.4	0.84	3.4	0.85	3.5	0.84	
$\Delta R_{lb, lead}$	7	2.0	0.96	2.4	0.93	2.6	0.92	2.6	0.92	2.5	0.93	
$ \Delta \phi_{\rm ll, SS} $	7	0.6	1.00	0.7	1.00	0.9	1.00	0.8	1.00	0.9	1.00	
$ \Delta \eta_{\rm IL SS} $	6	6.5	0.37	7.3	0.29	11.4	0.08	9.5	0.15	9.4	0.15	
$M_{ij, lead}$	6	4.9	0.56	2.7	0.84	7.2	0.30	9.0	0.17	10.9	0.09	

Observable	NDF	Sher	pa 2.2.10	MG5aMC+Py8 FxFx		MG5aMC+Py8 Incl.		Powheg+P8		Powheg+H7	
		χ^2	<i>p</i> -value	χ^2	<i>p</i> -value	χ^2	<i>p</i> -value	χ^2	p-value	χ^2	<i>p</i> -value
N _{iets}	6	3.1	0.79	3.2	0.79	2.7	0.84	2.3	0.89	2.6	0.86
$H_{T,iets}$	6	2.7	0.84	2.9	0.82	1.6	0.95	0.9	0.99	1.4	0.96
$H_{T,lep}$	8	5.3	0.72	5.2	0.74	2.5	0.96	1.9	0.98	2.8	0.94
$\Delta R_{lb, lead}$	8	4.1	0.85	4.5	0.81	3.3	0.91	2.9	0.94	3.4	0.91
$ \Delta \phi_{\rm ll, SS} $	8	6.7	0.56	7.5	0.49	6.0	0.65	5.8	0.67	6.1	0.64
$ \Delta \eta_{\rm ll, SS} $	7	4.5	0.72	4.5	0.72	3.3	0.86	3.2	0.86	3.6	0.82
$M_{jj, lead}$	7	5.3	0.62	5.7	0.58	4.4	0.74	3.5	0.84	4.0	0.78

Observable	NDF	Sherpa 2.2.10		Off-Shell		MG5aMC+Py8 FxFx		MG5aMC+Py8 Incl.		Powheg+Py8		Powheg+H7	
		χ^2	p-value	χ^2	p-value	χ^2	p-value	χ^2	p-value	χ^2	p-value	χ^2	p-value
Niets	4	1.5	0.83	-	-	1.9	0.76	1.7	0.78	2.5	0.65	1.8	0.77
$H_{T,iets}$	5	2.4	0.80	-	-	2.6	0.76	2.7	0.74	3.6	0.61	2.8	0.73
$H_{T,lep}$	6	1.5	0.96	3.1	0.79	1.6	0.96	1.5	0.96	2.0	0.92	1.5	0.96
ΔR_{lb} lead	6	1.6	0.95	2.2	0.90	2.6	0.86	2.5	0.87	3.0	0.81	2.3	0.89
$ \Delta \phi_{11, SS} $	6	4.8	0.57	5.0	0.55	5.4	0.49	5.3	0.50	6.1	0.41	5.4	0.50
$\Delta \eta_{11, SS}$	6	2.5	0.86	3.6	0.73	3.1	0.79	3.0	0.80	3.5	0.75	3.0	0.81
$M_{ij, lead}$	6	1.3	0.97	2.2	0.90	1.5	0.96	1.6	0.95	2.3	0.89	1.6	0.95

Unfolding - Regularisation

- regularisation parameter τ optimised per channel and observable
- optimisation by statistical bootstrapping: toy experiments based on alternative model, find largest τ that doesn't increase χ^2 wrt truth
- reduces impact of fluctuations, no increase in bias

- Asimov fit \rightarrow perfect closure
- injection of normalisation, linear slopes on particle level \rightarrow perfect retrieval of injected templates
- unfolding of alternative Asimov sample to check bias
- splitting sample in two (equal size) to check impact of statistical fluctuations. One for unfolding, one for Asimov data
- injecting shapes seen in previous measurements
- good closure in all cases
- injection of quadratic shapes \rightarrow at 200% enhancement, median bias between 1% and 30%

Selection - arXiv:2301.04245

		Pre-se	lection		1
$N_{\ell}(\ell = e/\mu)$		=	3		
$p_{\rm T}^{\ell} (1^{\rm st}/2^{\rm nd}/3^{\rm rd})$		\geq 30GeV, \geq 20	GeV, ≥ 15 GeV		
\sum lep. charges		±	1		
m _l OSSF		\geq 30)GeV		h
		Region-specifi	c requirements		i
	SR-1b-low N _{jets}	SR-1b-highN _{jets}	SR-2b-low N _{jets}	SR-2 <i>b</i> -highN _{jets}	H
N _{jets}	[2,3]	≥ 4	[2,3]	≥ 4	=
N _{b-jets}	= 1	= 1	≥ 2	≥ 2	
E _T ^{miss}	\geq 50GeV	\geq 50GeV	-	-	ν τη
NZ-cand.		_	0		
Tight leptons		T	ΓT		\overline{t} W^-
e/γ ambiguity-cuts		all	pass		· · · · · · · · · · · · · · · · · · ·
	CR-Z	CR-HF _e	CR-HF _µ	CR- γ -conv.]
$\ell^{1st/2nd/3rd}$	lll	lle	$\ell\ell\mu$	lle, lel, ell	
Njets	≥ 4	≥ 2	≥ 2	≥ 2	\overline{b}
N _{b-jets}	≥ 2	= 1	= 1	≥ 1	mm
E _T ^{miss}	-	< 50 GeV	< 50GeV	-	
NZ-cand.	= 1	= 0	= 0	= 0	Υ <i>ν</i>
Tight leptons	TTT	TTT	TTT	TTT	
e/γ ambiguity-cuts	all pass	all pass	all pass	≥ 1 fail	

- consider 3I channel (2ISS has no dileptonic $t\bar{t}$ decay)
- define odd OS lepton, even SS leptons
- correctly assigning even lepton to top quark is challenging \rightarrow machine learning approach