





# DATA ANALYSIS

#### Toni Šćulac

Faculty of Science, University of Split, Croatia visiting professor at University of Latvia, Latvia

CERN School of Computing 2023, Tartu, Estonia

#### LECTURES OUTLINE

- 1) Introduction to Data Analysis
- 2) Probability density functions and Monte Carlo methods
- 3) Parameter estimation and Confidence intervals
- 4) Hypothesis testing and p-value

## INTRODUCTION TO DATA ANALYSIS

### **EVENT DISTRIBUTION**



• Does the observed data agree with our expectations from the Standard Model?

### **EVENT DISTRIBUTION**



- We can not tell until we can compare to the expected distribution
- Is there any place where data does not agree with the expectation? Where? How significant?

### EVENT DISTRIBUTION



- When can we tell that we have discovered something new?
- Can we ever be 100% sure?
- What is the mass of a newly discovered particle?

#### WHAT IS DATA ANALYSIS?

"Data analysis is a process for obtaining **raw data** and converting it into information useful for decision-making by users. Data are collected and analyzed to answer questions, test hypotheses or disprove theories."

RAW DATA

DATA ANALYSIS

**USABLE INFORMATION** 

- Data analysis uses statistics for presentation and interpretation (explanation) of data
- A mathematical foundation for statistics is the probability theory

### DATA ANALYSIS IN THE INDUSTRY

#### **RAW DATA**

(search string<sub>1</sub>,location<sub>1</sub>)<sup>user 1</sup> (search string<sub>2</sub>,location<sub>2</sub>)<sup>user 1</sup>

• • •

(search string<sub>n</sub>,location<sub>n</sub>)<sup>user 1</sup> (search string<sub>1</sub>,location<sub>1</sub>)<sup>user 2</sup>

• • •

(search string<sub>m</sub>,location<sub>m</sub>)<sup>user 2</sup> (search string<sub>1</sub>,location<sub>1</sub>)<sup>user 3</sup>

• •

(search string<sub>1</sub>,location<sub>1</sub>)<sup>user k</sup>

• • •

#### DATA ANALYSIS

Maximum Likelihood fit
Significance
Hypothesis testing
P-value
Neural Networks

#### **USABLE INFORMATION**

Fitness.com hr Sponsored · 🕥

BESPLATNA DOSTAVA za sve proizvode do kraja mjeseca. ... :



FITNESS.COM.HR/DOSTAVA

Iskoristi besplatnu dostavu do kraja mjeseca!
Besplatna dostava do 30.9.2019.



### DATA ANALYSIS IN HEP

#### **RAW DATA**

 $(p_{x1}, p_{y1}, p_{z1}, E_1)$  event 1  $(p_{x2},p_{y2},p_{z2},E_2)$ event 1  $(p_{xn}, p_{yn}, p_{zn}, E_n)$ event 1  $(p_{x1}, p_{y1}, p_{z1}, E_1)$  event 2  $(p_{xm}, p_{ym}, p_{zm}, E_m)$ event 2  $(p_{x1}, p_{y1}, p_{z1}, E_1)$  event 3  $(p_{x1},p_{y1},p_{z1},E_1)$ event k  $\bullet \bullet \bullet$ 

DATA ANALYSIS

Maximum Likelihood fit
Significance
Hypothesis testing
P-value
Neural Networks

#### **USABLE INFORMATION**



#### DATA ANALYSIS IN HEP

#### • Main goals are:

- estimate (measure) the parameters
- quantify the uncertainty of the parameter estimates
- test the extent to which the predictions of a theory are in agreement with the data
- Use of statistics for presentation and interpretation (explanation) of data
- A mathematical foundation for statistics is the probability theory
- Why is statistics even needed?
  - theory predictions in quantum mechanics are not deterministic
  - finite size of data sample
  - imperfection of the measurement

### DATA ANALYSIS GENERAL PICTURE



1
$$te(W_{\mu}^{-}W_{\nu}^{+}-W_{\mu}^{+}W_{\nu}^{-})|^{2}-\frac{1}{2}$$
Physical
 $-W_{\nu}^{+}A_{\mu}$ 
Phenomena  $V_{\mu}^{+}Z_{\nu}$ 
Described by a theory
 $\partial_{\nu}Z_{\mu}+ig'c_{w}(W_{\mu}^{-}W_{\nu}^{+}-W_{\nu}^{-})$ 

Described by PDFs, depending on unknown parameters with true values  $\Theta^{true} = (m_H^{true}, \Gamma_H^{true}, ..., \sigma^{true})$ 

#### PROBABILITY DEFINITION

#### What is probability anyway?

"Unfortunately, statisticians do not agree on basic principles."

- Fred James

Mathematical (axiomatic) definition

Classical definition

Frequentist definition

Bayesian (subjective) definition

### MATHEMATICAL DEFINITION

- Developed in 1933 by Kolmogorov in his "Foundations of the Theory of Probability"
- Define an exclusive set of all possible elementary events xi
  - Exclusive means the occurrence of one of them implies that none of the others occurs
- For every event x<sub>i</sub>, there is a probability P(x<sub>i</sub>) which is a real number satisfying the Kolmogorov Axioms of Probability:
  - I)  $P(x_i) \geq 0$
  - II)  $P(x_i \text{ or } x_i) = P(x_i) + P(x_i)$
- From these properties more complex probability expressions can be deduced
  - For non-elementary events, i.e. set of elementary events
  - For non-exclusive events, i.e. overlapping sets of elementary events
- Entirely free of meaning, does not tell what probability is about

### CLASSICAL DEFINITION

"Probability = N(favourable) / N"

- My free translation of the original definition of Pierre-Simon Laplace, A Philosophical Essay on Probabilities



### FREQUENTIST DEFINITION

- Experiment performed N times, outcome x occurs N(x) times

• Define probability: 
$$P(x) = \lim_{N \to \infty} \frac{N(x)}{N}$$

- Such a probability has big restrictions:
  - depends on the sample, not just a property of the event
  - experiment must be repeatable under identical conditions
  - For example one can't define a probability that it'll snow tomorrow
- Probably the one you're implicitly using in everyday life
- Frequentist statistics is often associated with the names of Jerzy Neyman and Egon Pearson

### BAYESIAN DEFINITION

- It can be quantified with betting odds:
  - What's amount of money one's willing to bet based on their belief on the future occurrence of the event

• In particle physics frequency interpretation often most useful, but Bayesian probability can provide more natural treatment of non-repeatable phenomena

### BAYES' THEOREM

- Define conditional probability:  $P(AIB) = P(A \cap B)/P(B)$ 
  - probability of A happening given B happened
  - for independent events P(A|B) = P(A), hence  $P(A \cap B) = P(A)P(B)$



• From the definition of conditional probability Bayes' theorem states:

$$P(T|D) = \frac{P(D|T)P(T)}{P(D)}$$

- T is a theory and D is the data
- P(T) is the prior probability of T: the probability that T is correct before the data D was seen
- P(DIT) is the conditional probability of seeing the data D given that the theory T is true.
  - P(DIT) is called the likelihood.
- P(D) is the marginal probability of D.
  - P(D) is the prior probability of witnessing the data D under all possible theories
- P(TID) is the posterior probability: the probability that the theory is true, given the data and the previous state of belief about the theory

### BONUS PROBLEM - 1

#### Some rules to follow:

- 1. In every lecture there will be one bonus problem presented
- 2. If you have good knowledge in stats and everything I am presenting is known to you feel free to start working on the problem now!
- 3. Otherwise, work on the problem after the lectures.
- 4. Solutions won't be provided, you have to come and talk to me to check if your answer is correct or if you need hints!
- 5. Google/Al assistance is not allowed. These are problems that I want you to think about on your own

Some disease is affecting 0.1% of the total population. You have developed a test to check for the presence of this disease with the following performance:

- For people affected by the disease, the test will be positive 98% of the times
- For people unaffected, the test will still be positive 3% of the times

A patient tests positive, what is the probability that he or she is affected by the disease?

### EXAMPLE

- You meet an old friend in a pub. He proposes that the next round should be payed by whoever of the two extracts the card of lower value from a pack of cards
- This situation happens many times in the following days. What is the probability that your friend cheats if you end up paying N consecutive times?\*
- You assume:
  - $\bullet$  P(cheat) = 5% and P(honest) = 95% (surely an old friend is an unlikely cheater...)
- Bayesian solution:

$$P(cheat | N) = \frac{P(N | cheat)P(cheat)}{P(N | cheat)P(cheat) + P(N | honest)P(honest)}$$

$$P(cheat \mid 0) = \frac{1 \cdot P(cheat)}{1 \cdot P(cheat) + 2^{-0}P(honest)} = \frac{0.05}{0.05 + 0.95} = 5\%$$

$$P(cheat \mid 5) = \frac{1 \cdot P(cheat)}{1 \cdot P(cheat) + 2^{-5}P(honest)} = \frac{0.05}{0.05 + 0.03} = 63\%$$

### LEARNING BY EXPERIENCE

- If you started with P(cheat) = 5% and you end up paying for 5 drinks in a row, what should you do when you meet your old "friend" again after 2 years?
- You should learn from your experience and take your prior to be P(cheat)=63%!
- If you now end up paying 5 more consecutive drinks:

$$P(cheat \mid 5) = \frac{1 \cdot P(cheat)}{1 \cdot P(cheat) + 2^{-5}P(honest)} = \frac{0.63}{0.63 + 0.012} = 98\%$$

| P(cheat) | P(cheat I N) |       |        |
|----------|--------------|-------|--------|
| %        | N=5          | N=10  | N=15   |
| 1        | 24%          | 91%   | 99.7%  |
| 5        | 63%          | 98%   | 99.94% |
| 50       | 97%          | 99.9% | 99.99% |

When you learn from the experience, your conclusion does not longer depend on the initial assumptions!

### RANDOM VARIABLES

- Random event is an event having more than one possible outcome
  - Each outcome may have associated probability
  - Outcome not predictable, only the probabilities known
- The corresponding probabilities P(x<sub>1</sub>), P(x<sub>2</sub>), ... form a probability distribution

- If observations are independent the distribution of each random variable is unaffected by knowledge of any other observation
- When an experiment consists of N repeated observations of the same random variable x, this can be considered as the single observation of a random vector  $\mathbf{x}$ , with components  $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_N$

### DISCRETE RANDOM VARIABLES

- Rolling a die:
  - Sample space =  $\{1,2,3,4,5,6\}$
  - Random variable x is the number rolled

• Discrete probability distribution:





#### CONTINUOUS RANDOM VARIABLES

#### A spinner:

- Can choose a real number from [0,2n]
- All values equally likely
- x = the number spun
- Probability to select any real number = 0
- Probability to select any range of values > 0
  - Probability to choose a number in [0,n] = 1/2
- $\odot$  Probability to select a number from any range  $\Delta x$  is  $\Delta x/2n$
- Now we say that probability density p(x) of x is 1/2n



