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“According to all the big data we've gathered,
our discussions about big data are up 72%
this year alone.”

1 Bob Jacobsen, UC Berkeley
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Predicting a Geyser’s Eruptions i

Bob Jacobsen, UC Berkeley
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Physics of a Geyser Susto Conputg

*.. A .“.

.1' = Long column of water heated from the bottom
Pressure at bottom high, raises boiling point
Eventually, bottom does start to boil

Bubbles rise, start to push out water

Pressure reduces, so boiling point reduces

........

HeATEG Entire column flashes into steam and jets upwards
0CK™ /%
- Top of column ends up empty

Water enters, starts to warm up, process repeats

5 Bob Jacobsen, UC Berkeley
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csc-exercises > .. » OldFaithful
(autosaved)

FILE EDIT VIEW

INSERT CELL KERNEL WIDGETS HELP Trusted ]Python 30 a

B 4+ =2 @ DB 44 v > EHR C » Markdown A m =B | Memory: 2.9 GB/ 8 GB

In [1]:

In [2]:

In [3]:

In [4]:

Out[4]:

Old Faithful

# Data file in this notebook is from https://www.stat.cmu.edu/~larry/all-of-statistics/=data/faithful.dat
# The original paper is available as https://tommasorigon.github.io/StatI/approfondimenti/Azzalinil99@.pdf

# Standard definitions and options
from datascience import Table # high-level abstraction

import pandas as pd # mid-level data frames and series
import numpy as np # low-level arrays and vectors
import matplotlib # plotting

matplotlib.use('Agg") # make nice screen plots

%matplotlib inline

import matplotlib.pyplot as plt

plt.style.use('fivethirtyeight') # a particular plot format
plt.rcParams['figure.figsize']l = (10.0, 5.0) # wide plots to use space well

# Read in the data from a CSV file - headers taken from file
data = Table.read_table("oldfaithful.csv")

# Take a look at the data
data

N Duration Interval

1 3.6 79
2 1.8 54
3 3.333 74
< 2.283 62
5 4533 85
6 2.883 55

Bob Jacobsen, UC Berkeley



In [4]:

Out [4]:

In [5]:

Out [5]:

In [6]:
Out[6]:

In [7]:
Out[7]:

In [8]:
Out[8]:

In [9]:

Out[9]:

# Take a look at the data
data

N Duration Interval

1 3.6 79
2 1.8 54
3 3.333 74
N 2.283 62
5 4533 85
6 2.883 55
7 4.7 88
8 3.6 85
9 1.95 51
10 4.35 85

... (262 rows omitted)

# 0ld Faithful is famous for its repeatability - lets check some statistics

data[2].mean() # data[2] is the Interval column
70.897058823529406

data['Interval'].std() # but we can also refer to it by name
13.569960017586371

data['Interval'l.min()

43

data['Interval'].max() # all the usual summary statistics are available

96

# While we're here, let's look at the other data we have

data['Duration'].mean(), data['Duration'].std() # two statements on a line using commas

(3.4877830882352936, 1.139271210225768)

ng
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In [10]: # Let's see what the distribution looks like
plt.hist(data['Interval']l, bins=30)
plt.figtext(0.75,0.5, data.to_df()['Interval'].describe().to_string()) # add descripitive text block from pandas

plt.title("Interval");
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In [11]: # Not particularly Gaussian!

# semicolon suppresses printing value

Interval

count 272.000000
mean 70.897059
std 13.594974
min 43.000000
25% 58.000000
50% 76.000000
75% 82.000000
96.000000

# Maybe there's two peaks there. But that still doesn't give us a better way to predict the eruption.
# Look at other information we have:

plt.hist(data['Duration'], bins=30)

plt.figtext(0.3,0.4, data.to_df()['Duration'].describe().to_string())

plt.title("Duration");
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In [12]: # Maybe there's a correlation?
np.corrcoef(data['Duration'], datal'Interval'])

Out[12]: array([[ 1. ’

10

[ 0.90081117,

0.90081117],
1.

11
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positive linear negative linear
association association
nonlinear no association

1 association
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Anscombe’s Quartet
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Anscombe’s Quartet

Data Science Tools for Interactive Exploration S
CERN

School of Computing

. * v .
i ™ ' N 0° "’o
= 8 " .'___,4. ® =8 ot L
& P 6 &
. s °® Je
T T T T T T T L T T T T T
- s-_ "-._"‘."i' - E!
Property Value Accuracy
Mean of x 9 exact
Sample variance of x : s,z( " exact
Mean of y 7.50 to 2 decimal places
Sample variance of y : sf, 4.125 +0.003
Correlation between x and y 0.816 to 3 decimal places
Linear regression line y=3.00 + 0.500x | to 2 and 3 decimal places, respectively
Coefficient of determination of the linear regression : R? 0.67 to 2 decimal places
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REXTHOR, THE DOG-BEARER

T DONT TRUST LINEAR REGRESSIONS WHEN ITS HARDER
O GUESS THE DIRECTION OF THE CORRELATION FROM THE
SCATTER PLOT THAN TO FIND NEWJ CONSTELLATIONS ON IT.
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In [13]: # that's pretty strong, let's look at it
plt.plot(data['Duration'], data['Interval'l);
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In [14]: # Maybe plotting as points would be better...
plt.plot(data['Duration'], data['Interval'],"ob"); # o: dots b: blue
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In [15]: # There seems to be two populations there!

# If we select just one:
long_duration_data = data.where(data['Duration'] > 3.2)
plt.hist(long_duration_data['Duration'], bins=20)
plt.figtext(0.1,0.5, long_duration_data.to_df()['Duration'].describe().to_string())
plt.title("Duration > 3.2");
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In [16]: # But of course duration is more compact because we selected a narrower range,
plt.hist(long_duration_data['Interval'l, bins=20)
plt.figtext(0.75,0.5, long_duration_data.to_df()['Interval'].describe().to_string())
plt.title("Interval with Duration > 3.2");

25

20

15

10

w

65

70

Interval with Duration > 3.2

il

count
mean
std
min
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max

174.000000
80.051724
5.952866
64.000000
76.000000
80.000000
84.000000
96.000000
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In [17]: # We're down to 50% in 8 minutes and an RMS of 6 minutes on a mean of 80; 10%!
'y

How about interval?
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In [18]:

p.polyld(d)

'trendline'] = f(data['Duration'])

# Try fitting a line instead using two populations
d = np.polyfit(data['Duration'], data['Interval'],1) o
; ? School of Computing

ata

plt.plot(data['Duration'], data['Interval'l,"ob");
plt.plot(data['Duration'], data['trendline'],"k");
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In [19]: # See how wide the difference from the linear fit is
plt.hist(data['Interval']-data['trendline'], 30)
plt.figtext(®.75,0.5, (data.to_df()['Interval']l-data.to_df()['trendline']).describe().to_string())
plt.title("DIfference from Fit");

Difference from Fit

count 2.720000e+02
mean 3.565775e-14
std 5.903088e+00
min  -1.207961e+01
25% -4.483103e+00
20 50%  2.122485e-01

75% 3.924627e+00
max 1.597186e+01
15

15

25

(=]

In [20]: # Performance is about the same. Is there a reason to prefer one method over another here?
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CURVE-FITTING METHODS
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Understanding what we’re seeing - Toast am O
Why does dropped toast always land buttered-side down?

Experimental question!
First establish: Does dropped toast always land butter side down?

Or even more often than 50/50?

How do you assess the experimental result?
See how likely the result is without an effect, i.e with 50/50

This is a “null hypothesis”, which gives a probability for result: the p value
19 Bob Jacobsen, UC Berkeley
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X~ B(n, p). The probability of getting exactly k successes in nindependent Bernoulli trials is given by the probabilit
mass function:

f(k,n,p) = Pr(k;n,p) = Pr(X = k) = (k) (1 pyt

fork=0,1, 2, ..., n, where

(+) =

The cumulative distribution function can be expressed as:

F%mﬂﬂ=PﬂX§kﬁ=z:(>ﬂU—pVﬂ,

im0 \!
where | k| is the "floor" under k, i.e. the greatest integer less than or equal to .
It can also be represented in terms of the regularized incomplete beta function, as follows:!!

F(k;n,p) = Pr(X < k)
= Il_p(n - k,k -+ 1)

~w-n(}) [ et

which is equivalent to the cumulative distribution function of the F- -distribution:4]
_1-pk+1,

F(k;n,p) = Fp_gistribution = ————;dy =2(n—k),dy =2(k+1) |.
(k;m,p) = Fpdistribut (fv D n_k ™ (n—k),dy = 2(k+ ))

21 Bob Jacobsen, UC Berkeley
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The Toast Myth

The Mythbusters TV show did an experiment with 48 pieces of toast, where 29 landed butter side up and 19 butter side down. Let's see if we can figure
out how likely this outcome would be, if toast was equally likely to land on either side. In particular, we'll play a "what-if" game: what if toast was equally
likely to land on both sides? Let's simulate what would happen, under that assumption.

v [2]: # First, list two possible results
sides = make_array('Butter Side Up', 'Butter Side Down')

 [3]: # Make that into a table
possible_outcomes = Table().with_column('Outcome’, sides)

' [4]: possible_outcomes

it [4] : Outcome

Butter Side Up

Butter Side Down

 [S5]: # Ask for 48 cases where the output is sampled (chosen) from those two possibilities
simulated_experiment = possible_outcomes.sample(48)

1 [6]: simulated_experiment

it[6]: Outcome

Butter Side Down
Butter Side Down
Butter Side Up
Butter Side Down
Butter Side Up
Butter Side Up
Butter Side Up
Butter Side Up
Butter Side Up
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NAatA CAinnAan TAAla fAr lntAavraativiAa EvalAavatian * =

In [7]:

Out[7]:

In [8]:

In [9]:

Out[9]:

In [10]:

In [11]:
Out[11]:

# Group them, which also counts them.
simulated_experiment.group('Outcome')

Outcome count

Butter Side Down 25

Butter Side Up 23

# To make this a bit more automatic, define a function that provides the butter-side-up count
def count_up(sample):

counts = sample.group( 'Outcome').where('Outcome', 'Butter Side Up')

number_up = counts.column('count').item(9)

return number_up

# Always test things!
count_up(simulated_experiment)

23

Simulation

Above we saw how to simulate an episode of the TV show (i.e., one experiment), under the “what-if* assumption that toast is equally likely to land on
both sides. Now we're going to repeat the simulation 10000 times, and keep track of the statistic (the number of times the toast landed butter-side-up) we
get from each simulated TV episode.

counts = make_array()
for i in np.arange(10000): # 10000 repetitions
one_simulated_episode = possible_outcomes.sample(48)
number_up = count_up(one_simulated_episode)
counts = np.append(counts, number_up)
results = Table().with_column('Number that landed butter-side-up', counts)

results

Number that landed butter-side-up

21
29
24
26
24

25
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In [12]:

In [13]:

Out[13]:

In [14]:

Out[14]:

In [15]:

Out[15]:

In [16]:

results.hist(bins=np.arange(12,36,1)) # an alternate form of plotting
# note that this method of plotting gives plots/unit and allows close control over binning

12

10

(=]

Percent per unit
+ (=]

~N

_—ull m_

15 20 25 30 35
Number that landed butter-side-up

# With this data, what's the chance of the value they saw or higher?
# This is known as the p-value
results.where(results['Number that landed butter-side-up'] >= 29).num_rows / 10000

0.0966
# Quick, without looking at the number from here,

# what do you expect the mean and std dev of that distribution to be?
results[0].mean(), results[@].std()

(23.982099999999999, 3.4885784483081359)
# Many expect it to be sqt(24), because of Gaussian or Poisson distributions.

# But this is actually binomial distribution, where the std dev is smaller because you pick one of two
math.sqrt(24), math.sqrt(24)/math.sqrt(2)

(4.898979485566356, 3.464101615137754)
# try simulating the British school study:
# 9821 waist-high drops with 6101 butter down landings

# With just a B written on the toast: 9748 drops with 5663 B-down
# from 2.5m: 2038 with 953 B-side down (sign reversed!)

# is there something going on?

iting
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Sometimes you need to run the experiment for longer & get more data... ceR (&
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AFTER NINETEEN ADDITIONAL
TRIALS, OF COURSE, THE RESULTS
WERE SHOWN TO BE
ANOMALOUS.

“The Tortoise And The Hare” is actually
a fable about small sample sizes.

Toast with higher statistics:

https://web.archive.org/web/20101120232606/http://www.counton.org/

thesum/issue-07/issue-07-page-05.htm
25 Bob Jacobsen, UC Berkeley
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Alameda County Juries "

In [2]: Data from an ACLU 2018 report it
Racial and Ethnic Disparities in Alameda County Jury Pools

https://www.aclunc.org/sites/default/files/racial_and_ethnic_disparities_in_alameda_county_jury_pools.pdf

#
#
#
#
# "Eligible" is those adults who are eligible to serve on a jury
# "Panels" is the group that's selected by the lawyers to serve on a jury
# 1453 people were included in the panels
alameda = Table().with_columns( # build by columns (see below for by-row)
'Ethnicity', make_array('Asian', 'Black', 'Latino', 'White', 'Other'),
'Eligible', make_array(0.15, 0.18, 0.12, 0.54, 0.01),
'Panels', make_array(0.26, 0.08, 0.08, 0.54, 0.04)
)

alameda.set_format([1, 2], PercentFormatter(@)) # the data columns hold a @:1 number, but show in percent

0ut[2]:  Ethnicity Eligible Panels

Asian 15% 26%
Black 18% 8%
Latino 12% 8%
White 54% 54%
Other 1% 4%

In [3]: # plot categorial (i.e. not numeric) data as bar chart

White

alameda.barh(0)
[ = rlobe

Asian Panels
socc NN

2

T Latino N

- Latino

<

. [ [ (Y R E—

Other

00 01 02 03 04 05
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Total Variation Distance

In [4]: # Use the difference between two values as a metric of how much they vary
diff = alameda.with_column('Difference’,
alameda.column('Eligible') - alameda.column('Panels'))
diff

Outl4]:  ethnicity Eligible Panels Difference

Asian 15% 26% -0.11
Black 18% 8% 0.1
Latino 12% 8% 0.04
White 54% 54% 0
Other 1% 4% -0.03

In [5]: # take absolute value to keep all differences raising the metric
abs_diff = diff.with_column('Abs. Difference',
np.abs(diff.column('Difference')))
abs_diff

Outl5]:  Ethnicity Eligible Panels Difference Abs. Difference

Asian 15% 26% -0.11 0.11
Black 18% 8% 0.1 0.1
Latino 12% 8% 0.04 0.04
White 54% 54% 0 0
Other 1% 4% -0.03 0.03

In [6]: sum(abs_diff.column('Abs. Difference')) / 2 # if one bar goes up, another goes down => divide by 2

Out[6]: ©.14000000000000001

28 Bob Jacobsen, UC Berkeley ;
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In [10]:

In [11]:

In [12]:
Out[12]:

In [13]:

Out[13]:

Data Science Tools for Interactive Exploration &

Simulating the statistic

Computing

# define a function to create a random panel
def get_one_simulated_panel():
""" Create a panel of 1453 people """
return alameda.select('Ethnicity').sample(1453, weights=alameda.column('Eligible'))

# do a single simulation by adding a "Random" column
def simulate_once():
""" Create one simulated table """
simulated_panel = get_one_simulated_panel()
counts = simulated_panel.group('Ethnicity"')
sim_proportions = counts.select('Ethnicity').with_column('Random’,
counts.column('count') / 1453)
sim_proportions.set_format(1l, PercentFormatter(9))
return alameda.join('Ethnicity', sim_proportions)

simulate_once()

Ethnicity Eligible Panels Random

Asian 15% 26% 17%
Black 18% 8% 18%
Latino 12% 8% 12%
Other 1% 4% 1%
White 54% 54% 52%

# Compute the empirical distribution of TVDs by simulation
tvds = make_array()

for i in np.arange(5000): # 5000 repetitions of the simulation
sim_results = simulate_once()
tvds = np.append(tvds, table_tvd(sim_results, 'Eligible', 'Random'))

results = Table().with_column('TVD', tvds)
results

TVD
0.00920853
0.0152512

2% S o FBISIN IS
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In [33]: results.hist(bins=np.arange(0, 0.2, 0.01))
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In [34]: results.where(®, are.above_or_equal_to(®.14)).num_rows / results.num_rows
Out(34]: 0.0

30 Bob Jacobsen, UC Berkeley
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Exercises

Intro - these notebooks & the SWAN service
Simple Applications
Project(s)!

https://indico.cern.ch/event/1254984/contributions/5272131/

If you get stuck, ask for help or do an internet search

Learn about each topic, spend more time on ones that interest you.

Don’t try to do every bit of every notebook; pick interesting ones.

Speed is not the issue: no reward for first done or most complete coverage
Not even keeping track

Think about what you’re doing: Learn to use these tools!

32 Bob Jacobsen, UC Berkeley



