Status/update $t\bar{t}W$ production in NNLO QCD

University of Zurich

in collaboration with L. Buonocore, S. Devoto, M. Grazzini, S. Kallweit, J. Mazzitelli, L. Rottoli

Chíara Savoíní

LHC TOP WG – June 5^{th} - 7^{th} 2023

Introduction S

- Solution The framework: q_T subtraction formalism
- Bottleneck of two-loop amplitudes: <</p>
- Results PRELIMINARY! Ş

Contents

→ massification

Introduction: why *ttW* production?

Motivations :

- colliders

▶ it represents a **relevant background** also for SM processes like $t\bar{t}H$ and $t\bar{t}t\bar{t}$ production

the production of top-quark pairs in association with a W boson is among the most massive SM signatures at hadron

since the top quarks rapidly decay, the signature of the process is characterised by two b-jets and three W bosons

irreducible source of same-sign dilepton pairs

Introduction: why $t\bar{t}W$ production?

multi-lepton signature

Motivations :

- colliders

relevant for BSM searches

- ▶ it represents a **relevant background** also for SM processes like $t\bar{t}H$ and $t\bar{t}t\bar{t}$ production
- state light quarks (i.e. no gluon fusion at LO)

the production of top-quark pairs in association with a W boson is among the most massive SM signatures at hadron

since the top quarks rapidly decay, the signature of the process is characterised by two b-jets and three W bosons

▶ it is "special" compared to the other $t\bar{t}V(V = \{H, Z, \gamma\})$ processes since the W can only be emitted from the initial-

Introduction: why *ttW* production?

Motivations :

- colliders

relevant for BSM searches

- ▶ it represents a **relevant background** also for SM processes like $t\bar{t}H$ and $t\bar{t}t\bar{t}$ production
- state light quarks (i.e. no gluon fusion at LO)
- different pattern of radiative corrections: both QCD and EW corrections are relevant

dominated by configurations where the $t\bar{t}$ pair recoils against hard QCD radiation, accompanied by a soft W boson

the production of top-quark pairs in association with a W boson is among the most massive SM signatures at hadron

since the top quarks rapidly decay, the signature of the process is characterised by two b-jets and three W bosons

▶ it is "special" compared to the other $t\bar{t}V(V = \{H, Z, \gamma\})$ processes since the W can only be emitted from the initial-

Introduction: why $t\bar{t}W$ production?

multi-lepton signature

Motivations :

- colliders

relevant for BSM searches

- ▶ it represents a **relevant background** also for SM processes like $t\bar{t}H$ and $t\bar{t}t\bar{t}$ production
- state light quarks (i.e. no gluon fusion at LO)
- different pattern of radiative corrections: both QCD and EW corrections are relevant

~ 10 % at the LHC, du of
$$tW \rightarrow tW$$
 scattering

[Frederix, Pagani, Zaro (2017)]

the production of top-quark pairs in association with a W boson is among the most massive SM signatures at hadron

since the top quarks rapidly decay, the signature of the process is characterised by two b-jets and three W bosons

irreducible source of same-sign dilepton pairs

▶ it is "special" compared to the other $t\bar{t}V(V = \{H, Z, \gamma\})$ processes since the W can only be emitted from the initial-

Introduction: $t\bar{t}W$ production

<u>State of the art :</u> experimental measurements

- ▶ measurements by ATLAS and CMS at $\sqrt{s} = 8$ TeV and $\sqrt{s} = 13$ TeV
- ▷ discrepancy confirmed also by indirect measurements of $t\bar{t}W$ in the context of $t\bar{t}H$ and $t\bar{t}t\bar{t}$ analyses
- ▶ most recent measurements, based on an integrated luminosity of 140 fb^{-1} , confirmed this picture

$$T(t\bar{t}W^+) = 585 {}^{+35}_{-34} \text{ (stat.) } {}^{+47}_{-44} \text{ (syst.)} = 585 {}^{+58}_{-55} \text{ (tot.) } \text{fb}$$

 $T(t\bar{t}W^-) = 301 {}^{+28}_{-27} \text{ (stat.) } {}^{+35}_{-31} \text{ (syst.)} = 301 {}^{+45}_{-41} \text{ (tot.) } \text{fb}$

[ATLAS-CONF-2023-019]

$\sigma_{t\bar{t}W}$	868 ± 40 (stat) ±51 (syst) fb
t t W+	553 ± 30 (stat) ±30 (syst) fb
tīW—	343 ± 26 (stat) ±25 (syst) fb

[CMS: arXiv 2208.06485]

Introduction: $t\bar{t}W$ production

State of the art : experimental measurements

[CMS: arXiv 2208.06485]

Introduction: $t\bar{t}W$ production

<u>State of the art :</u> theoretical predictions

- NLO QCD corrections (on-shell top quarks) [Badger, Campbell, Ellis (2010-2012)]
- **NLO QCD + EW corrections (***on-shell top quarks and W***)** [Frixione, Hirschi, Pagani, Shao, Zaro (2015)]
- inclusion of soft gluon resummation at NNLL [Broggio et al. (2016)] [Kulesza et al. (2019)]

- **multi-jet merging** [Frederix, Tsinikos (2021)]

NLO QCD corrections (full off-shell process, three charged lepton signature) [Bevilacqua et al. (2020)] [Denner, Pelliccioli (2020)] combined NLO QCD + EW corrections (*full off-shell process, three charged lepton signature*) [Denner, Pelliccioli (2021)] current experimental measurements are compared with NLO QCD + EW (*on-shell*) predictions supplemented with

Introduction: *ttW* production

theoretical predictions <u>State of the art :</u>

- NLO QCD corrections (on-shell top quarks) [Badger, Campbell, Ellis (2010-2012)]
- **NLO QCD + EW corrections (***on-shell top quarks and W***)** [Frixione, Hirschi, Pagani, Shao, Zaro (2015)]
- inclusion of soft gluon resummation at NNLL [Broggio et al. (2016)] [Kulesza et al. (2019)]

- multi-jet merging [Frederix, Tsinikos (2021)]

still affected by relatively large uncertainties

C complete NNLO QCD + NLO EW (*on-shell*) with approximated two-loop amplitudes in this talk!

NLO QCD corrections (full off-shell process, three charged lepton signature) [Bevilacqua et al. (2020)] [Denner, Pelliccioli (2020)] combined NLO QCD + EW corrections (*full off-shell process, three charged lepton signature*) [Denner, Pelliccioli (2021)] current experimental measurements are compared with NLO QCD + EW (*on-shell*) predictions supplemented with

The framework: q_T -subtraction

 \triangleright cross section for the production of a triggered final state at $N^k LO$ (in our case the triggered final state is $t\bar{t}W$)

[Catani, Grazzini (2007)]

crucial to keep the mass of the heavy quark

1 emission is always resolved

the complexity of the calculation is reduced by 1 order

logarithmic IR sensitivity to the cut

 q_T

The framework: q_T -subtraction [Catani, Grazzini (2007)]

master formula at NNLO

 $d\sigma_{NNLO} = \mathcal{H}_{NNLO} \otimes d\sigma_{LO} + [d\sigma_{NLO}^{R} - d\sigma_{NNLO}^{CT}]_{q_t > q_t^{cut}} + \mathcal{O}((q_t^{cut})^p)$

- the required matrix elements can be computed with automated tools like OpenLoops2
- the remaining NLO-type singularities can be removed by applying a local subtraction method

The framework: q_T -subtraction [Catani, Grazzini (2007)]

master formula at NNLO

$$d\sigma_{NNLO} = \mathcal{H}_{NNLO} \otimes d\sigma_{LO} + \left[d\sigma_{NLO}^R - \frac{d\sigma_{NNLO}^{CT}}{q_t > q_t^{cut}} + \mathcal{O}((q_t^{cut})^p) \right]$$

where
$$H^{(2)} = \frac{2\Re(\mathscr{M}_{fin}^{(2)}(\mu_{IR},\mu_{R})\mathscr{M}^{(0)*})}{|\mathscr{M}^{(0)}|^{2}}\Big|_{\mu_{R}=Q}$$

Remark: analogous definition for the hard-collinear coe

[Catani, Devoto, Grazzini, Mazzitelli (2023)] non trivial ingredient: two-loop soft function for an arbitrary kinematics of the heavy quarks [Devoto, Mazzitelli (in preparation)] all ingredients are known except for the two-loop virtual amplitudes contributing to the the hard-collinear coefficient

 $(z_1)\delta(1-z_2) + \delta \mathscr{H}^{(2)}(z_1,z_2)$

efficient at NLO
$$H^{(1)} = \frac{2\Re(\mathscr{M}_{fin}^{(1)}(\mu_{IR}, \mu_{R})\mathscr{M}^{(0)*})}{|\mathscr{M}^{(0)}|^{2}}\Big|_{\mu_{R}=Q}$$

The framework: q_T -subtraction

master formula at NNLO

$$d\sigma_{NNLO} = \mathcal{H}_{NNLO} \otimes d\sigma_{LO} +$$

 $+ \left[d\sigma_{NLO}^{R} - \frac{d\sigma_{NNLO}^{CT}}{q_t > q_t^{cut}} + \mathcal{O}((q_t^{cut})^p) \right]$

[Catani, Devoto, Grazzini, Mazzitelli (2023)]

non trivial ingredient: two-loop soft function for an arbitrary kinematics of the heavy quarks [Devoto, Mazzitelli (in preparation)]

all ingredients are known except for the two-loop virtual amplitudes contributing to the the hard-collinear coefficient

oottleneck: loop amplitudes al and external are currently out of reach!

The framework: q_T -subtraction

master formula at NNLO

$$d\sigma_{NNLO} = \mathcal{H}_{NNLO} \otimes d\sigma_{LO} +$$

- all ingredients are known except for the two-loop virtual amplitudes contributing to the the hard-collinear coefficient

 $\vdash \left[d\sigma_{NLO}^R - \frac{d\sigma_{NNLO}^{CT}}{q_t > q_t^{cut}} + \mathcal{O}((q_t^{cut})^p) \right]$

[Catani, Devoto, Grazzini, Mazzitelli (2023)] non trivial ingredient: two-loop soft function for an arbitrary kinematics of the heavy quarks [Devoto, Mazzitelli (in preparation)]

Two-loop amplitudes: soft approximation

soft approximation in a nutshell:

▶ for a **soft scalar Higgs** radiated off a heavy quark *i*, we have that

$$\lim_{k \to 0} \mathcal{M}(\{p_i\}, k) = F(\alpha_s(\mu_R); m/\mu_R) J$$
- overall normalisation, finite, gauge-ind and perturbatively computable

- effective coupling accounting for effects due to the renormalisation of the heavy quark mass and wave function

bottleneck: the two-loop amplitudes are at the frontier of the current techniques solution: development of a soft boson approximation

Two-loop amplitudes: soft approximation

soft approximation in a nutshell:

▶ for a **soft scalar Higgs** radiated off a heavy quark *i*, we have that

 $\lim \mathcal{M}(\{p_i\}, k) = F(\alpha_s(\mu_R); m/\mu_R) J^{(0)}(k) \mathcal{M}(\{p_i\})$ $k \rightarrow 0$

▶ for a **soft gauge** W **boson** radiated off a massless quark *i*, we have that

$$\lim_{k \to 0} \mathcal{M}(\{p_i\}, k) = J^{(0)\mu}(k) \cdot \epsilon_{\mu}(k) \mathcal{M}(\{p_i\}) \qquad \text{valid at all }$$

$$J^{(0)\mu}(k) = \frac{g_W}{\sqrt{2}} \sum_i \left(\sigma_i \frac{p_i^{\mu}}{p_i \cdot k}\right) \frac{1 - \gamma_5}{2}$$

main differences between Higgs and W: • scalar vs vectorial current • massless vs massive emitters • no renormalisation effects • selection of the polarisation state of the emitter

bottleneck: the two-loop amplitudes are at the frontier of the current techniques solution: development of a soft boson approximation

perturbative orders

 $\sigma_i = \begin{cases} +1 \text{ incoming } \bar{q}, \text{ outgoing } q \\ -1 \text{ incoming } q, \text{ outgoing } \bar{q} \end{cases}$

Soft approximation in $t\bar{t}H$

NNLO NNPDF31, $m_H = 125 GeV$, $m_t = 173.3 GeV$, $\mu_R = \mu_F = (2m_t + m_H)/2$ setup:

[Catani et al. (2022)]

- all NNLO ingredients are computed exactly except for the double virtual contribution
- at NNLO, the hard contribution is about 1% of the LO cross section in gg and 2-3% in $q\bar{q}$
- the observed deviation at NLO is used to estimate the uncertainty at NNLO
- ▶ it is clear that the quality of the final result depends on the size of the contribution we are approximating

FINAL UNCERTAINTY:

 $\pm 0.6\%$ on σ_{NNLO} , $\pm 15\%$ on $\Delta\sigma_{NNLO}$

symmetrised 7-point scale variation

Two-loop amplitudes: massification

massification in a nutshell:

- ▶ the idea is to exploit the leading-colour massless two-loop 5-point amplitudes for $q\bar{q}' \rightarrow WQ\bar{Q}$ production
- [Becher, Melnikov (2007)] corrections $m_O/Q \ll 1$
- massification relies on the factorisation properties of QCD amplitudes (into jet, hard and soft functions)
- **basic idea**: the mass acts as a physical regulator of collinear singularities

change in the renormalisation scheme

bottleneck: the two-loop amplitudes are at the frontier of the current techniques solution: exploit the massification of available massless two-loop 5-point amplitudes

[Abreu at al. (2021)] [Badger at al. (2021)]

▶ we apply the **massification** technique [Moch, Mitov (2007)] to reconstruct the corresponding massive amplitudes up to power

 $1/\epsilon$ poles are traded into $\log m_O$

Two-loop amplitudes: massification

massification in a nutshell:

- ▶ the idea is to exploit the leading-colour massless two-loop 5-point amplitudes for $q\bar{q}' \rightarrow WQ\bar{Q}$ production
- [Becher, Melnikov (2007)] corrections $m_Q/Q \ll 1$
- massification relies on the factorisation properties of QCD amplitudes (into jet, hard and soft functions)
- **basic idea**: the mass acts as a physical regulator of collinear singularities

change in the renormalisation scheme

▶ master formula:

$$\mathscr{M}^{(m_{Q})}(\{p_{i}\};\mu,\epsilon) = Z^{(m_{Q}|0)}_{[q]}(\alpha)$$

- universal factor, perturbatively computable

bottleneck: the two-loop amplitudes are at the frontier of the current techniques solution: exploit the massification of available massless two-loop 5-point amplitudes

[Abreu at al. (2021)] [Badger at al. (2021)]

▶ we apply the **massification** technique [Moch, Mitov (2007)] to reconstruct the corresponding massive amplitudes up to power

 $1/\epsilon$ poles are traded into $\log m_O$

 $\alpha_s(\mu), m_Q/\mu, \epsilon) \, \mathcal{M}^{(m_Q=0)}(\{p_i\}; \mu, \epsilon) + \mathcal{O}(m_Q^2/Q^2)$

- ratio between massive and massless quark form factors

Massification in Wbb

[CMS: arXiv 1608.07561]

NNLO NNPDF31 4F, $\sqrt{s} = 8 TeV$, $\mu_R = \mu_F = E_T(l\nu) + p_T(b_1) + p_T(b_2)$ setup: $p_{T,l} > 30 \, GeV |\eta_l| < 2.1, \ p_{T,b} > 25 \, GeV |\eta_l| < 2.4, \ p_{T,i} > 25 \, GeV |\eta_l| < 2.4$

- all NNLO ingredients are computed exactly except for the double virtual contribution
- comparison against the 5F massless computation [Poncelet et al. (2022)]
 - overall **good agreement** within the scale uncertainties
 - the uncertainties due to variation of $m_h \in [4.2, 4.92]$ GeV are at 2% level (smaller than the ones due to the variation of a)
- **reliability** of the procedure: the discrepancy between the exact and massified virtual contribution @NLO is only 3% of the NLO correction

[Buonocore et al. (2022)]

How to deal with $Wt\bar{t}$?

- **soft approximation**:
 - it works nicely in the case of $t\bar{t}H$, mainly due to the smallness of the approximated $H^{(2)}$ contribution • formally it is valid in the limit $E_W \to 0$, $m_W \ll m_t$ (which is not true for a physical W boson ...)

$$\mathcal{M}_{Wt\bar{t}}(\{p_i\}, p_W; \mu, \epsilon) = J^{(0)\mu}(p_W) \cdot \epsilon$$

massification:

- formally it is valid in the limit $m_t \ll Q_{t\bar{t}W}$ (which is not true ...)

$$\mathcal{M}_{Wt\bar{t}}(\{p_i\}, p_W; \mu, \epsilon) = Z_{[q]}^{(m_t|0)}(\alpha_s(\mu), m_t/\mu, \epsilon) \mathcal{M}_{Wt\bar{t}}^{(m_t=0)}(\{p_i\}, p_W; \mu, \epsilon) + \mathcal{O}(m_t^2/Q_{Wt\bar{t}}^2)$$

how do these approximations perform for $Wt\bar{t}$?

good news! we have two rather different and complementary approximations of the exact two-loop virtual amplitudes

 $\epsilon_{\mu}(p_W) \mathcal{M}_{t\bar{t}}(\{p_i\};\mu,\epsilon) + \mathcal{O}(m_W/m_t, E_W/Q_{t\bar{t}})$ [Bärnreuther, Czakon, Fiedler (2013)]

• it works nicely in the case of $Wb\bar{b}$, mainly due to the smallness of the bottom mass (negligible power corrections)

[Abreu at al. (2021)]

How to deal with $Wt\bar{t}$?

- **soft approximation**:

 - formally it is valid in the limit $E_W \to 0$, $m_W \ll m_t$ (which is not true is a physical W boson ...)

▶ massification:

- formally it is valid in the limit $m_t \ll Q_{t\bar{t}W}$ (which is not true ...)

$$\mathcal{M}_{Wt\bar{t}}(\{p_i\}, p_W; \mu, \epsilon) = Z^{(m_t|0)}_{[q]}(\alpha_s(\mu), \epsilon)$$

how do these approximations perform for $Wt\overline{t}$?

good news! we have two rather different and complementary approximations of the exact two-loop virtual amplitudes

• it works nicely in the case of $t\bar{t}H$, mainly due to the smallness of the approximated $H^{(2)}$ contribution

 $\mathcal{M}_{Wt\bar{t}}(\{p_i\}, p_W; u, c\} \xrightarrow{(a)} to answer this m_W/m_t, E_W/Q_{t\bar{t}})$ **assification:**• it works nicely in the government of the total states to the total

wbb, mainly due to the smallness of the bottom mass (negligible power corrections)

 $, m_t/\mu, \epsilon) \, \mathcal{M}^{(m_t=0)}_{Wt\bar{t}}(\{p_i\}, p_W; \mu, \epsilon) + \mathcal{O}(m_t^2/Q_{Wt\bar{t}}^2)$

Preliminary results: validation @NLO

setup: NNLO LUXPDF4LHC15, $\sqrt{s} = 13 TeV$, $m_W = 80.385 GeV$, $m_t = 173.2 GeV$, $\mu_R = \mu_F = (2m_t + m_W)/2$

$\Delta \sigma_{ m NLO}^{H_1}$ [fb]	exact	soft	massification
inclusive $p_T > 200 \text{GeV}$ $p_T > 500 \text{GeV}$ $p_T > 1000 \text{GeV}$	$52.6\\14.745\\1.5162\\0.0823$	$\begin{array}{r} 44.47^{+3.5}_{-3.5} \\ 13.22^{+0.74}_{-0.73} \\ 1.42^{+0.04}_{-0.04} \\ 0.0792^{+0.08}_{-0.01} \end{array}$	$ \begin{vmatrix} 54.25 + 4.3 \\ -4.4 \\ 15.519 + 0.12 \\ -0.13 \\ 1.541 + 0.0008 \\ 0.0826 + 0.00002 \\ -0.00006 \end{vmatrix} $

both approaches provide a **good quantitative approximation** of the exact virtual coefficient (discrepancy of 5-15%)

the soft approximation tends to **undershoot** the exact result while the massification **overshoots** it

clear **asymptotic behaviour** towards the exact result for high $p_{T,t}$ where both approximations are expected to perform better (faster convergence of the massification)

Preliminary results: performance @NNLO

setup: NNLO LUXPDF4LHC15, $\sqrt{s} = 13 TeV$, $m_W = 80.385 GeV$, $m_t = 173.2 GeV$, $\mu_R = \mu_F = (2m_t + m_W)/2$

$\Delta \sigma_{ m NNLO}^{H_2}$ [fb]	soft	massification
inclusive	15.5 ± 4.8	22.7 ± 4.9
$p_T > 200 \mathrm{GeV}$	4.72 ± 0.97	5.87 ± 0.89
$p_T > 500 \mathrm{GeV}$	0.577 ± 0.073	0.623 ± 0.055
$p_{\mathcal{T}}>$ 10 $00{ m GeV}$	0.0359 ± 0.0028	0.037 ± 0.0016

similar behaviour as @NLO: massified two-loop result systematically higher than the one from soft approximation

our best prediction: average of the two approximated results

conservative uncertainty: semi-difference multiplied by a tolerance factor 1.5

the two-loop contribution turns out to be 6-7% of the NNLO cross section (both for $t\bar{t}W^+$ and $t\bar{t}W^-$) much better control than in $t\overline{t}H$

setup: NNLO LUXPDF4LHC15, $\sqrt{s} = 13 TeV$, $m_W = 80.385 GeV$, $m_t = 173.2 GeV$, $\mu_R = \mu_F = (2m_t + m_W)/2$

	order	$\sigma_{t ar{t} W^+} [{ m fb}]$	$\sigma_{tar{t}W^-}$ [fb
	$\rm LO_{QCD}$	$272.4^{+25.1\%}_{-18.7\%}$	$136.5^{+25.0\%}_{-18.7\%}$
	$\rm NLO_{QCD}$	$404.4^{+12.8\%}_{-11.5\%}$	$206.0^{+13.4\%}_{-11.8\%}$
	$NNLO_{QCD}$	$462.2^{+6.2\%}_{-4.8\%}\pm2.3\%$	$237.0^{+6.7\%}_{-5.1\%}$
NI	$NLO_{QCD} + NLO_{EW}$	$485.2^{+6.6\%}_{-5.4\%}\pm2.2\%$	$250.0^{+6.8\%}_{-5.6\%}$

(a)NLO QCD: large corrections (+50%)

- (a)NNLO QCD: moderate corrections (+15%)
- inclusion of all subdominant LO and NLO contributions $(\mathcal{O}(\alpha^3), \mathcal{O}(\alpha_s^2 \alpha^2), \mathcal{O}(\alpha_s \alpha^3), \mathcal{O}(\alpha^4))$ labelled as NLO EW
- the ratio $\sigma(t\bar{t}W^+)/\sigma(t\bar{t}W^-)$ is slightly reduced (very stable) perturbative behaviour)

Preliminary results: total XS

setup: NNLO LUXPDF4LHC15, $\sqrt{s} = 13 TeV$, $m_W = 80.385 GeV$, $m_t = 173.2 GeV$, $\mu_R = \mu_F = (2m_t + m_W)/2$

order	$\sigma_{tar{t}W^+}[{ m fb}]$	$\sigma_{tar{t}W^-}$ [fb
$\rm LO_{QCD}$	$272.4^{+25.1\%}_{-18.7\%}$	$136.5^{+25.0\%}_{-18.7\%}$
$\rm NLO_{QCD}$	$404.4^{+12.8\%}_{-11.5\%}$	$206.0^{+13.4\%}_{-11.8\%}$
$NNLO_{QCD}$	$462.2^{+6.2\%}_{-4.8\%}\pm2.3\%$	$237.0^{+6.7\%}_{-5.1\%}$
$\rm NNLO_{QCD}$ + $\rm NLO_{EW}$	$485.2^{+6.6\%}_{-5.4\%}\pm2.2\%$	$250.0^{+6.8\%}_{-5.6\%}$
	order LO_{QCD} NLO_{QCD} $NNLO_{QCD}$ $NNLO_{QCD} + NLO_{EW}$	order $\sigma_{t\bar{t}W^+}$ [fb]LO_QCD272.4^{+25.1\%}_{-18.7\%}NLO_QCD404.4^{+12.8\%}_{-11.5\%}NNLO_QCD462.2^{+6.2\%}_{-4.8\%} \pm 2.3\%NNLO_QCD + NLO_EW485.2^{+6.6\%}_{-5.4\%} \pm 2.2\%

- (a)NLO QCD: large corrections (+50%)
- (a)NNLO QCD: moderate corrections (+15%)
- inclusion of all subdominant LO and NLO contributions $(\mathcal{O}(\alpha^3), \mathcal{O}(\alpha_s^2 \alpha^2), \mathcal{O}(\alpha_s \alpha^3), \mathcal{O}(\alpha^4))$ labelled as NLO EW
- the ratio $\sigma(t\bar{t}W^+)/\sigma(t\bar{t}W^-)$ is slightly reduced (very stable) perturbative behaviour)

our result is fully compatible with FxFx with smaller perturbative uncertainties !!

Preliminary results: total XS

Preliminary results: comparison with data

setup: NNLO LUXPDF4LHC15, $\sqrt{s} = 13 TeV$, $m_W = 80.385 GeV$, $m_t = 173.2 GeV$, $\mu_R = \mu_F = (2m_t + m_W)/2$

[ATLAS-CONF-2023-019] [CMS: arXiv 2208.06485]

- comparison against the most recent ATLAS and CMS data:
 - the agreement is at the 1σ and 2σ level respectively
 - reduction of the perturbative scale uncertainties
 - systematic uncertainties due the two-loop approximation are under control and much smaller than the scale uncertainties

Preliminary results: comparison with data

setup: NNLO LUXPDF4LHC15, $\sqrt{s} = 13 TeV$, $m_W = 80.385 GeV$, $m_t = 173.2 GeV$, $\mu_R = \mu_F = (2m_t + m_W)/2$

[ATLAS-CONF-2023-019] [CMS: arXiv 2208.06485]

- comparison against the most recent ATLAS and CMS data:
 - the agreement is at the 1σ and 2σ level respectively
 - reduction of the perturbative scale uncertainties
 - systematic uncertainties due the two-loop approximation are under control and much smaller than the scale uncertainties

take-home message:

two completely different approximations which lead to compatible results for the missing two-loop virtual contribution!!

Preliminary results: comparison with data

setup: NNLO LUXPDF4LHC15, $\sqrt{s} = 13 TeV$, $m_W = 80.385 GeV$, $m_t = 173.2 GeV$, $\mu_R = \mu_F = (2m_t + m_W)/2$

[ATLAS-CONF-2023-019] [CMS: arXiv 2208.06485]

- comparison against the most recent ATLAS and CMS data:
 - the agreement is at the 1σ and 2σ level respectively
 - reduction of the perturbative scale uncertainties
 - systematic uncertainties due the two-loop approximation are under control and much smaller than the scale uncertainties

STAY TUNED FOR UPDATES in the following weeks !!

