

In [2]:

Out[2]:

In [3]:

Out[3]:

Merging data - Drinks

Data Science Tools for Interactive Exploration ;S
CERN

School of Computing

create a table of drinks available at several places with there prices
drinks = Table(['Drink', 'Cafe', 'Price'l).with_rows([# a table of menus for cafes

['Milk Tea', 'Tea One', 4],

['Espresso', 'Nefeli', 2],

['Latte’', 'Nefeli', 3],

['Espresso', "Abe's", 2]
1)

drinks

Drink Cafe Price

Milk Tea Tea One 4
Espresso Nefeli 2
Latte Nefeli 3
Espresso Abe's 2

create a table of available discounts
discounts = Table().with_columns(
'Coupon % off', make_array(25, 50, 5),

A table of discounts by cafe

'Location', make_array('Tea One', 'Nefeli', 'Tea One')

)

discounts

Coupon % off Location

25 TeaOne
50 Nefeli
5 TeaOne

Bob Jacobsen, UC Berkeley

1

Data Science Tools for Interactive Exploration ;S
CERN

School of Computing

In [4]: # combine the tables by matching cafe names
t = drinks.join('Cafe', discounts, 'Location')
t # note you don't have a discount for Abe's
Out[4]: Cafe Drink Price Coupon % off
Nefeli Espresso 2 50
Nefeli Latte 3 50
TeaOne Milk Tea 4 25
TeaOne Milk Tea 4 5

In [5]: # Compute a column of discounted price
t.with_column('Discounted', t.column(2) * (1 - t.column(3)/ 100))

Out[5]: Cafe Drink Price Coupon % off Discounted
Nefeli Espresso 2 50 1

Nefeli Latte 3 50 1.5

TeaOne Milk Tea 4 25 3

TeaOne Milk Tea 4 5 3.8

3 Bob Jacobsen, UC Berkeley

Data Science Tools for Interactive Exploration ;9
CERN

School of Computing

In [6]: # What do all possible two-drink orders cost?
Join with itself, matching on Cafe (you only order in one place)
two = drinks.join('Cafe', drinks)

two

Out[6]: cate Drink Price Drink 2 Price 2
Abe's Espresso 2 Espresso 2

Nefeli Espresso 2 Espresso 2

Nefeli Espresso 2 Latte 3

Nefeli Latte 3 Espresso 2

Nefeli Latte 3 Latte 3

TeaOne Milk Tea 4 Milk Tea 4

In [7]: # Add a total price
two.with_column('Total', two.column('Price') + two.column('Price_2'))

Outl7]: Gafe Drink Price Drink 2 Price_2 Total
Abe's Espresso 2 Espresso 2 4

Nefeli Espresso 2 Espresso 2 4

Nefeli Espresso 2 Latte 3 5

Nefeli Latte 3 Espresso 2 5

Nefeli Latte 3 Latte 3 6

TeaOne Milk Tea 4 Milk Tea 4 8

4 Bob Jacobsen, UC Berkeley

Data Science Tools for Interactive Exploration
Another way to understand data - GIS - Bikes (SC

School of Computing

In [1]: # usual imports
from datascience import *
import numpy as np
import pandas as pd

%matplotlib inline
import matplotlib.pyplot as plots
#plots.style.use('fivethirtyeight')

Configure for presentation
#np.set_printoptions(threshold=50, linewidth=50)
import matplotlib as mpl

#mpl.rc('font', size=16)

Bikes

In [2]: # Read a dataset from a bike-rental firm containing 354k rentals
trips = Table.read_table('trip.csv')
see what columns are available in this data set:
trips

Out[2]: St
art End Bike Subscriber Zip
Trip ID Duration Start Date Start Station Terminal End Date End Station Terminal # Type Code

8/31/2015 Harry Bridges Plaza (Ferry
23:26 Building)

8/31/2015 San Francisco Caltrain (Townsend

913460 765 23:39 at 4th)

50 70 288 Subscriber 2139

8/31/2015
23:11

8/31/2015

913459 1036 23:28

San Antonio Shopping Center 31 Mountain View City Hall 27 35 Subscriber 95032

8/31/2015
23:13

8/31/2015

913455 307 23:18

Post at Kearny 47 2nd at South Park 64 468 Subscriber 94107

8/31/2015
23:10

8/31/2015

913454 409 23:17

San Jose City Hall 10 San Salvador at 1st 8 68 Subscriber 95113

8/31/2015 8/31/2015

913453 789 23:09 Embarcadero at Folsom 51 23:22 Embarcadero at Sansome 60 487 Customer 9069

8/31/2015 Yerba Buena Center of the Arts 8/31/2015 San Francisco Caltrain (Townsend

913452 293 3:07 (3rd @ Howard) 68 23:12 at 4th)

70 538 Subscriber 94118

8/31/2015
23:07

8/31/2015

913451 896 23:22

Embarcadero at Folsom 51 Embarcadero at Sansome 60 363 Customer 92562

8/31/2015 8/31/2015

Q12A8N ORER Emharcadorn at SancAama AN Statiart at Markot 7A ATD Sitherribar Q4111

Data Science Tools for Interactive Exploration ;S
CERN

School of Computing

In [3]: # identify a subsample of "commuters"

commute = trips.where('Duration', are.below(1800)) # Why is this here? Are there significant ones above that?
commute.hist('Duration')

0.14 1

012 4§

01 1

0.08 1

Percent per unit

0.06 1

0.04 1

0.02 1

0 250 500 750 1000 1250 1500 1750
Duration

In [4]: commute.hist('Duration', bins=60, unit='second') # clean the plot up a bit

0.16 1

0.14 1

012 4§

01 1

0.08 1

0.06 1

Percent per second

004 1

0.02 1

0 250 500 750 1000 1250 1500 1750
Duration (second)

6 Bob Jacobsen, UC Berkeley

e [)Afa Science Toonls for Interactive Fxnlaration

In [5]: commute.hist('Duration', bins=np.arange(1801), unit='second') # there are 354K rows

0.175 1

0.15 4

0.125 -

0.1 1

0.075 A

Percent per second

0.05 1

0.025 1

0 250 500 750 1000 1250 1500 1750
Duration (second)

In [6]: # group by starting location to get counts, then sort to get largest values
starts = commute.group('Start Station').sort('count', descending=True)
starts

Out[6]: Start Station count

San Francisco Caltrain (Townsend at 4th) 25858

San Francisco Caltrain 2 (330 Townsend) 21523

Harry Bridges Plaza (Ferry Building) 15543

Temporary Transbay Terminal (Howard at Beale) 14298
2nd at Townsend 13674

Townsend at 7th 13579

Steuart at Market 13215

Embarcadero at Sansome 12842

Market at 10th 11523

Market at Sansome 11023

... (60 rows omitted)

In [7]: # Compute a table counting start —> end trips

pivot = commute.pivot('Start Station',

'End Station')

pivot
Out[7]:
Castro Civic
2nd Arena California
End 2ndat at 2nd at 5th at Adobe Gieen Beale Broadway Ave Street Center Clay at Commercial
Station Folsom South Townsend Howard on / SAP - Stat Caltrain snd Sl] Batte -
Park Almaden Contat Market Battery St Station Camino (7th at ry Montgomery Ut
Real Market)

2nd at

Folsom 54 190 554 107 0 0 40 21 0 0 44 78 54
2nd at

South 295 164 71 180 0 0 208 85 0 0 112 87 160
Park

2nd at 437 151 185 92 0 0 608 350 0 0 80 329 168
Townsend
5th at

Howard 113 177 148 83 0 0 59 130 0 0 203 76 129
Adobe on

R 0 0 0 0 11 4 0 0 0 0 0 0 0
Arena
Green /

SAP 0 0 0 0 7 64 0 0 0 0 0 0 0
Center
Beale at

Market 127 79 183 59 0 0 59 661 0 0 201 75 101
Broadway

St at 67 89 279 119 0 0 1022 110 0 0 62 283 226
Battery St
California
Ave

Caltrain 0 0 0 0 0 0 0 0 38 1 0 0 0
Station
Castro
Street

and El 0 0 0 0 0 0 0 0 0 30 0 0 0
Camino

Real

In [8]:

It's easier to interpret this graphically - the heat plot
plots.rcParams['figure.figsize'] = (11., 11.)

plots.figure()

ct = pd.crosstab(commute['Start Station'l, commute['End Station']) # pandas computation of pivot table
plots.grid(False)

plots.pcolor(ct) # plot that dataframe as color spectrum

plots.xlabel('Start Station Index')

plots.ylabel('End Station Index')

plots.plot();

70

End Station Index

20

10

10

20

Data Science Tools for Interactive Exploration

30 40
Start Station Index

make a square plot

70

=X

School of Computing

In [10]:

Out[10]:

In [11]:

Out[11]:

10

duration =
duration

Start Station

trips.select('Start Station',

Data Science Tools for Interactive Exploration

'End Station',

'Duration')

=X

School of Comoutina

narrow down the table to three columns

End Station Duration

Harry Bridges Plaza (Ferry Building)

San Antonio Shopping Center

Post at Kearny

San Jose City Hall

Embarcadero at Folsom

Yerba Buena Center of the Arts (3rd @ Howard)
Embarcadero at Folsom

Embarcadero at Sansome

Beale at Market

Post at Kearny

... (354142 rows omitted)

San Francisco Caltrain (Townsend at 4th)
Mountain View City Hall

2nd at South Park

San Salvador at 1st

Embarcadero at Sansome

San Francisco Caltrain (Townsend at 4th)
Embarcadero at Sansome

Steuart at Market

Temporary Transbay Terminal (Howard at Beale)
South Van Ness at Market

765
1036
307
409
789
293
896
255
126
932

Group the trips from each to each, then select the shortest duration trip in each bin
shortest = duration.group(['Start Station', 'End Station'], min)

shortest

Start Station End Station Duration min
2nd at Folsom 2nd at Folsom 61
2nd at Folsom 2nd at South Park 61
2nd at Folsom 2nd at Townsend 137
2nd at Folsom 5th at Howard 215
2nd at Folsom Beale at Market 219
2nd at Folsom Broadway St at Battery St 351

Bob Jacobsen, UC Berkeley

In [13]:

Out[13]:

11

Maps

Data Science Tools for Interactive Exploration

Get the locations of the stations
stations = Table.read_table('station.csv')

Table of station locations
landmark is the town containg the station

stations

station_id name lat long dockcount landmark installation
2 San Jose Diridon Caltrain Station 37.3297 -121.902 27 San Jose 8/6/2013

3 San Jose Civic Center 37.3307 -121.889 15 San Jose 8/5/2013

4 Santa Clara at Aimaden 37.334 -121.895 11 San Jose 8/6/2013

5 Adobe on Almaden 37.3314 -121.893 19 San Jose 8/5/2013

6 San Pedro Square 37.3367 -121.894 15 San Jose 8/7/2013

7 Paseo de San Antonio 37.3338 -121.887 15 San Jose 8/7/2013

8 San Salvador at 1st 37.3302 -121.886 15 San Jose 8/5/2013

9 Japantown 37.3487 -121.895 15 San Jose 8/5/2013

10 San Jose City Hall 37.3374 -121.887 15 San Jose 8/6/2013

1 MLK Library 37.3359 -121.886 19 San Jose 8/6/2013

... (60 rows omitted)

Bob Jacobsen, UC Berkeley

=X

School of Computing

Data Science Tools for Interactive Exploration @
CERN

School of Computing

In [14]:

Map all the locations
Marker.map_table(stations.select('lat', 'long', 'name'))

Out[14]:

12 Bob Jacobsen, UC Berkeley

Data Science Tools for Interactive Exploration

CERN
School of Computing

In [15]: # Show the San Francisco locations
sf = stations.where('landmark', 'San Francisco')
Circle.map_table(sf.select('lat', 'long', 'name'), color='green', area=100)

-

Out[15]:

(GGNRA) 4

N

Leatlet | Data by © OpenSreetMap, under ODBL.

13 Bob Jacobsen, UC Berkeley

In [18]: # Calculate the number of trips starting at each station by joining the two data sets
station_starts = stations.join('name', starts,

station_starts

Data Science Tools for Interactive Exploration

'Start Station')

Out[18]: name station_id lat long dockcount landmark installation count
2nd at Folsom 62 37.7853 -122.396 19 SanFrancisco 8/22/2013 7841
2nd at South Park 64 37.7823 -122.393 15 San Francisco 8/22/2013 9274
2nd at Townsend 61 37.7805 -122.39 27 SanFrancisco 8/22/2013 13674
5th at Howard 57 37.7818 -122.405 15 San Francisco 8/21/2013 7394
Adobe on Almaden 5 37.3314 -121.893 19 San Jose 8/5/2013 522
Arena Green / SAP Center 14 37.3327 -121.9 19 San Jose 8/5/2013 590
Beale at Market 56 37.7923 -122.397 19 San Francisco 8/20/2013 8135
Broadway St at Battery St 82 37.7985 -122.401 15 San Francisco 1/22/2014 7460
California Ave Caltrain Station 36 37.4291 -122.143 15 Palo Alto 8/14/2013 300
Castro Street and El Camino Real 32 37.386 -122.084 11 Mountain View 12/31/2013 1137
... (58 rows omitted)
14 Bob Jacobsen, UC Berkeley

=X

School of Computing

Data Science Tools for Interactive Exploration @
CERN

School of Computing

In [19]: # Show how many trips start from each location?
Circle.map_table(station_starts.select('lat', 'long', 'name').with_columns(# adding presentation options
'color', 'blue', # show blue circles
‘area', station_starts.column('count') * 0.1 # set circle size from number starts

))

Out[19]:

A w

.y
T A

:,o’
¥
-

J“\‘
s

Leaflet | Data by © OpenStreetMap, under ODbL.

15 Bob Jacobsen, UC Berkeley

Data Science Tools for Interactive Exploration ;9
CERN

Outside the Box: Text Analysis schoolof Computing

In [1]: # Examine the book "Little Women" to see what we can learn from its text

usual imports

from datascience import *

import numpy as np

import pandas as pd

%matplotlib inline

import matplotlib.pyplot as plots
plots.style.use('fivethirtyeight')

import warnings

warnings.simplefilter(action="ignore", category=FutureWarning)

from urllib.request import urlopen
import re
def read_url(url):
return re.sub('\\s+', ' ', urlopen(url).read().decode())

In [2]: # Read the book and split into separate chapters
little_women_url = 'http://data8.org/materials-fal7/lec/little_women.txt'
little_women_text = read_url(little_women_url)
chapters = little_women_text.split('CHAPTER ')[1:]

In [3]: # create a table with one chapter's text in each row
Table().with_column('Text', chapters)

Out[3]: Text

ONE PLAYING PILGRIMS "Christmas won't be Christmas witho ...
TWO A MERRY CHRISTMAS Jo was the first to wake in the gr ...
THREE THE LAURENCE BOY "Jo! Jo! Where are you?" cried Me ...
FOUR BURDENS "Oh, dear, how hard it does seem to take up ...
FIVE BEING NEIGHBORLY "What in the world are you going t ...
SIX BETH FINDS THE PALACE BEAUTIFUL The big house did pr ...
SEVEN AMY'S VALLEY OF HUMILIATION "That boy is a perfect ...
EIGHT JO MEETS APOLLYON "Girls, where are you going?” as ...
NINE MEG GOES TO VANITY FAIR "I do think it was the most ...
TEN THE P.C. AND P.O. As spring came on, a new set of am ...

16 ... (37 rows omitted)

17

In [4]:

Out[4]:

In [5]:

Out[5]:

Data Science Tools for Interactive Exploration ;9
CERN

Simple check: Count the number of times "Christmas" appears in each chapter School of Computing
np.char.count(chapters, 'Christmas')

array([8, 9,1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, @0, 0, 0, 0, O,
e, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 6, 0, 0, 0, 1, 0, @, O
0])

8, 0,
’ ’ ’ ’ ’ ’ ’ 0' 0

’ ’

Count the number of times the characters' names appear in each chapter
and make a table with a column for each character
references = Table().with_columns([
"Jo", np.char.count(chapters, "Jo"),
"Meg", np.char.count(chapters, "Meg"),
"Amy", np.char.count(chapters, "Amy"),
"Beth", np.char.count(chapters, "Beth"),
"Laurie", np.char.count(chapters, "Laurie")
1)

references

Jo Meg Amy Beth Laurie

44 26 23 26 0
21 20 13 12 0
62 36 2 2 16
34 17 14 18 0
55 13 6 14 35
13 5 6 28 9
9 5 27 7

21 71 3

5

71 16 48 9 17
5 24
5

12 4 5 4

... (37 rows omitted)

Bob Jacobsen, UC Berkeley

Data Science Tools for Interactive Exploration S
CERN

School of Computing

In [6]: # plot appearances by chapter, one curve per character (column)

references.plot()

70 = Jo

60 T AM:\gy
== Beth

50 | === Laurie

40

30

20

10 “ ‘\ \ J lI ‘

18 Bob Jacobsen, UC Berkeley

———————————— Data Science Tools for Interactive Exploration ol

In [7]: # the plot-by-chapter is hard to interpret. Plot cumulative sums:
references.cumsum().plot()

1600
1400 Meg
e Laurie

1000
800
600
400
200

0

0 10 20 30 40

In [8]: # How would you see who's mentioned most often in each chapter?

19 Bob Jacobsen, UC Berkeley #

Data Science Tools for Interactive Exploration
Notebooks as persuasive objects (SC

School of Computing

timoelliott. com

“When you two have finished arguing your opinions, I actually have data!”

20 Bob Jacobsen, UC Berkeley Q

21

Data Science Tools for Interactive Exploration

Notebooks as persuasive objects

You’ve seen some of this already:
Plots and tables to show data
Links to document sources and background information
Ability to rapidly respond to “what if”” questions

Markdown for pretty titles and text

Bob Jacobsen, UC Berkeley

CERN 5

School of Computing

22

Data Science Tools for Interactive Exploration ‘9
CERN

Notebooks as persuasive objects

You’ve seen some of this already:

School of Computing

You wouldn’t like me
when I'm angry...
Because | always back up
my rage with facts and
documented sources.

-The Credible Hulk

Bob Jacobsen, UC Berkeley

23

Data Science Tools for Interactive Exploration

But your conclusions have to be proportionate

) —

Bob Jacobsen, UC Berkeley

Data Information Knowledge
0 0
(@) (o) '
(@ (o} (@) o - |@
O : e , . |le e ="
0O 0o 0 0o :
(0 (o)
g Zid b ?@I‘:
o 9 ® ¢ o [
o o O o o © @'[6L‘X—®
0O o0 0 o :
Insight Wisdom ;onsplncyTheory

=X

School of Computing

Data Science Tools for Interactive Exploration (&
CERN

Data doesn’t always make hard problems easier...

School of Computing

1 91X :
OUR FIELD HASBEEN || sTRUGGLE No MORE! SIX MONTHS LATER
STRUGGLING WITH THIS T'M HERE TO SOLVE. WO, THIS PROBLEM
PROBLEM FOR YEARS. IT \JITH ALGORITHMS/ 15 REALLY HARD.
(YOU DONT SAY

% ‘\ll
24 Bob Jacobsen, UC Berkeley J

25

Data Science Tools for Interactive Exploration

=X

School of Computing

LOCK ., IT'S ALMOST
I O CLodk!

——

WEPOVAG Vi g AQ g in s, . O

WOW, THE LAST TWO

N

HOURS REALLY FLEW B‘Q

I WoPn ThHt TEn.(uER\ '
DIONT SAY RN THING _
IMPORTANT. i i

Questions? jacobsen@berkeley.edu

Bob Jacobsen, UC Berkeley

mailto:jacobsen@berkeley.edu

26

Data Science Tools for Interactive Exploration ‘9
CERN

E School of Computing

Exercises

Intro - these notebooks & the SWAN service
Simple Applications

Project(s)!

https://indico.cern.ch/event/1254984/contributions/5272131/

If you get stuck, ask for help or do an internet search

Learn about each topic, spend more time on ones that interest you.

Don’t try to do every bit of every notebook; pick interesting ones.

Speed is not the issue: no reward for first done or most complete coverage
Not even keeping track

Think about what you’re doing: Learn to use these tools!

Bob Jacobsen, UC Berkeley

https://indico.cern.ch/event/1254984/contributions/5272131/

Data Science Tools for Interactive Exploration ;S
CERN

DO YOU HAVE AN (DEA FOR You CANT JUST TURN ON School of Computing
YOUR PROJECT YET ? CREATIVITY LIKE A FAUCET,

YOU HAVE TO BE IN THE

N, I'M RIGHT MOOD.

WAITING FOR
INSPIRATION.

WHAT MOOD
IS THAT?

LAST-MINUTE
PANIC .

27 Bob Jacobsen, UC Berkeley

