

UNIVERSITY
OF LATVIA

DATA ANALYSIS

Toni Šćulac
Faculty of Science, University of Split, Croatia visiting professor at University of Latvia, Latvia

CERN School of Computing 2023, Tartu, Estonia

LECTURES OUTLINE

1) Introduction to Data Analysis
2) Probability density functions and Monte Carlo methods
3) Parameter estimation and Confidence intervals
4) Hypothesis testing and p-value

PROBABILITY DENSITY FUNCTIONS AND MOTE CARLO METHODS

PROBABILITY DENSITY FUNCTION

- Let x be a possible outcome of an observation and can take any value from a continuous range
- We write $f(x ; \theta) d x$ as the probability that the measurement's outcome lies betwen x and $x+d x$
- The function $f(x ; \theta) d x$ is called the probability density function (PDF)
- And may depend on one or more parameters θ
- If $f(x ; \theta)$ can take only discrete values then $f(x ; \theta)$ is itself a probability
- The p.d.f. is always normalised to a unit area (unit sum, if discrete)
- Both \mathbf{x} and $\boldsymbol{\theta}$ may have multiple components and are then written as vectors

$$
P(x \in[x, x+d x] \mid \theta)=f(x ; \theta) d x
$$

$$
\int_{-\infty}^{\infty} f(x ; \theta) d x=1
$$

CUMULATIVE AND MARGINAL DISTRIBUTIONS

- Cumulative distribution function, CDF
- for every real number Y, the CDF of Y is equal to the probability that the random variable x takes a value less or equal to Y

$$
F(Y)=P(x \leq Y)=\int_{x_{\text {min }}}^{Y} f(x) d x
$$

- If x restricted to $X_{\text {min }}<x<x_{\text {max }}$ then $F\left(X_{\text {min }}\right)=0$, $F\left(x_{\text {max }}\right)=1$
- $F(x)$ is a monotonic function of x
- Marginal density function
- is the projection of multidimensional density
- Example: if $f(x, y)$ is two-dimensional PDF the marginal density $g(x)$ is

$$
g(x)=\int_{y_{\text {min }}}^{y_{\max }} f(x, y) d y
$$

- Probability density function (PDF) $=f(x) d x$
- Expectation:
- Expectation of any random function $\mathrm{g}(\mathrm{x}): E(g)=\int g(x) f(x) d x$
- Expectation of x is the mean: $\mu=E(x)=\int x f(x) d x$
- Variance: $\quad V(x)=\sigma^{2}=E\left[(x-\mu)^{2}\right]=\int(x-\mu)^{2} f(x) d x$
- $E(x)$ is usually a measure of the location of the distribution
$\bigcirc \mathrm{V}(\mathrm{x})$ is usually a measure of the spread of the distribution

BINOMIAL DISTRIBUTION

- Probability for r successes is given by the Binomial distribution:

$$
P(r ; p, N)=\binom{N}{r} p^{r}(1-p)^{N-r}
$$

o $\mathrm{P}(r ; \mathrm{N}, \mathrm{p})$ is a probability of finding exactly r successes in N trials, when probability of success in each single trial is a constant, p

- Properties of the Binomial distribution:
- Mean: $\quad<r>=E(r)=N p$
- Variance:

$$
V(r)=N p(1-p)
$$

BINOMIAL DISTRIBUTION: EXAMPLE

- Usage example 1 :
- Probability for a Z boson to decay to two electrons is 3%. What is the probability to find exactly $5 \mathrm{Z} \rightarrow$ ee events out of 80 Z decays?

$$
P(5 ; 0.03,80)=\binom{80}{5} 0.03^{5}(1-0.03)^{80-5}=6 \%
$$

- Usage example 2:
- If you flip a biased coin that has a 99% probability of landing on heads, what is the probability to get

 heads all 6 times from 6 throws?

$$
P(6 ; 0.99,6)=\binom{6}{6} 0.99^{6}(1-0.99)^{6-6}=94.15 \%
$$

FROM BINOMIAL TO POISSON

- λ events expected to occur in average during some time interval
- split interval in n very small divisions: chance of getting two events in one section can be discounted
\bigcirc probability that a given section contains an event: λ / n
- use Binomial formula to calculate the probability to see r events:

$$
P(r ; \lambda / n, n)=\binom{n}{r} \frac{\lambda^{r}}{n^{r}}\left(1-\frac{\lambda}{n}\right)^{n-r}=\frac{n!}{r!(n-r)!} \frac{\lambda^{r}}{n^{r}}\left(1-\frac{\lambda}{n}\right)^{n-r}
$$

© For $\mathrm{n} \rightarrow \infty:\left(1-\frac{\lambda}{n}\right)^{n-r} \rightarrow\left(1-\frac{\lambda}{n}\right)^{n} \rightarrow e^{-\lambda}$

$$
\frac{n!}{r!(n-r)!}=\frac{n(n-1) \cdots(n-r+1) \cdot(n-r)!}{r!(n-r)!} \rightarrow \frac{n^{r}}{r!}
$$

POISSON DISTRIBUTION

- Probability of a number of events occurring in a fixed period of time if these events occur with a known average rate λ and independently of the time since the last event:

$$
P(r, \lambda)=\frac{e^{-\lambda} \lambda^{r}}{r!}
$$

- Compared to Binomial distribution still has particular (discrete) outcomes, but number of trials is unknown
- Properties of the Poisson distribution:
- Mean: $\quad<r>=E(r)=\lambda$
- Variance:

$$
V(r)=\lambda
$$

BONUS PROBLEM - 2

Some rules to follow:

1. In every lecture there will be one bonus problem presented
2. If you have good knowledge in stats and everything I am presenting is known to you feel free to start working on the problem now!
3. Otherwise, work on the problem after the lectures.
4. Solutions won't be provided, you have to come and talk to me to check if your answer is correct or if you need hints!
5. Google/AI assistance is not allowed. These are problems that I want you to think about on your own

Prove that the mean of the Binomial distribution is Np and for Poissonian is λ.

Hint! Try to find the relationship between $\binom{N}{r}$ and $\binom{N-1}{r-1}$.

POISSON DISTRIBUTION: EXAMPLE

- Usage example 1 :
- FIFA reports that the average number of goals in a World Cup soccer match is approximately 2.5. What is the probability to have 5 goals in a match?

$$
P(5,2.5)=\frac{e^{-2.5} 2.5^{5}}{5!}=6.7 \%
$$

- Usage example 2:
- If expect to detect one extremely high energy gamma ray every year, what is the probability not to detect any in a year?

$$
P(0,1)=\frac{e^{-1} 1^{0}}{0!}=36.8 \%
$$

- A student is trying to hitch a lift. Cars pass at random intervals at an average rate of 1 per minute. The probability of a car giving a lift is 1%. What is the probability that the student will still be waiting:
(1) after 60 cars have passed?
(2) after 1 hour?
(1) $P(60 ; 0.99,60)=\binom{60}{60} 0.99^{60}(1-0.99)^{60-60}=54.71 \%$
(2) $P(0,0.6)=\frac{e^{-0.6} 0.6^{0}}{0!}=54.88 \%$

FROM POISSON TO NORMAL DISTRIBUTION

- For a large λ Poisson distribution converges towards a Gaussian distribution

$$
P(r, \lambda)=\frac{e^{-\lambda} \lambda^{r}}{r!} \xrightarrow{\operatorname{large} \lambda} \operatorname{Gauss}(r ; \mu \equiv \lambda)
$$

NORMAL OR GAUSSIAN DISTRIBUTION

- The most important distribution in statistics because of the Central Limit Theorem:

$$
N(x ; \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

$\bigcirc \mathrm{N}(0,1)$ is called standard Normal density

- Properties of the Gaussian distribution:
- Mean: $\quad\langle r\rangle=E(r)=\mu$
- Variance: $V(r)=\sigma^{2}$

NORMAL DISTRIBUTION PROPERTIES

2D GAUSSIAN

- Central limit theorem:
- If we have a set of N independent variables x_{i}, each from a distribution with mean μ_{i} and variance $\sigma_{i}{ }^{2}$, then the distribution of the sum $X=\Sigma x_{i}$
- has a mean $<X>=\Sigma \mu_{\mathrm{i}}$,
- has a variance $\mathrm{V}(\mathrm{X})=\Sigma \sigma_{i}^{2}$,
- becomes Gaussian as $N \rightarrow \infty$.
- Therefore, no matter what the distributions of original variables may have been, their sum will be Gaussian in a large N limit
- Example:
- measurements errors
- human heights are well described by a Gaussian distribution, as many other anatomical measurements, as these are due to the combined effects of many genetic and environmental factors
- student test scores

CHI-SQUARE DISTRIBUTION

- If x_{i} are k independent, normally distributed random variables with mean 0 and variance, then the random variable $Q=\Sigma x_{i}{ }^{2}$ is distributed according to the chisquare distribution with k degrees of freedom
- Properties of the Chi-Square distribution:
© Mean:

$$
<x>=E(x)=N
$$

- Variance:

$$
V(x)=2 N
$$

$$
f(x)=\frac{\frac{1}{2}\left(\frac{X}{2}\right)^{\frac{N}{2}-1} e^{-\frac{x}{2}}}{\Gamma\left(\frac{N}{2}\right)_{f(x)}^{0}}
$$

Variance. $\quad V(x)=2 N$

EXPONENTIAL DISTRIBUTION

- Exponential probability density of the continuous variable $x>0$:

$$
N(x ; \lambda)=\lambda e^{-\lambda x}
$$

- Example: decay time of an unstable particle measured in its rest frame - $\lambda=1 / \tau$ (particle)
- Properties of the Exponential distribution:
- Mean: $\quad<x>=E(x)=\frac{1}{\lambda}$
- Variance: $\quad V(r)=\frac{1}{\lambda^{2}}$

SOME OTHER DISTRIBUTION

- Uniform distribution
- Basic distribution for pseudo-random number generators
- Gamma distribution
- Probability model for waiting time
- Cauchy or Lorentz or Breit-Wigner distribution
- A solution to the differential equation describing a resonance
- Energy distribution of a resonance
- Crystal Ball distribution

- Adds an asymmetric power-law tail to a Gaussian PDF
- Landau distribution
- Used to model the fluctuations in the energy loss of particles in thin layers
- Log-Normal distribution
- Used when including systematic errors in the analysis
- If x is Log-Normally distributed, than $\log (x)$ is Normally distributed

ALL ROADS LEAD TO ROME

GENERAL PICTURE REMINDER

Described by PDFs,
depending on unknown parameters with true values
$\theta^{\text {true }}=\left(m_{H}{ }^{\text {true }}, \Gamma_{H}\right.$ true $\left., \ldots, \sigma^{\text {true }}\right)$

WHAT ARE MONTE CARLO METHODS?

- a broad class of computational algorithms that rely on repeated random sampling to obtain numerical results
- the underlying concept is to use randomness to solve problems that might be deterministic in principle
- mainly used in three problem classes:
o optimisation
- numerical integration
- generating draws from a PDF
© invented in the late 1940s by physicists while he was working on nuclear weapons projects Los Alamos National Laboratory
© the name Monte Carlo, which refers to the Monte Carlo Casino in Monaco

IMPORTANCE OF MC IN SCIENCE

EXAMPLE

MONTE CARLO WORKFLOW

DEFINE A DOMAIN OF POSSIBLE INPUTS

GENERATE INPUTS RANDOMLY FROM THE DOMAIN

PERFORM A DETERMINISTIC COMPUTATION USING THE INPUTS

SOLVING INTEGRALS

DETERMINISTIC ALGORITHM

$$
\begin{aligned}
& \Delta x=\frac{b-a}{n} \\
& A \approx \sum f(a+i \Delta x) \Delta x
\end{aligned}
$$

gets more precise with more steps (n)

MONTE CARLO

$$
A \approx B \frac{N_{I N}}{N_{T O T}}
$$

gets more precise with more random number pairs $p_{i}\left(x_{i}, y_{i}\right)$

- Physical methods:
- "true" random numbers from "unpredictable" process
- Example: dice, coin flipping, roulette
- True random numbers from random atomic or subatomic physical phenomena:
- Example: radioactive decay, amplitude of noise in radio
- Computational methods:
- Pseudo-random number generators create long runs (for example, millions of numbers long) with good random properties but eventually the sequence repeats
- Example: Linear congruential generator

MC SIMULATION VS REAL LIFE

EVENT GENERATION
TOOLS: MC GENERATORS (PYTHIA, ...)
OUTPUT: FINAL STATE PARTICLES

DEIECTOR SIMULATION

TOOLS: MC SIMULATORS (GEANT)
OUTPUT: SIMULATED DEIECTOR RESPONSE

DATA ACOUISITION

TOOLS: DETECTORS (CMS, ATLAS,...)
OUTPUT: DETECTOR RESPONSE

EVENT RECONSTRUCTION

TOOLS: DEIECTOR SOFTWARE PACKAGES (CUSTOM MADE; MC USED IN ALGORITHMS) OUTPUT: RECONSTRUCTED PHYSICAL OBJECTS (ELECTRONS, MUONS, JEIS . . .)

DATA ANALYSIS

TOOLS: STATISTICS (ROOT, ...; MC USED IN ALGORITHMS; F.G. TOY MC)

