Data Comes From Many Sources

1

Bob Jacobsen, UC Berkeley

Merging data - Drinks


```
In [2]: # create a table of drinks available at several places with there prices
        drinks = Table(['Drink', 'Cafe', 'Price']).with_rows([ # a table of menus for cafes
             ['Milk Tea', 'Tea One', 4],
             ['Espresso', 'Nefeli', 2],
             ['Latte', 'Nefeli', 3],
             ['Espresso', "Abe's", 2]
         1)
        drinks
Out[2]:
            Drink
                   Cafe Price
          Milk Tea Tea One
                           4
         Espresso
                   Nefeli
                           2
            Latte
                   Nefeli
                           3
         Espresso
                           2
                   Abe's
In [3]: # create a table of available discounts
        discounts = Table().with_columns(
                                                             # A table of discounts by cafe
             'Coupon % off', make_array(25, 50, 5),
             'Location', make_array('Tea One', 'Nefeli', 'Tea One')
        discounts
Out[3]:
         Coupon % off Location
                  25 Tea One
                       Nefeli
                  50
                   5 Tea One
2
                                    Bob Jacobsen, UC Berkeley
```


	t = dri t			fe', discou you don't			or Abe's	
:[4]:	Cafe	Drink	Price	Coupon % off				
	Nefeli	Espresso	2	50				
	Nefeli	Latte	3	50				
	Tea One	Milk Tea	4	25				
	Tea One	Milk Tea	4	5				
[5]:	t.with_	_column('Disc	of discount ounted', t.	column(2)	* (1 – t	.column	(3)/ 100))
		_column('Disc		column(2)	* (1 – t	.column	(3)/ 100))
	t.with_ Cafe	_column('Disc	ounted', t.	column(2)	* (1 – t	.column	(3)/ 100))
[5]: :[5]:	t.with_ Cafe	.column(Drink	'Disco Price	ounted', t. Coupon % off	Column(2) Discounted	* (1 – t	.column	(3)/ 100))
	t.with_ Cafe Nefeli	column(Drink Espresso Latte	'Disco Price 2	ounted', t. Coupon % off 50	Column(2) Discounted	-	.column	(3)/ 100))

Bob Jacobsen, UC Berkeley

	# Join	with it	self,	ble two- matchin Cafe', d	ng on C	
Out[6]:	Cafe	Drink	Price	Drink_2	Price_2	
	Abe's	Espresso	2	Espresso	2	
	Nefeli	Espresso	2	Espresso	2	
	Nefeli	Espresso	2	Latte	3	
	Nefeli	Latte	3	Espresso	2	
	Nefeli	Latte	3	Latte	3	
	Tea One	Milk Tea	4	Milk Tea	4	
in [7]:		t <i>otal</i> h_colum		tal', tw	/o.colu	mn('P
)ut[7]:	Cafe	Drink	Price	Drink_2	Price_2	Total
	Abe's	Espresso	2	Espresso	2	4
	Nefeli	Espresso	2	Espresso	2	4
	Nefeli	Espresso	2	Latte	3	5

2

3

4

5

6

8

Latte

Latte

Milk Tea

3 Espresso

Latte

Milk Tea

3

4

Nefeli

Nefeli

Tea One

Another way to understand data - GIS - Bikes

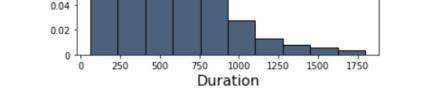
In [1]: # usual imports

from datascience import *
import numpy as np
import pandas as pd

%matplotlib inline import matplotlib.pyplot as plots #plots.style.use('fivethirtyeight')

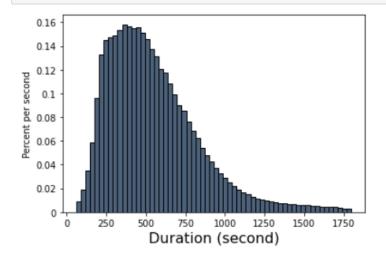
Configure for presentation
#np.set_printoptions(threshold=50, linewidth=50)
import matplotlib as mpl
#mpl.rc('font', size=16)

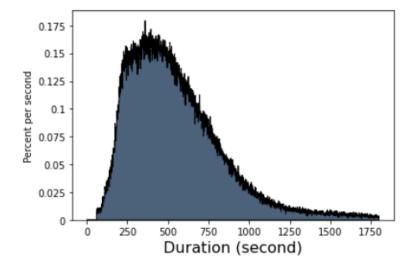
Bikes


In [2]: # Read a dataset from a bike-rental firm containing 354k rentals
trips = Table.read_table('trip.csv')
see what columns are available in this data set:
trips

Out[2]:

1:	Trip ID	Duration	Start Date	Start Station	Start Terminal	End Date	End Station	End Terminal	Bike #	Subscriber Type	Zip Code
	913460	765	8/31/2015 23:26	Harry Bridges Plaza (Ferry Building)	50	8/31/2015 23:39	San Francisco Caltrain (Townsend at 4th)	70	288	Subscriber	2139
	913459	1036	8/31/2015 23:11	San Antonio Shopping Center	31	8/31/2015 23:28	Mountain View City Hall	27	35	Subscriber	95032
	913455	307	8/31/2015 23:13	Post at Kearny	47	8/31/2015 23:18	2nd at South Park	64	468	Subscriber	94107
	913454	409	8/31/2015 23:10	San Jose City Hall	10	8/31/2015 23:17	San Salvador at 1st	8	68	Subscriber	95113
	913453	789	8/31/2015 23:09	Embarcadero at Folsom	51	8/31/2015 23:22	Embarcadero at Sansome	60	487	Customer	9069
	913452	293	8/31/2015 23:07	Yerba Buena Center of the Arts (3rd @ Howard)	68	8/31/2015 23:12	San Francisco Caltrain (Townsend at 4th)	70	538	Subscriber	94118
	913451	896	8/31/2015 23:07	Embarcadero at Folsom	51	8/31/2015 23:22	Embarcadero at Sansome	60	363	Customer	92562
	913450	255	8/31/2015	Embarcadero at Sansome	60	8/31/2015	Steuart at Market	74	470	Subscriber	94111





0.1 0.08 0.06

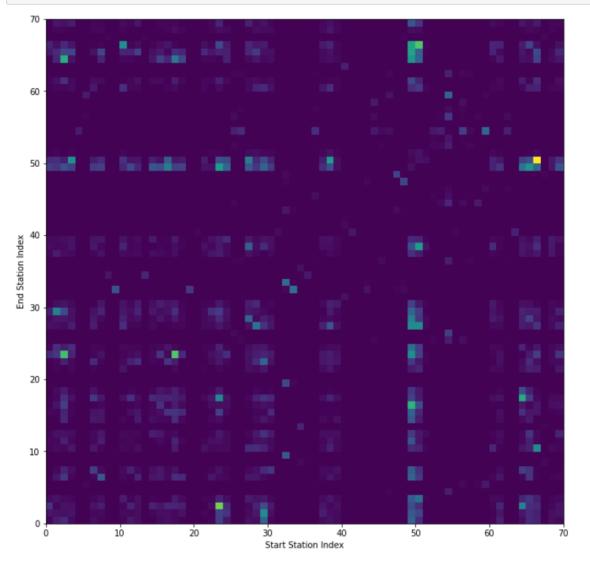
In [4]: commute.hist('Duration', bins=60, unit='second') # clean the plot up a bit

In [5]: commute.hist('Duration', bins=np.arange(1801), unit='second') # there are 354K rows

In [6]: # group by starting location to get counts, then sort to get largest values
starts = commute.group('Start Station').sort('count', descending=True)
starts

Out[6]:	Start Station	count
	San Francisco Caltrain (Townsend at 4th)	25858
	San Francisco Caltrain 2 (330 Townsend)	21523
	Harry Bridges Plaza (Ferry Building)	15543
	Temporary Transbay Terminal (Howard at Beale)	14298
	2nd at Townsend	13674
	Townsend at 7th	13579
	Steuart at Market	13215
	Embarcadero at Sansome	12842
	Market at 10th	11523
	Market at Sansome	11023

... (60 rows omitted)


```
In [7]: # Compute a table counting start -> end trips
pivot = commute.pivot('Start Station', 'End Station')
pivot
```

Out[7]:

•	End Station	2nd at Folsom	2nd at South Park	2nd at Townsend	5th at Howard	Adobe on Almaden	Arena Green / SAP Center	Beale at Market	Broadway St at Battery St	California Ave Caltrain Station	Castro Street and El Camino Real	Civic Center BART (7th at Market)	Clay at Battery	Commercial at Montgomery	Ur
	2nd at Folsom	54	190	554	107	0	0	40	21	0	0	44	78	54	
	2nd at South Park	295	164	71	180	0	0	208	85	0	0	112	87	160	
	2nd at Townsend	437	151	185	92	0	0	608	350	0	0	80	329	168	
	5th at Howard	113	177	148	83	0	0	59	130	0	0	203	76	129	
	Adobe on Almaden	0	0	0	0	11	4	0	0	0	0	0	0	0	
	Arena Green / SAP Center	0	0	0	0	7	64	0	0	0	0	0	0	0	
	Beale at Market	127	79	183	59	0	0	59	661	0	0	201	75	101	
	Broadway St at Battery St	67	89	279	119	0	0	1022	110	0	0	62	283	226	
	California Ave Caltrain Station	0	0	0	0	0	0	0	0	38	1	0	0	0	
	Castro Street and El Camino Real	0	0	0	0	0	0	0	0	0	30	0	0	0	

```
Data Science Tools for Interactive Exploration
```

```
In [8]: # It's easier to interpret this graphically - the heat plot
plots.rcParams['figure.figsize'] = (11., 11.) # make a square plot
plots.figure()
ct = pd.crosstab(commute['Start Station'], commute['End Station']) # pandas computation of pivot table
plots.grid(False)
plots.pcolor(ct) # plot that dataframe as color spectrum
plots.xlabel('Start Station Index')
plots.ylabel('End Station Index')
plots.plot();
```


In [10]: duration = trips.select('Start Station', 'End Station', 'Duration') # narrow down the table to three columns duration

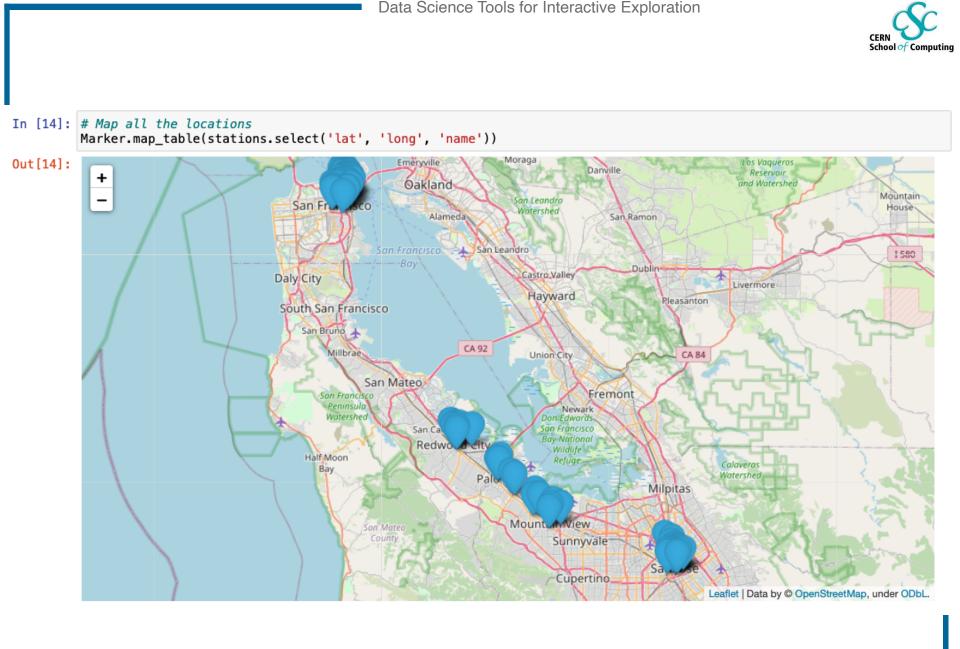
Out[10]:	Start Station	End Station	Duration
	Harry Bridges Plaza (Ferry Building)	San Francisco Caltrain (Townsend at 4th)	765
	San Antonio Shopping Center	Mountain View City Hall	1036
	Post at Kearny	2nd at South Park	307
	San Jose City Hall	San Salvador at 1st	409
	Embarcadero at Folsom	Embarcadero at Sansome	789
	Yerba Buena Center of the Arts (3rd @ Howard)	San Francisco Caltrain (Townsend at 4th)	293
	Embarcadero at Folsom	Embarcadero at Sansome	896
	Embarcadero at Sansome	Steuart at Market	255
	Beale at Market	Temporary Transbay Terminal (Howard at Beale)	126
	Post at Kearny	South Van Ness at Market	932

... (354142 rows omitted)

In [11]: # Group the trips from each to each, then select the shortest duration trip in each bin
shortest = duration.group(['Start Station', 'End Station'], min)
shortest

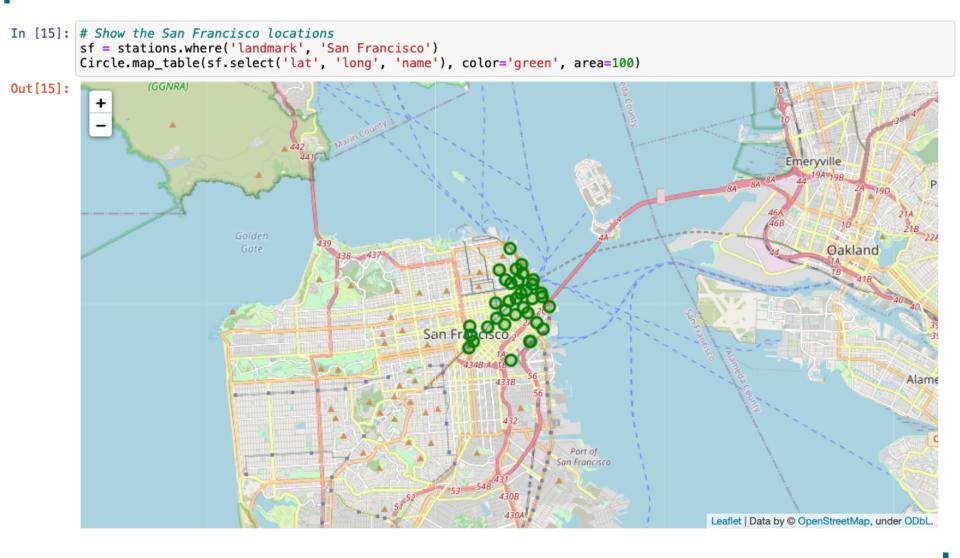
Out[11]:

 Start Station	End Station	Duration min
2nd at Folsom	2nd at Folsom	61
2nd at Folsom	2nd at South Park	61
2nd at Folsom	2nd at Townsend	137
2nd at Folsom	5th at Howard	215
2nd at Folsom	Beale at Market	219
2nd at Folsom	Broadway St at Battery St	351



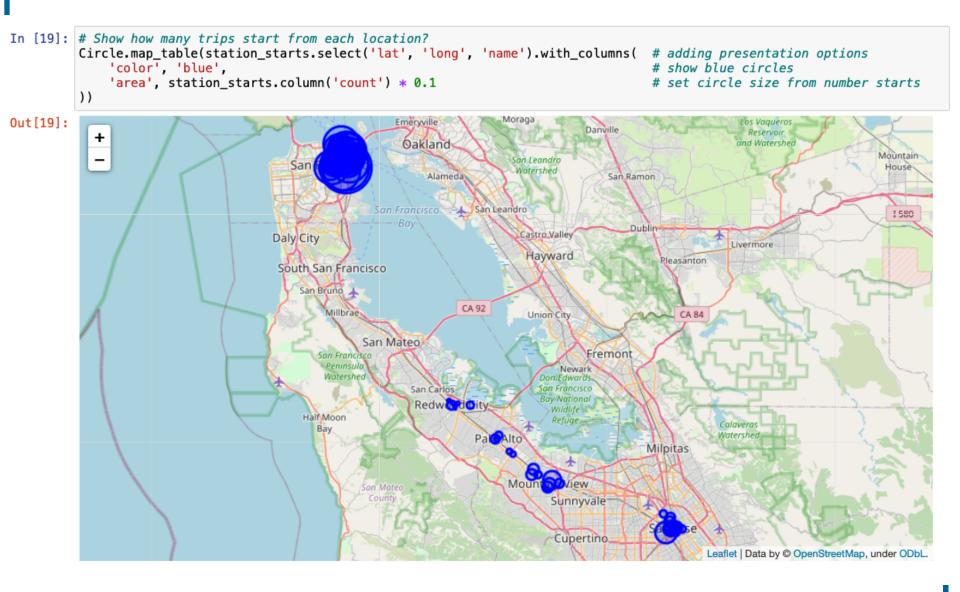
Maps

In [13]: # Get the locations of the stations stations = Table.read_table('station.csv') # Table of station locations stations # landmark is the town containg the station


Out[13]:	station_id	name	lat	long	dockcount	landmark	installation
	2	San Jose Diridon Caltrain Station	37.3297	-121.902	27	San Jose	8/6/2013
	3	San Jose Civic Center	37.3307	-121.889	15	San Jose	8/5/2013
	4	Santa Clara at Almaden	37.334	-121.895	11	San Jose	8/6/2013
	5	Adobe on Almaden	37.3314	-121.893	19	San Jose	8/5/2013
	6	San Pedro Square	37.3367	-121.894	15	San Jose	8/7/2013
	7	Paseo de San Antonio	37.3338	-121.887	15	San Jose	8/7/2013
	8	San Salvador at 1st	37.3302	-121.886	15	San Jose	8/5/2013
	9	Japantown	37.3487	-121.895	15	San Jose	8/5/2013
	10	San Jose City Hall	37.3374	-121.887	15	San Jose	8/6/2013
	11	MLK Library	37.3359	-121.886	19	San Jose	8/6/2013

... (60 rows omitted)

Bob Jacobsen, UC Berkeley


In [18]: # Calculate the number of trips starting at each station by joining the two data sets station_starts = stations.join('name', starts, 'Start Station') station_starts

Out[18]:	name	station_id	lat	long	dockcount	landmark	installation	count
	2nd at Folsom	62	37.7853	-122.396	19	San Francisco	8/22/2013	7841
	2nd at South Park	64	37.7823	-122.393	15	San Francisco	8/22/2013	9274
	2nd at Townsend	61	37.7805	-122.39	27	San Francisco	8/22/2013	13674
	5th at Howard	57	37.7818	-122.405	15	San Francisco	8/21/2013	7394
	Adobe on Almaden	5	37.3314	-121.893	19	San Jose	8/5/2013	522
	Arena Green / SAP Center	14	37.3327	-121.9	19	San Jose	8/5/2013	590
	Beale at Market	56	37.7923	-122.397	19	San Francisco	8/20/2013	8135
	Broadway St at Battery St	82	37.7985	-122.401	15	San Francisco	1/22/2014	7460
	California Ave Caltrain Station	36	37.4291	-122.143	15	Palo Alto	8/14/2013	300
	Castro Street and El Camino Real	32	37.386	-122.084	11	Mountain View	12/31/2013	1137

... (58 rows omitted)

Outside the Box: Text Analysis

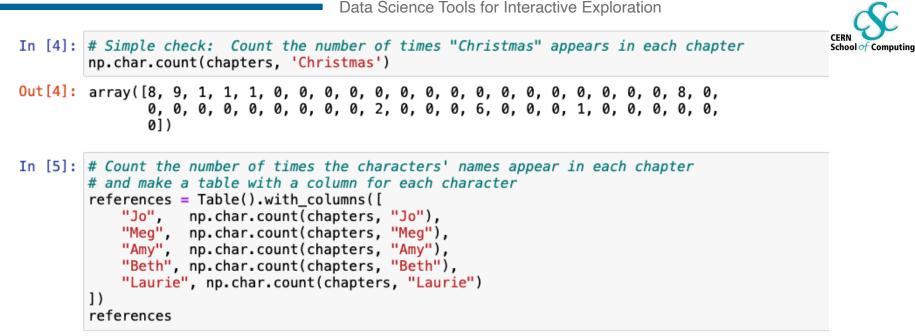
```
In [1]: # Examine the book "Little Women" to see what we can learn from its text
    # usual imports
    from datascience import *
    import numpy as np
    import pandas as pd
    %matplotlib inline
    import matplotlib.pyplot as plots
    plots.style.use('fivethirtyeight')
    import warnings
    warnings.simplefilter(action="ignore", category=FutureWarning)
```

from urllib.request import urlopen
import re
def read_url(url):
 return re.sub('\\s+', ' ', urlopen(url).read().decode())

- In [2]: # Read the book and split into separate chapters
 little_women_url = 'http://data8.org/materials-fa17/lec/little_women.txt'
 little_women_text = read_url(little_women_url)
 chapters = little_women_text.split('CHAPTER ')[1:]
- In [3]: # create a table with one chapter's text in each row Table().with_column('Text', chapters)

 Out [3]:
 Text

 ONE PLAYING PILGRIMS "Christmas won't be Christmas witho ...
 TWO A MERRY CHRISTMAS Jo was the first to wake in the gr ...


 THREE THE LAURENCE BOY "Jo! Jo! Where are you?" cried Me ...
 FOUR BURDENS "Oh, dear, how hard it does seem to take up ...

 FUE BEING NEIGHBORLY "What in the world are you going t ...
 SIX BETH FINDS THE PALACE BEAUTIFUL The big house did pr ...

 SEVEN AMY'S VALLEY OF HUMILIATION "That boy is a perfect ...
 EIGHT JO MEETS APOLLYON "Girls, where are you going?" as ...

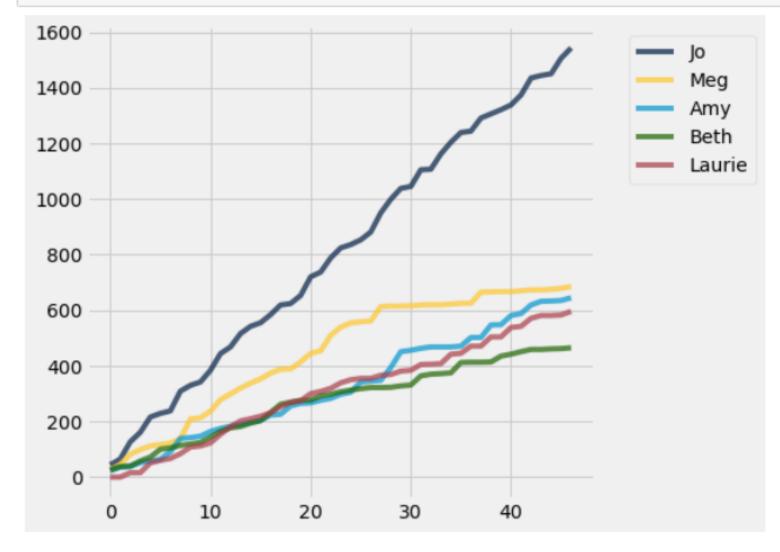
 NINE MEG GOES TO VANITY FAIR "I do think it was the most ...
 TEN THE P.C. AND P.O. As spring came on, a new set of am ...

... (37 rows omitted)

Out[5]

]:	Jo	Meg	Amy	Beth	Laurie
	44	26	23	26	0
	21	20	13	12	0
	62	36	2	2	16
	34	17	14	18	0
	55	13	6	14	35
	13	5	6	28	9
	9	5	27	5	7
	71	16	48	9	17
	21	71	3	5	24
	12	4	5	5	4

... (37 rows omitted)



In [6]: # plot appearances by chapter, one curve per character (column) references.plot()

Co

In [7]: # the plot-by-chapter is hard to interpret. Plot cumulative sums: references.cumsum().plot()

In [8]: # How would you see who's mentioned most often in each chapter?

Notebooks as persuasive objects

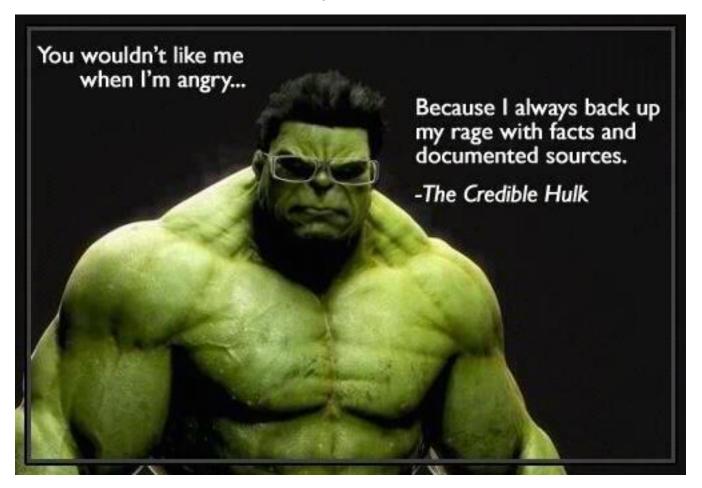
"When you two have finished arguing your opinions, I actually have data!"

Notebooks as persuasive objects

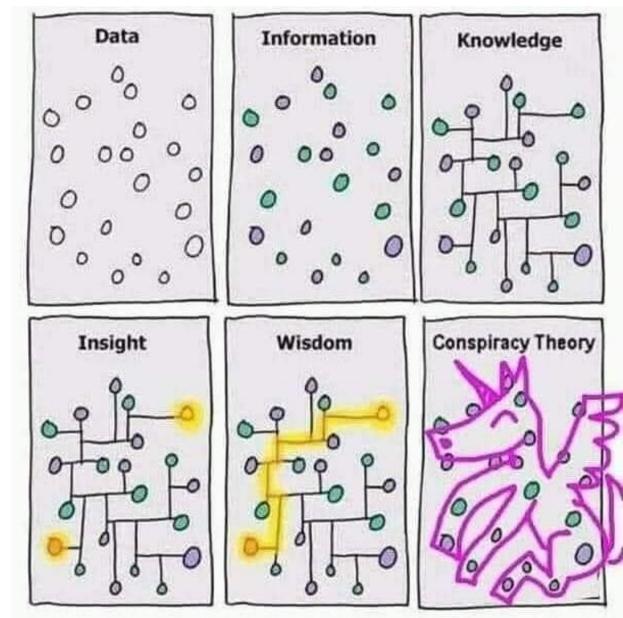
You've seen some of this already:

Plots and tables to show data

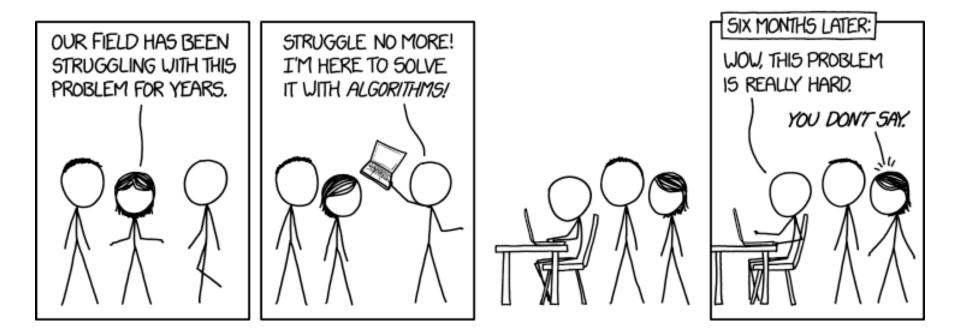
Links to document sources and background information

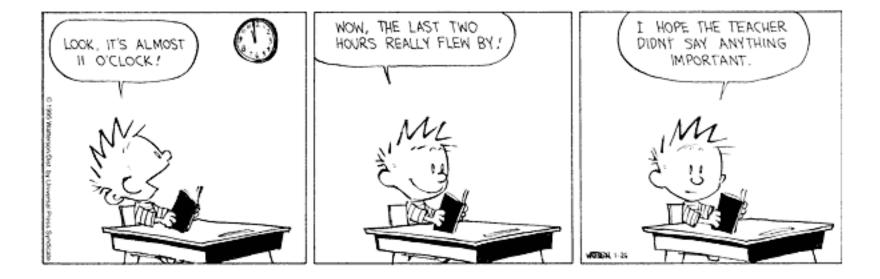

Ability to rapidly respond to "what if" questions

Markdown for pretty titles and text


Notebooks as persuasive objects

You've seen some of this already:


But your conclusions have to be proportionate



Data doesn't always make hard problems easier...

Questions? jacobsen@berkeley.edu

Bob Jacobsen, UC Berkeley

Exercises

Intro - these notebooks & the SWAN service Simple Applications Project(s)!

Instructions to get started on Indico (Data Science E1)

https://indico.cern.ch/event/1254984/contributions/5272131/

If you get stuck, ask for help or do an internet search

Learn about each topic, spend more time on ones that interest you.

Don't try to do every bit of every notebook; pick interesting ones.

Speed is not the issue: no reward for first done or most complete coverage

Not even keeping track

Think about what you're doing: Learn to use these tools!

