Data Science Tools for Interactive Exploration ;9
CERN

School of Computing

Data Science Tools for Interactive Exploration

© MAZK ANDEZSON, WWW.ANDEZTOONS COM

“According to all the big data we've gathered,
our discussions about big data are up 72%
this year alone.”

1 Bob Jacobsen, UC Berkeley

N
P 4

Maths SKill

Basic Operations

M’H Numbers and
123 counting

Elementary

gchool College

Gtage Of Life

\V/

Job

N
P 4

Maths SKill

Q

| Expense | 900 | 700 |

SDYEBdSheet Balance | 51¢ | 1,831

| ‘
Basic Operations | Sales ’ wzq 2531 ‘
|

M’H' Numbers and
123 counting

Elementary gchool College Job

Gtage Of Life >

Data Science Tools for Interactive Exploration ;9
CERN

Predicting a Geyser’s Eruptions i

Bob Jacobsen, UC Berkeley

Data Science Tools for Interactive Exploration ;9
CERN

Physics of a Geyser Susto Conputg

*.. A .“.

.1' = Long column of water heated from the bottom
Pressure at bottom high, raises boiling point
Eventually, bottom does start to boil

Bubbles rise, start to push out water

Pressure reduces, so boiling point reduces

........

HeATEG Entire column flashes into steam and jets upwards
0CK™ /%
- Top of column ends up empty

Water enters, starts to warm up, process repeats

5 Bob Jacobsen, UC Berkeley

Data Science Tools for Interactive Exploration

csc-exercises > .. » OldFaithful
(autosaved)

FILE EDIT VIEW

INSERT CELL KERNEL WIDGETS HELP Trusted]Python 30 a

B 4+ =2 @ DB 44 v > EHR C » Markdown A m =B | Memory: 2.9 GB/ 8 GB

In [1]:

In [2]:

In [3]:

In [4]:

Out[4]:

Old Faithful

Data file in this notebook is from https://www.stat.cmu.edu/~larry/all-of-statistics/=data/faithful.dat
The original paper is available as https://tommasorigon.github.io/StatI/approfondimenti/Azzalinil99@.pdf

Standard definitions and options
from datascience import Table # high-level abstraction

import pandas as pd # mid-level data frames and series
import numpy as np # low-level arrays and vectors
import matplotlib # plotting

matplotlib.use('Agg") # make nice screen plots

%matplotlib inline

import matplotlib.pyplot as plt

plt.style.use('fivethirtyeight') # a particular plot format
plt.rcParams['figure.figsize']l = (10.0, 5.0) # wide plots to use space well

Read in the data from a CSV file - headers taken from file
data = Table.read_table("oldfaithful.csv")

Take a look at the data
data

N Duration Interval

1 3.6 79
2 1.8 54
3 3.333 74
< 2.283 62
5 4533 85
6 2.883 55

Bob Jacobsen, UC Berkeley

In [4]:

Out [4]:

In [5]:

Out [5]:

In [6]:
Out[6]:

In [7]:
Out[7]:

In [8]:
Out[8]:

In [9]:

Out[9]:

Take a look at the data
data

N Duration Interval

1 3.6 79
2 1.8 54
3 3.333 74
N 2.283 62
5 4533 85
6 2.883 55
7 4.7 88
8 3.6 85
9 1.95 51
10 4.35 85

... (262 rows omitted)

0ld Faithful is famous for its repeatability - lets check some statistics

data[2].mean() # data[2] is the Interval column
70.897058823529406

data['Interval'].std() # but we can also refer to it by name
13.569960017586371

data['Interval'l.min()

43

data['Interval'].max() # all the usual summary statistics are available

96

While we're here, let's look at the other data we have

data['Duration'].mean(), data['Duration'].std() # two statements on a line using commas

(3.4877830882352936, 1.139271210225768)

ng

Data Science Tools for Interactive Exploration (8:
CERN

Befo re We IOt . 0 n bi n n i n School of Computing

Frequency

Frequency

80
Final exam

80
Final exam

Bob Jacobsen, UC Berkeley

Frequency

Data Science Tools for Interactive Exploration

101

Sl

Frequency

final_exam

Bob Jacobsen, UC Berkeley

80
Final exam

=

School of Computing

In [10]: # Let's see what the distribution looks like
plt.hist(data['Interval']l, bins=30)
plt.figtext(0.75,0.5, data.to_df()['Interval'].describe().to_string()) # add descripitive text block from pandas

plt.title("Interval");

25

20

il

w

=
o

In [11]: # Not particularly Gaussian!

semicolon suppresses printing value

Interval

count 272.000000
mean 70.897059
std 13.594974
min 43.000000
25% 58.000000
50% 76.000000
75% 82.000000
96.000000

Maybe there's two peaks there. But that still doesn't give us a better way to predict the eruption.
Look at other information we have:

plt.hist(data['Duration'], bins=30)

plt.figtext(0.3,0.4, data.to_df()['Duration'].describe().to_string())

plt.title("Duration");

5 2.0

20

15

10

w

count
mean

std
min
25%
50%
75%
max

2.162750
4.000000
4.454250
5.100000 II
II- e ||I||
2.5 3.0

272.000000

1.141371

Duration

3.487783
1.600000

4.5 5.0

In [12]: # Maybe there's a correlation?
np.corrcoef(data['Duration'], datal'Interval'])

Out[12]: array([[1. ’

10

[0.90081117,

0.90081117],
1.

11

=X

School of Computing

CERN
School of Computing

positive linear negative linear
association association
nonlinear no association

1 association

12

Anscombe’s Quartet

Data Science Tools for Interactive Exploration

12 4
. -.-...--
10 A
e
o 8- A ®
Q __.-"'
6 - --._--"
o
44 @
a 6 & 10 12 1 16 18
Xy
o
12 -
10
) Q ©
8-
.-6
6 - .__._0
.
| | 1] 1 | 1] |
4 5 & 10 12 14 16 18
X3

12 4

10

=X

School of Computing

12

16

il

Bob Jacobsen, UC Berkeley

14

16

Anscombe’s Quartet

Data Science Tools for Interactive Exploration S
CERN

School of Computing

. * v .
i ™ ' N 0° "’o
= 8 " .'___,4. ® =8 ot L
& P 6 &
. s °® Je
T T T T T T T L T T T T T
- s-_ "-._"‘."i' - E!
Property Value Accuracy
Mean of x 9 exact
Sample variance of x : s,z(" exact
Mean of y 7.50 to 2 decimal places
Sample variance of y : sf, 4.125 +0.003
Correlation between x and y 0.816 to 3 decimal places
Linear regression line y=3.00 + 0.500x | to 2 and 3 decimal places, respectively
Coefficient of determination of the linear regression : R? 0.67 to 2 decimal places

13

Bob Jacobsen, UC Berkeley

————————————

Data Science Tools for Interactive Exploration

R%0.06

REXTHOR, THE DOG-BEARER

T DONT TRUST LINEAR REGRESSIONS WHEN ITS HARDER
O GUESS THE DIRECTION OF THE CORRELATION FROM THE
SCATTER PLOT THAN TO FIND NEWJ CONSTELLATIONS ON IT.

Bob Jacobsen, UC Berkeley

=X

School of Computing

In [13]: # that's pretty strong, let's look at it
plt.plot(data['Duration'], data['Interval'l);

90

80

70

60

50

1,3) 2.0 2.5 3.0 3.5 4.0 4.5 5.0

In [14]: # Maybe plotting as points would be better...
plt.plot(data['Duration'], data['Interval'],"ob"); # o: dots b: blue

90] - .°:. .::. :.::0.2.
° H o d® "o * v Y

e ° "ﬂ:% "::fhtﬂ"qgi‘
T

70 ® ® . ¢ ° 33,

‘e o. oﬁro * - % ¢
60 . s O
.QP':!. % ®e

°
50 J.‘!.’o’o o
* o
° L)
°

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

16

In [15]: # There seems to be two populations there!

If we select just one:
long_duration_data = data.where(data['Duration'] > 3.2)
plt.hist(long_duration_data['Duration'], bins=20)
plt.figtext(0.1,0.5, long_duration_data.to_df()['Duration'].describe().to_string())
plt.title("Duration > 3.2");

16

14

12

10

B

2

count
mean
std
min
25%
50%
75%
max

%.25

174.000000
4.298339
0.401324

3.317000
4.037250
4.341500
4.583000
5.100000

3.50

Duration > 3.2

3.75 4.00

4.25 4.50 4.75 5.00

In [16]: # But of course duration is more compact because we selected a narrower range,
plt.hist(long_duration_data['Interval'l, bins=20)
plt.figtext(0.75,0.5, long_duration_data.to_df()['Interval'].describe().to_string())
plt.title("Interval with Duration > 3.2");

25

20

15

10

w

65

70

Interval with Duration > 3.2

il

count
mean
std
min
25%
50%
75%
max

174.000000
80.051724
5.952866
64.000000
76.000000
80.000000
84.000000
96.000000

-L
5 20 95

In [17]: # We're down to 50% in 8 minutes and an RMS of 6 minutes on a mean of 80; 10%!
'y

How about interval?

=X

School of Computing

In [18]:

p.polyld(d)

'trendline'] = f(data['Duration'])

Try fitting a line instead using two populations
d = np.polyfit(data['Duration'], data['Interval'],1) o
; ? School of Computing

ata

plt.plot(data['Duration'], data['Interval'l,"ob");
plt.plot(data['Duration'], data['trendline'],"k");

80
70

60

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

In [19]: # See how wide the difference from the linear fit is
plt.hist(data['Interval']-data['trendline'], 30)
plt.figtext(®.75,0.5, (data.to_df()['Interval']l-data.to_df()['trendline']).describe().to_string())
plt.title("DIfference from Fit");

Difference from Fit

count 2.720000e+02
mean 3.565775e-14
std 5.903088e+00
min -1.207961e+01
25% -4.483103e+00
20 50% 2.122485e-01

75% 3.924627e+00
max 1.597186e+01
15

15

25

(=]

In [20]: # Performance is about the same. Is there a reason to prefer one method over another here?

18

CURVE-FITTING METHODS
AND THE MESSAGES THEY SEND
' . .. :. ‘
o e “ . '
“I \UANTED A CURVED LOOK, ITS
UNE, 50 T MADE ONE TAPERING OFF""
UITH MATH"
| . |esse ..
' . : ‘ . . :0
| ¢ . . ¢ | - R . . s
« . ‘ . .'.. :: °
*TM SOPHISTICATED, NOT ‘TM MAKINGA
LIKE THOSE BUMBLING SCATTER PLOT BUT
T DON'T WANT TO°
|- o
| ¢ . . e
*T NEED TO CONNECT THESE “USTEN, SCIENCE IS HARD. “T HAVE A THEORY,
TuO UNES, BUT MY FIRSTIDER ~ BUT IM A SERIOUS AND THIS 15 THE ONLY
DIDN'T HAVE ENOUGH MATH? PERSON DOING MY BEST* DATA T COULD FIND”

|

“T CUICKED SMOOTH “I HAD AN IDEA FOR HOU "AS YOU CAN SEE, THIS
TO CLEAN UP THE DATA. MODEL SMOOTHLY FITS
WHAT DO YOU THINK?" THE- WAIT MONO DONT
EXTEND IT ARARAAY”

LINES IN EXCELY

=X

School of Computing

Data Science Tools for Interactive Exploration ;S
CERN

Understanding what we’re seeing - Toast am O
Why does dropped toast always land buttered-side down?

Experimental question!
First establish: Does dropped toast always land butter side down?

Or even more often than 50/50?

How do you assess the experimental result?
See how likely the result is without an effect, i.e with 50/50

This is a “null hypothesis”, which gives a probability for result: the p value
19 Bob Jacobsen, UC Berkeley

20

Data Science Tools for Interactive Exploration

T CAN'T RELEVE SCHOOLS

ARE Snhu. TEACHING KIDS

ABOUT THE NULL HYPOTHESIS.,
)

I REMEMRER READING A BIG

STUDY THAT CONCLUSIVELY

DISPROVED IT MARS AGO.

gl

Bob Jacobsen, UC Berkeley

=X

School of Computing

Data Science Tools for Interactive Exploration
Approach it analytically (SC
School of Computing

X~ B(n, p). The probability of getting exactly k successes in nindependent Bernoulli trials is given by the probabilit
mass function:

f(k,n,p) = Pr(k;n,p) = Pr(X = k) = (k) (1 pyt

fork=0,1, 2, ..., n, where

(+) =

The cumulative distribution function can be expressed as:

F%mﬂﬂ=PﬂX§kﬁ=z:(>ﬂU—pVﬂ,

im0 \!
where | k| is the "floor" under k, i.e. the greatest integer less than or equal to .
It can also be represented in terms of the regularized incomplete beta function, as follows:!!

F(k;n,p) = Pr(X < k)
= Il_p(n - k,k -+ 1)

~w-n(}) [et

which is equivalent to the cumulative distribution function of the F- -distribution:4]
_1-pk+1,

F(k;n,p) = Fp_gistribution = ————;dy =2(n—k),dy =2(k+1) |.
(k;m,p) = Fpdistribut (fv D n_k ™ (n—k),dy = 2(k+))

21 Bob Jacobsen, UC Berkeley

NMNaAata OAlamnan TaAala fav lrdtavaqtiiia Towwlavaltiaw- P

The Toast Myth

The Mythbusters TV show did an experiment with 48 pieces of toast, where 29 landed butter side up and 19 butter side down. Let's see if we can figure
out how likely this outcome would be, if toast was equally likely to land on either side. In particular, we'll play a "what-if" game: what if toast was equally
likely to land on both sides? Let's simulate what would happen, under that assumption.

v [2]: # First, list two possible results
sides = make_array('Butter Side Up', 'Butter Side Down')

 [3]: # Make that into a table
possible_outcomes = Table().with_column('Outcome’, sides)

' [4]: possible_outcomes

it [4] : Outcome

Butter Side Up

Butter Side Down

 [S5]: # Ask for 48 cases where the output is sampled (chosen) from those two possibilities
simulated_experiment = possible_outcomes.sample(48)

1 [6]: simulated_experiment

it[6]: Outcome

Butter Side Down
Butter Side Down
Butter Side Up
Butter Side Down
Butter Side Up
Butter Side Up
Butter Side Up
Butter Side Up
Butter Side Up

23

NAatA CAinnAan TAAla fAr lntAavraativiAa EvalAavatian * =

In [7]:

Out[7]:

In [8]:

In [9]:

Out[9]:

In [10]:

In [11]:
Out[11]:

Group them, which also counts them.
simulated_experiment.group('Outcome')

Outcome count

Butter Side Down 25

Butter Side Up 23

To make this a bit more automatic, define a function that provides the butter-side-up count
def count_up(sample):

counts = sample.group('Outcome').where('Outcome', 'Butter Side Up')

number_up = counts.column('count').item(9)

return number_up

Always test things!
count_up(simulated_experiment)

23

Simulation

Above we saw how to simulate an episode of the TV show (i.e., one experiment), under the “what-if* assumption that toast is equally likely to land on
both sides. Now we're going to repeat the simulation 10000 times, and keep track of the statistic (the number of times the toast landed butter-side-up) we
get from each simulated TV episode.

counts = make_array()
for i in np.arange(10000): # 10000 repetitions
one_simulated_episode = possible_outcomes.sample(48)
number_up = count_up(one_simulated_episode)
counts = np.append(counts, number_up)
results = Table().with_column('Number that landed butter-side-up', counts)

results

Number that landed butter-side-up

21
29
24
26
24

25

24

In [12]:

In [13]:

Out[13]:

In [14]:

Out[14]:

In [15]:

Out[15]:

In [16]:

results.hist(bins=np.arange(12,36,1)) # an alternate form of plotting
note that this method of plotting gives plots/unit and allows close control over binning

12

10

(=]

Percent per unit
+ (=]

~N

—ull m

15 20 25 30 35
Number that landed butter-side-up

With this data, what's the chance of the value they saw or higher?
This is known as the p-value
results.where(results['Number that landed butter-side-up'] >= 29).num_rows / 10000

0.0966
Quick, without looking at the number from here,

what do you expect the mean and std dev of that distribution to be?
results[0].mean(), results[@].std()

(23.982099999999999, 3.4885784483081359)
Many expect it to be sqt(24), because of Gaussian or Poisson distributions.

But this is actually binomial distribution, where the std dev is smaller because you pick one of two
math.sqrt(24), math.sqrt(24)/math.sqrt(2)

(4.898979485566356, 3.464101615137754)
try simulating the British school study:
9821 waist-high drops with 6101 butter down landings

With just a B written on the toast: 9748 drops with 5663 B-down
from 2.5m: 2038 with 953 B-side down (sign reversed!)

is there something going on?

iting

Data Science Tools for Interactive Exploration
Sometimes you need to run the experiment for longer & get more data... ceR (&

School of Computing

AFTER NINETEEN ADDITIONAL
TRIALS, OF COURSE, THE RESULTS
WERE SHOWN TO BE
ANOMALOUS.

“The Tortoise And The Hare” is actually
a fable about small sample sizes.

Toast with higher statistics:

https://web.archive.org/web/20101120232606/http://www.counton.org/

thesum/issue-07/issue-07-page-05.htm
25 Bob Jacobsen, UC Berkeley

https://web.archive.org/web/20101120232606/http://www.counton.org/thesum/issue-07/issue-07-page-05.htm
https://web.archive.org/web/20101120232606/http://www.counton.org/thesum/issue-07/issue-07-page-05.htm

Data Science Tools for Interactive Exploration ;S
CERN

School of Computing

p-VAE INTERPRETATION

0,001 1

0.0l

ooz [—HIGHLY SIGNIFCANT
0.03 |

8'8:9 | SIGNIFICANT
0.050_}— mws.

0.051"] _ pN THE EDGE
006 _| OF SIGNIFICANCE

007 | HGHLY SUGGESTIVE,
008 | _oGNIFICANT AT THE
0.09 | P<O.I0LEVEL

0097 1 HEy, LOOK AT
>0.] —THIS INTERESTING
SUBGROUP ANALYSIS

Bob Jacobsen, UC Berkeley

27

Alameda County Juries "

In [2]: Data from an ACLU 2018 report it
Racial and Ethnic Disparities in Alameda County Jury Pools

https://www.aclunc.org/sites/default/files/racial_and_ethnic_disparities_in_alameda_county_jury_pools.pdf

#
#
#
#
"Eligible" is those adults who are eligible to serve on a jury
"Panels" is the group that's selected by the lawyers to serve on a jury
1453 people were included in the panels
alameda = Table().with_columns(# build by columns (see below for by-row)
'Ethnicity', make_array('Asian', 'Black', 'Latino', 'White', 'Other'),
'Eligible', make_array(0.15, 0.18, 0.12, 0.54, 0.01),
'Panels', make_array(0.26, 0.08, 0.08, 0.54, 0.04)
)

alameda.set_format([1, 2], PercentFormatter(@)) # the data columns hold a @:1 number, but show in percent

0ut[2]: Ethnicity Eligible Panels

Asian 15% 26%
Black 18% 8%
Latino 12% 8%
White 54% 54%
Other 1% 4%

In [3]: # plot categorial (i.e. not numeric) data as bar chart

White

alameda.barh(0)
[= rlobe

Asian Panels
socc NN

2

T Latino N

- Latino

<

. [[(Y R E—

Other

00 01 02 03 04 05

Data Science Tools for Interactive Exploration KQ“

Total Variation Distance

In [4]: # Use the difference between two values as a metric of how much they vary
diff = alameda.with_column('Difference’,
alameda.column('Eligible') - alameda.column('Panels'))
diff

Outl4]: ethnicity Eligible Panels Difference

Asian 15% 26% -0.11
Black 18% 8% 0.1
Latino 12% 8% 0.04
White 54% 54% 0
Other 1% 4% -0.03

In [5]: # take absolute value to keep all differences raising the metric
abs_diff = diff.with_column('Abs. Difference',
np.abs(diff.column('Difference')))
abs_diff

Outl5]: Ethnicity Eligible Panels Difference Abs. Difference

Asian 15% 26% -0.11 0.11
Black 18% 8% 0.1 0.1
Latino 12% 8% 0.04 0.04
White 54% 54% 0 0
Other 1% 4% -0.03 0.03

In [6]: sum(abs_diff.column('Abs. Difference')) / 2 # if one bar goes up, another goes down => divide by 2

Out[6]: ©.14000000000000001

28 Bob Jacobsen, UC Berkeley ;

29

In [10]:

In [11]:

In [12]:
Out[12]:

In [13]:

Out[13]:

Data Science Tools for Interactive Exploration &

Simulating the statistic

Computing

define a function to create a random panel
def get_one_simulated_panel():
""" Create a panel of 1453 people """
return alameda.select('Ethnicity').sample(1453, weights=alameda.column('Eligible'))

do a single simulation by adding a "Random" column
def simulate_once():
""" Create one simulated table """
simulated_panel = get_one_simulated_panel()
counts = simulated_panel.group('Ethnicity"')
sim_proportions = counts.select('Ethnicity').with_column('Random’,
counts.column('count') / 1453)
sim_proportions.set_format(1l, PercentFormatter(9))
return alameda.join('Ethnicity', sim_proportions)

simulate_once()

Ethnicity Eligible Panels Random

Asian 15% 26% 17%
Black 18% 8% 18%
Latino 12% 8% 12%
Other 1% 4% 1%
White 54% 54% 52%

Compute the empirical distribution of TVDs by simulation
tvds = make_array()

for i in np.arange(5000): # 5000 repetitions of the simulation
sim_results = simulate_once()
tvds = np.append(tvds, table_tvd(sim_results, 'Eligible', 'Random'))

results = Table().with_column('TVD', tvds)
results

TVD
0.00920853
0.0152512

2% S o FBISIN IS

Data Science Tools for Interactive Exploration ;9
CERN

School of Computing

In [33]: results.hist(bins=np.arange(0, 0.2, 0.01))

5000

- 9000

‘c

— |

@ 3000

-

c

@

¥ 2000

by

o

1000

0 —
o w w [*a} Ll w v 2
s & &8 § s & =2 &

o o (=] o
TVD
P-value

In [34]: results.where(®, are.above_or_equal_to(®.14)).num_rows / results.num_rows
Out(34]: 0.0

30 Bob Jacobsen, UC Berkeley

ﬁ Data Science Tools for Interactive Exploration 2 i:
CERN
School of Computing

ARE YOU MAKING

CHOOSE s, @ j DECISIONS?
TN\
YOUR OWN | \ NOPE, T0sT

> YES!
DATA SCIENCE % i CURIOUS
E |
ADVENTURE HOW MANY? \
' YOU WANT
/ \ A AD s
NALYTICS
HoH? ONLY A FEW
LOTS AND LOTS \
s VeSS \ IS THERE
VSING A ? UNCERTAINTY?
YOU WANT oAt _ A'N{
MACHINE LEARNING YES?
YOU WANT \;:GRE THAE H 4 B
IMPORTANT
Author: @quaesita STAT’ST’CS/YES‘.\.} N o NO

31 Bob Jacobsen, UC Berkeley ;

Data Science Tools for Interactive Exploration ‘9
CERN

School of Computing

Exercises

Intro - these notebooks & the SWAN service
Simple Applications
Project(s)!

https://indico.cern.ch/event/1254984/contributions/5272131/

If you get stuck, ask for help or do an internet search

Learn about each topic, spend more time on ones that interest you.

Don’t try to do every bit of every notebook; pick interesting ones.

Speed is not the issue: no reward for first done or most complete coverage
Not even keeping track

Think about what you’re doing: Learn to use these tools!

32 Bob Jacobsen, UC Berkeley

