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Outline of the lecture

 Introduction

 Various aspects of Physics Computing:
 Event Filtering
 Calibration and alignment
 Event Reconstruction
 Event Simulation
 Physics Analysis
 Data Flow and Computing Resources
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Introduction
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Powers of Ten

 Goal: understand fundamental structures and forces
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Fundamental structures & forces

 From largest to smallest dimensions

 Reduction principle

→ few fundamental building blocks

→ few fundamental forces

... erforschen was die Welt... erforschen was die Welt
im Innersten zusammenhim Innersten zusammenhäält ...lt ...
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Rutherford scattering

 Need particles source

& detectors

E.Rutherford (1912)E.Rutherford (1912)
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(sub) structure - atoms
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Elementary building blocks

19951995

20002000

20122012

`LEGO bricks' of`LEGO bricks' of
Spin-1/2 quarks & leptonsSpin-1/2 quarks & leptons
+ antiparticles+ antiparticles
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Elementary building blocks (ctd)

Physics Nobel PrizePhysics Nobel Prize
20082008

Open questions:Open questions:
  Properties and role of fermions?Properties and role of fermions?
  Really only three generations?Really only three generations?
  Relation between leptons & quarks?Relation between leptons & quarks?
  Mass and role of neutrinos?Mass and role of neutrinos?
  Origin of mass and hierarchy?Origin of mass and hierarchy?
  Is there only ONE Higgs?Is there only ONE Higgs?
  Quark mixing and CP-violationQuark mixing and CP-violation
  

  What is dark matter?What is dark matter?
  ......
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Symmetries in Nature

Emmi Noether Emmi Noether 
(1882-1935)(1882-1935)

Natur is full of symmetries Natur is full of symmetries ⇨⇨ simple description simple description
symmetry symmetry ⇦⇨⇦⇨conservation lawconservation law

physics laws independent ofphysics laws independent of

originorigin ofof  time time axisaxis ⇨⇨conservation ofconservation of  energyenergy
originorigin ofof  space space axisaxis ⇨⇨conservation of conservation of momentummomentum
directiondirection ofof  space space axisaxis ⇨⇨conservation ofconservation of  angular momentumangular momentum

Symmetry breakingSymmetry breaking ⇨⇨new physical phenomenanew physical phenomena
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Example: gauge symmetries
local (time) gauge symmetry: time zoneslocal (time) gauge symmetry: time zones

... physics laws (and every day live) do not depend on... physics laws (and every day live) do not depend on
        Choice of time = zero ...Choice of time = zero ...
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Fundamental interactions
  Quantum field theory, local gauge symmetryQuantum field theory, local gauge symmetry
  Interaction between spin-1/2 fermionsInteraction between spin-1/2 fermions
  via exchange of spin-1 vector bosons (via exchange of spin-1 vector bosons (γγ,W,Z,g),W,Z,g)

strong forcestrong force

gravitationgravitationweak forceweak force

electromagnet. forceelectromagnet. force
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Sun flowers

... look rotationally... look rotationally
and mirrorand mirror
symmetric ....symmetric ....

A closer lookA closer look
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34 spirals clock-w,34 spirals clock-w,
21 spirals counter21 spirals counter
clock-wise !clock-wise !
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Examples for symmetry breaking

  34 spirals cw, 34 spirals cw, 
  21 spirals21 spirals
  counter-cw!counter-cw!

  13 spirals cw, 13 spirals cw, 
  8 spirals8 spirals
  counter-cw!counter-cw!

  21 spirals cw, 21 spirals cw, 
  13 spirals13 spirals
  counter cw!counter cw!
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Particle masses – Higgs mechanics
Initially in Standard Model Initially in Standard Model ⇨⇨massless particlesmassless particles
BUT we know that they have mass !?BUT we know that they have mass !?

One possible explanation: One possible explanation: TheThe  Higgs MechanismHiggs Mechanism
(electroweak symmetry breaking)(electroweak symmetry breaking)

Higgs fields fills spaceHiggs fields fills space

... a particle in... a particle in
Higgs field ...Higgs field ...

... couples to field ...... couples to field ...
inertia = massinertia = mass
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Particle masses – Higgs mechanism

Excitation ofExcitation of
Higgs fieldHiggs field

Excited Higgs fieldExcited Higgs field
 ≙ ≙ massive Higgs-bosonmassive Higgs-boson
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History of the universe
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Big bang in laboratory
Matter-antimatter collisionsMatter-antimatter collisions

At high energy (=temperature)At high energy (=temperature)

All particles have high energyAll particles have high energy
(temperature) and collide(temperature) and collide
uncontrolleduncontrolled

Individual collisionsIndividual collisions
controlled, selected andcontrolled, selected and
recordedrecorded
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Particle Accelerators
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Particle Accelerators I
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Particle Accelerators II

HeisenbergsHeisenbergs
uncertainty relationuncertainty relation

ΔΔxx  • • ΔΔpp  ≥≥  ℏℏ E = m cE = m c22 EinsteinEinstein

linear accelerator:linear accelerator:

studies ofstudies of
small structuressmall structures  oror
Heavy particlesHeavy particles

requiresrequires
Particles acceleratedParticles accelerated
toto  high energieshigh energies

repeated acceleration : 1, 2, ... 1 000 eV =repeated acceleration : 1, 2, ... 1 000 eV =
1 000 000 eV =1 000 000 eV =

1 000 000 000 eV =1 000 000 000 eV =
1 000 000 000 000 eV =1 000 000 000 000 eV =

101033  eV =  eV =
101066  eV =  eV =
101099  eV =  eV =
10101212 eV = eV =

1 keV1 keV
1 MeV1 MeV
1 GeV1 GeV
1 TeV1 TeV

`Tevatron' = TeV beam energy`Tevatron' = TeV beam energy
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Particle Accelerators III

FermilabFermilab
1987 - 20111987 - 2011
Tevatron Tevatron PPPP
1.8 - 1.96 TeV1.8 - 1.96 TeV
CDF, DCDF, DØØ

CERNCERN
1981 - 19901981 - 1990
SPPS SPPS PPPP
0.6 TeV0.6 TeV
UA1, UA2UA1, UA2

CERNCERN
2008 - 20302008 - 2030
LHC PPLHC PP
14 TeV14 TeV
ATLAS,CMS,ATLAS,CMS,
ALICE,LHC-BALICE,LHC-B

DESYDESY
1992 - 20071992 - 2007
HERA ePHERA eP
320 GeV320 GeV
H1, ZEUSH1, ZEUS
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Particle Accelerators IV

LEP/LHC

PS

SPPS
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Large Hadron Collider - LHC

ATLASATLAS

CMSCMS

  CERN: europ.center for particle physicsCERN: europ.center for particle physics
  Founded 1954Founded 1954
  LHC: PP colliderLHC: PP collider
  High energies:  High energies:  s = 7 (14) TeVs = 7 (14) TeV
  40 Mio. collisions / sec40 Mio. collisions / sec
  11stst beam: 10.Sept. 2008 beam: 10.Sept. 2008
  11stst collisions in Nov. 2009 collisions in Nov. 2009
  physics at 7 TeV since 31.3.2010physics at 7 TeV since 31.3.2010
  Phys. at 13 TeV since 20.5.2015Phys. at 13 TeV since 20.5.2015
  Phys. At 13.6 TeV since July 2022Phys. At 13.6 TeV since July 2022
  4 Expts:4 Expts:

    ATLAS, CMS, ALICE, LHC-BATLAS, CMS, ALICE, LHC-B
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Detectors / Experiments
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Proton-Proton Collisions

pp pp

LLarge arge HHadron adron CCollider    ollider    
@ CERN, Switzerland@ CERN, Switzerland

pp collider at √s = 14 TeV

Luminosity L = 1034 cm-2s-1



Arnulf Quadt – Georg-August-Universität Göttingen

Physics Computing - Introduction to Physics Computing

28

Caverns 100m underground
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Built like a bottle ship
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ATLAS and CMS experiments
45 m long45 m long
23 m high23 m high
7000 t7000 t

22 m long22 m long
15 m high15 m high
14000 t14000 t

internat.internat.
collaborationscollaborations
with respect.with respect.
~2000 – 3000~2000 – 3000

physicistsphysicists
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Date rate and size

Rate

[Hz]

RAW

[MB]

ESD
rDST RECO

[MB]

AOD

[kB]

Monte
Carlo

[MB/evt]

Monte
Carlo 

% of real

ALICE HI 100 12.5 2.5 250  300 100
ALICE pp 100   1 0.04 4      0.4 100
ATLAS 200   1.6 0.5 100      2 20
CMS 150   1.5 0.25 50      2 100
LHCb 2000   0.025 0.025      0.5 20

ATLAS/CMS LVL1 triggerl :ATLAS/CMS LVL1 triggerl :
input input > 22.000 > 22.000 DVDs per sec.DVDs per sec.
outputoutput > 22 > 22 DVDs per sec.DVDs per sec.

Event size [Byte]
data at LHC:data at LHC:
15 PetaByte /year15 PetaByte /year

tri
g

g
er

 ra
te

 
[H

z]
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Expected pictures: Higgs decay



Arnulf Quadt – Georg-August-Universität Göttingen

Physics Computing - Introduction to Physics Computing

33

Search for new physics

single 
top

t
t
-

2
 :=1

W
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Search for needle in the hay stack
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Physics
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Expectations and measurements
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Higgs production at the LHC• H→γγ: 
   → rare channel
   → best for low Higgs masses

• H→WW(*):
   →lνlν: very important for intermed. masses
   →lνqq: high rate, important at high mass

• H→ZZ(*):
   → 4l: golden channel
   → llνν: good for high masses
   → llbb: also at high masses

• H→ττ:
   → good signal-background ratio
   → important at low masses, rare channel
   → very important for Higgs properties

Expected nr. events
MH [GeV] →WW→lνlν →ZZ→4l →γγ
120 127 1.5 43
150  390 4.6 16
300    89 3.8 0.04
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Higgs → γγ
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Higgs production at the LHC
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Higgs production at the LHC
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Higgs production at the LHC
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Higgs production at the LHC
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Higgs production at the LHC
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Higgs production at the LHC
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Higgs production at the LHC
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Higgs exclusion
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Higgs combination (4th July 2012)
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As a Layman: We have it!
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Computing
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The technical challenge at LHC

Everything in
LHC

computing is
connected to
processing
such data !!
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The technical challenge at LHC (ctd)

 Very high (design) event rate: 40 MHz
 Large event size: O(1) MB
 Large background of uninteresting events
 Large background in each event
 many interactions in each beam crossing
 pile-up from adjacent beam crossing
 many low-momentum particles
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The technical challenge at LHC (ctd)

 Large number of physicists doing analysis
 ATLAS and CMS experiments at the LHC: both

consist of 170-180 institutes in about 40 countries
 Distribution of data and programs
 Bookkeeping is crucial

 High pressure, competitive spirit
 Important discoveries to be (and have been) made
 Computing has to be as fast as possible
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What is Physics Computing?

 Yearly input: A few petabytes of data
 Yearly output: A few hundred physics papers
 Data reduction factor of 107 to 108 !!
 How is it done?
 Will try to answer this question in this and

tomorrow’s lectures
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It’s simple … is it?

Paper paper15
Data higgsdata
...
paper15=make_paper(higgsdata)
...
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Actually, at LHC we need…

 Millions of lines of code (C++,Python, …)

 Hundreds of neural networks (BNNs, not ANNs)

 Large infrastructure
 Customized hardware
 PC farms
 Database and storage systems
 Distributed analysis facilities
 The grid



Arnulf Quadt – Georg-August-Universität Göttingen

Physics Computing - Introduction to Physics Computing

56

What happens to the data?

 Event filtering, tagging and storage

 Calibration, alignment

 Event reconstruction

 Storage

 Event simulation

 Physics analyses
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Step by step

 Each step involves some data reduction
 data are discarded (online)
 data are compressed (offline)

 In each step the data get closer to be interpretable in

physical terms

 Some steps are repeated many times until the output is

satisfactory (offline reprocessing)
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Online vs Offline computing

 Online
 In real time, fast!
 Decisions are irreversible
 Data cannot be recovered

 Offline
 From almost real time to long delays
 Decisions can be reconsidered
 Data can be reprocessed
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Online processing

 Trigger: event selection
 Needs only a (small) subset of the detector data
 Fast, as little dead-time (time period when triggering 

system is insensitive to new data) as possible
 Gives “green” or “red” light to the data acquisition
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Online processing (ctd)

 Data acquisition
 Interfaces to detector hardware
 Builds complete events from fragments
 Sends them to the higher level event filter(s)
 Writes accepted events to mass storage
 Very complex system
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Complexity of Data acquisition
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Online processing (ctd)
 Monitoring
 Detector status
 Data acquisition performance
 Trigger performance
 Data quality check

 Control
 Configure systems
 Start/stop data taking
 Initiate special runs (calibration, alignment)
 Upload trigger tables, calibration constants, …
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Event selection

 Primary (design) collision rate: 40 MHz

 Recording rate: a few hundred Hz to kHz

 How is this achieved?
 Multi-level trigger – chain of yes/no decisions
 Very fast first level: (Programmable) hardware
 Slower higher level(s): Software on specialized or 

commodity processors
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Event selection (ctd)

 Has to be reliable

 Rejected data are lost forever

 Continuous monitoring

 Do not lose new physics

 Must therefore be open to many different signatures of 
potentially new physics in the detector system
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Example: ATLAS
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What ATLAS subdetectors measure

 Inner detector
 Momentum and position of charged particles

 Electromagnetic calorimeter
 Energy of photons, electrons and positrons

 Hadron calorimeter
 Energy of charged and neutral hadrons

 Muon system
 Momentum and position of muons
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ATLAS detector
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ATLAS detector, calorimeter
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ATLAS detector, inner tracker
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ATLAS detector, inner tracker
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Event selection (ctd)

 Overall guideline in designing trigger system: what are
the essential features of interesting physics in the
detectors?
 Typically high-energy particles moving transversely to the
 beam direction
 Results in large energy deposits in the calorimetric
 systems, high-energy muons in the muon system, etc.

 Multi-level trigger explores such features in various
degrees of detail
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Multi level selection

 Many events can be discarded very quickly – fast level-1 
trigger

 Only the surviving ones are scrutinized more carefully – 
high-level filter(s)

 Triggers are tailored to specific physics channels 
(Higgs, top, WW, ZZ, …)
 Many such hypotheses are investigated in parallel
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ATLAS triggering system

 ATLAS has three-level trigger system
 Level 1 purely hardware-based (ASICs and FPGAs)
 High-level trigger (level 2 and Event Filter (EF)) 

softwarebased
 Level 1 uses information mainly from calorimeters and 

muon system
 Level 2 also includes information from Inner Detector, 

uses data from Regions of Interest (RoI) identified by 
level 1

 EF has access to complete set of data and uses same 
algorithms as offline event reconstruction
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ATLAS triggering system
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Towards High-Lumi LHC

Two upgrade steps towards HL-LHC
Ø LHC injector upgrade (LIU) during LS2
Ø Upgrade to HL-LHC upgrade during LS3
Ø Both upgrades are needed to reach the ultimate luminosity of 5–7.5 e34 cm-2s-1

ATLAS upgrades, including TDAQ and Trigger, match the LHC upgrades

nominal luminosity:  1e34 cm-2s-1

Energy: 13 TeV
Peak lumi: 2.2e34 cm-2s-1

Peak <μ>: 65
L1 peak rate: 100 kHz
HLT av. rate: 1 kHz

Energy: 14 TeV
Peak lumi: 2.0e34 cm-2s-1

Peak <μ>: 60
L1 peak rate: 100 kHz
HLT av. rate: 1 kHz

Energy: 14 TeV
Peak lumi: 5-7.5e34 cm-2s-1

Peak <μ>: 140-200
L1 peak rate: 1 MHz
HLT av. rate: 10 kHz

Energy: 7-8 TeV
Peak lumi: 0.8e34 cm-2s-1

Peak <μ>: 40
L1 peak rate: 70 kHz
HLT av. rate: 400 Hz

Run 1 Run 3Run 2 Run 4 - 6
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5 to 7.5 x nominal Lumi

13 TeV

integrated luminosity

2 x nominal Lumi2 x nominal Luminominal Lumi75% nominal Lumi

cryolimitinteractionregions inner triplet radiation limit

LHC HL-LHC

Run 4 - 5...Run 2Run 1

DESIGN STUDY PROTOTYPES CONSTRUCTION INSTALLATION & COMM. PHYSICS

DEFINITION EXCAVATION

HL-LHC CIVIL ENGINEERING:

HL-LHC TECHNICAL EQUIPMENT:

Run 3

ATLAS - CMSupgrade phase 1

ALICE - LHCbupgrade

Diodes ConsolidationLIU Installation

Civil Eng. P1-P5

experiment beam pipes

splice consolidationbutton collimatorsR2E project

13.6 TeV 13.6 - 14 TeV

7 TeV 8 TeV

LS1 EYETS EYETS LS3

ATLAS - CMSHL upgrade

HL-LHC installation

LS2

30 fb-1 190 fb-1 450 fb-1 3000 fb-1

4000 fb-1

BUILDINGS

20402027 20292028

pilot beam

Towards High-Lumi LHC

Two upgrade steps towards HL-LHC
Ø LHC injector upgrade (LIU) during LS2
Ø Upgrade to HL-LHC upgrade during LS3
Ø Both upgrades are needed to reach the ultimate luminosity of 5–7.5 e34 cm-2s-1

ATLAS upgrades, including TDAQ and Trigger, match the LHC upgrades

nominal luminosity:  1e34 cm-2s-1

Energy: 13 TeV
Peak lumi: 2.2e34 cm-2s-1

Peak <μ>: 65
L1 peak rate: 100 kHz
HLT av. rate: 1 kHz

Energy: 14 TeV
Peak lumi: 2.0e34 cm-2s-1

Peak <μ>: 60
L1 peak rate: 100 kHz
HLT av. rate: 1 kHz

Energy: 14 TeV
Peak lumi: 5-7.5e34 cm-2s-1

Peak <μ>: 140-200
L1 peak rate: 1 MHz
HLT av. rate: 10 kHz

Energy: 7-8 TeV
Peak lumi: 0.8e34 cm-2s-1

Peak <μ>: 40
L1 peak rate: 70 kHz
HLT av. rate: 400 Hz

Run 1 Run 3Run 2 Run 4 - 6
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ATLAS L1 trigger

 Input (design) rate: 40 MHz
 Output rate: up to 100 kHz
 Latency (time to reach trigger decision):

O(1 μs)
 Data pipelined until trigger decision can be made
 Mainly 2 detector systems:

muons/calorimeters
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ATLAS L1 trigger
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ATLAS L1 calorimeter trigger
 High-energy objects in an event:
 Electrons/photons
 Hadronic decays of tau lepton
 Jet candidates

 Global event properties:
 Total transverse energy (ET)
 Missing ET
 Jet sum ET

 Sends to Central trigger:
 Multiplicity of electrons/photons and jets passing 

thresholds
 Thresholds passed by total and missing ET
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ATLAS L1 muon trigger
 Dedicated muon trigger chambers with good time 

resolution:
 RPCs (barrel region)
 TGCs (endcap regions)
 Search for patterns of

 measurements consistent
with high momentum 
muons coming from
collision point
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ATLAS L1 CTP
 Central Trigger Processor
 L1 inputs are combined to form L1 items
 e.g. an input EM10 (electromagnetic cluster above 10 

GeV) can be used in the generation of several L1 items:
 L1_EM10: At least one EM cluster above 10 GeV
 L1_2EM10: At least two EM clusters, each above 10 

GeV
 L1_EM10_MU6: An EM cluster above 10 and a muon 

above 6 GeV.
 A L1 Accept is generated and sent to the detector 

readout electronics only if at least one L1 item survives.
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High-Level Filter
 Further data selection:
 Up to 100 kHz input rate
 A few hundred Hz output rate

 Event tagging:
 Reconstruct physics objects
 Mark events having

interesting features
 Facilitates quick access later
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High-Level Filter (ctd)

 More detailed analysis of event and underlying physics

 Runs on standard processors (commodity PCs)

 CMS: 1 stage (in contrast to ATLAS two-stage solution)
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CMS high-level trigger

 Has to keep pace with the L1 Output (up to 100 kHz)

 Solution: massive parallelism

 Filter farm

 O(10000) cores

 Decision time: O(100) ms
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CMS high-level trigger (ctd)

 Same software framework as in offline reconstruction

 Transparent exchange of algorithms with offline code

 Regional reconstruction
 Concentrates on region(s) found by Level 1

 Partial reconstruction
 Stop as soon specific questions are answered
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Output of CMS high-level trigger

 Raw data are sent to Tier-0 farm (at CERN)
 Detector data (zero compressed)
 Trigger information + some physics objects
 O(50) physics datasets, depending on trigger history, 

O(10) online streams (calibration/monitoring/alignment)

 Physics: O(1) MB @ a few hundred Hertz =                       
a few hundred MB/sec

 Alignment/Calibration: O(50) MB/sec
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Output of CMS high-level trigger (ctd)

 LHC runs for ~ 107 sec/year

 A few PB per year at design luminosity
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Tier-0 processing

 Archive raw data on mass storage

 First event reconstruction without or with a small delay

 Archive reconstructed data on mass storage
 A few hundred kByte/event, depending on physics
 Reconstructed objects (hits/clusters, tracks, vertices, jets, 

electrons, muons)

 Send raw and processed data to Tier-1
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Tier-0 processing (ctd)
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Summary, event selection

 Selecting a small subset of all collision events for offline 
analyses

 Reducing from 40 MHz collision rate to recording rate of a 
few hundred Herz

 Multi-level triggering system
 Looking for signatures of potentially interesting physics in 

detectors
 First level purely hardware-based with pipelined data
 Higher level(s) software-based, massively parallelized on 

filter farms
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Offline Processing

 Calibration
 Convert raw data to physical quantities

 Alignment
 Find out precise detector positions

 Event reconstruction
 Reconstruct particle tracks and vertices (interaction points)
 Identify particle types and decays
 Impose physics constraints (energy and momentum 

conservation)
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Offline Processing (ctd)

 Simulation
 Generate artificial events resembling real data as closely 

as possible
 Needed for background studies, corrections, error 

estimation, …

Monte Carlo 
Method
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Offline Processing (ctd)

 Physics analysis
 Extract physics signals from

background
 Compute masses, 

cross-sections, 
branching ratios, 
discovery limits, …

 Requires sophisticated multivariate techniques
 Series of lectures and exercises on data analysis methods 

later in this theme
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Calibration: From bits to GeV and cm

 Raw data are mostly ADC or TDC counts

 They have to be converted to physical quantities such 
as energy or position

 Very detector dependent

 Every detector needs calibration

 Calibration constants need to be updated and stored in a 
database
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Silicon Tracker calibration

 Incoming particle creates electric charge in strips or 
pixels
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Silicon Tracker calibration (ctd)

 Charge distribution depends on location of crossing 
point and crossing angle

 Solve inverse problem: reconstruct crossing point from 
charge distribution and crossing angle

 Test beam, real data
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Drift tube calibration
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Drift tube calibration (ctd)

 Incoming particle ionizes gas in tube

 Electrons/ions drift to anode/cathode

 Drift time is measured

 Must be converted to drift distance

 Time/distance relation must be determined (not always 
linear)

 Test beam, real data
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Alignment: Where are the detectors?

 Tracking detectors are very precise instruments

 Silicon strip detector: ~ 50 μm

 Pixel detector: ~ 10 μm

 Drift tube: ~ 100 μm

 Positions of detector elements need to be known to a 
similar or better precision
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Example: CMS tracker
Wow, I will have
to realign this…
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Alignment

 Mechanical alignment

 Measurements taken before assembly

 Switching on the magnetic field

 Laser alignment

 Alignment with charged tracks from collisions, beam 
halo and cosmic rays
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Alignment (ctd)

 Difficult because of huge number of parameters to be 
estimated (~ 100000)

 Continuous process

 Alignment constants need to be updated and stored in a 
database
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Event reconstruction

 Find out which particles have been created where and 
with which momentum

 Many can be observed directly

 Some are short-lived and have to be reconstructed from 
their decay products

 Some (neutrinos) escape without leaving any trace
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Event reconstruction (ctd)

 Reconstruct charged particles

 Reconstruct neutral particles

 Identify type of particles

 Reconstruct vertices (interaction points)

 Reconstruct kinematics of the interaction

 Not trivial, very time-consuming …
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Event reconstruction (ctd)

CMS: Higgs decay into two jets
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What CMS subdetectors measure
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Charged particles

 Charged particles are detected by tracker and 
calorimeters

 Muons also reach the muon system

 Very high number of low-momentum charged particles

 Select by threshold on transverse momentum
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Charged particles (ctd)
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Neutral particles

 Neutral particles are detected mainly by calorimeters 
(e.g. photons, neutrons)

 They should deposit their entire energy

 Some of them decay into charged particles which are 
detected by the tracker (e.g. K0 )

 Neutrinos escape without leaving a trace (missing 
energy)
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Neutral particles (ctd)
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Reconstruction of charged particles

 Trajectory is curved because of the magnetic field

 Position is measured in a number of places –“hits”

 Determine track parameters (location, direction, 
momentum) plus their estimated uncertainties from the 
position measurements

 Data compression
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The difficulties

 Assignment of hits to particles is unknown

 Huge background from low-momentum tracks

 Additional background from other interactions in the 
same beam crossing, from adjacent beam crossings and 
from noise in the electronics
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More difficulties

 Charged particles interact with all the material, not only 
the sensitive parts
 Multiple Coulomb scattering
 Changes direction, but not momentum

 Energy loss by ionization
 All charged particles, changes momentum

 Energy loss by bremsstrahlung
 Electrons and positrons, changes momentum
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Tracks only
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Tracks with hits
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Hits only

?



Arnulf Quadt – Georg-August-Universität Göttingen

Physics Computing - Introduction to Physics Computing

117

Decomposition of the problem

 Pattern Recognition or Track Finding
 Assign detector hits to track candidates (collection of hits 

all believed to be created by the same particle)

 Parameter estimation or Track Fit
 Determine track parameters + their estimated uncertainties 

(covariance matrix)

 Test of the track hypothesis
 Is the track candidate the trace of a real particle?
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Track finding

 Depends a lot on the properties of the detector:
 Geometry, configuration
 Magnetic field
 Precision
 Occupancy

 Many solutions available

 No general recipe
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A few track finding algorithms

 Track following ►

 Kalman filter

 Combinatorial

 Kalman filter

 Hough transform

 Artificial neural network
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Track Fit

 Determine (estimate) track parameters

 Determine uncertainties of estimated track parameters 
(covariance matrix)

 Test track hypothesis

 Reject outliers
 Distorted hits
 Extraneous hits
 Electronic noise hits
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Ingredients

 Magnetic field
 Constant or variable

 Track model
 Solution of the equation of motion
 Analytic (explicit) or numerical

 Error model
 Observation errors
 Process noise
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Estimation of track parameters

 Most estimators minimize a least-squares objective 
function
 Linear regression
 Kalman filter

 Robust estimation
 Adaptive filter
 Automatic suppression of outlying hits
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Reconstruction of neutral particles

 Neutral particles are only seen by the calorimeters

 Photons are absorbed in the electromagnetic 
calorimeter

 Neutral hadrons are absorbed in the hadronic 
calorimeter

 Neutrinos are not detected directly
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Shower finding

 An incident particle produces a shower in the 
calorimeter

 A shower is a cluster of cells with energy deposit above 
threshold



Arnulf Quadt – Georg-August-Universität Göttingen

Physics Computing - Introduction to Physics Computing

125

Shower finding (ctd)

 Overlapping clusters must be separated

 Various clustering techniques are used to find showers

 The algorithms depend on various characteristics of the 
calorimeter
 Type (electromagnetic or hadronic)
 Technology (homogeneous or sampling)
 Cell geometry, granularity
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Particle identification

 Determining the type of a particle

 Dedicated detectors
 Calorimeter (electromagnetic or hadronic)
 Ring imaging Cherenkov (RICH) ►
 Transition radiation detector
 Ionization measurements
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Particle identification (ctd)

 Combining information from several detectors
 Shower in electromagnetic calorimeter + no matching track 

in tracker → photon
 Shower in electromagnetic calorimeter + matching track in 

tracker →  electron/positron
 Shower in hadronic calorimeter + matching track in tracker 

→  charged hadron
 Track in muon system + matching track in tracker →  muon
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Vertex reconstruction

 Primary vertex: interaction of the two beam particles – 
easy

 Secondary vertices: decay vertices of unstable particles 
– difficult

 Emphasis on short-lived unstable particles which decay 
before reaching the tracker

 Data compression
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Primary and secondary tracks

Primary tracks
Secondary 
tracks
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The difficulties

 Association of tracks to vertices is unknown

 Secondary tracks may pass very close to the primary 
vertex (and vice versa)
 Especially if decay length is small

 Track reconstruction may be less than perfect
 Outliers, distortions, incorrect errors
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Decomposition of the problem

 Pattern Recognition or Vertex Finding
 Assign tracks to vertex candidates

 Parameter estimation or Vertex Fit
 Determine vertex location + covariance matrix, update 

track parameters

 Test of the vertex hypothesis
 Is the vertex candidate a real vertex?
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Vertex finding

 Almost independent of the detector geometry

 Secondary vertex finding may depend on the physics 
channel under investigation

 Essentially a clustering problem

 Many solutions available
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A few vertex finding algorithms

 Hierarchical clustering
 Single linkage, complete linkage, …

 Machine learning
 k-means, competitive learning, deterministic annealing, …

 Estimation based
 robust location estimation, iterated vertex fit
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Vertex fitting

 Most estimators minimize a least-squares objective 
function
 Linear regression
 Kalman filter

 Robust estimation
 Adaptive filter
 Automatic suppression of outlying tracks
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Kinematical fitting

 Impose physical constraints
 Momentum conservation
 Energy conservation

 Test mass hypotheses
 See whether kinematics are compatible with the decay of a 

certain particle

 Reconstruct invisible particles
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Storage

 Event reconstruction produces physics objects
 Tracks
 Vertices
 Identified particles
 Jets
 Tags

 Need to be stored
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Storage (ctd)

 Preferred tool for event data: ROOT

 Physics objects depend on
 Alignment
 Calibration
 Version of the reconstruction program
 Algorithm parameters

 Must be stored as well (database)
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Summary, event reconstruction

 Track reconstruction
 Charged: determine track parameters from hits
 Neutral: find showers in calorimeters

 Particle identification

 Vertex reconstruction
 Determine number of production points and their positions 

from the set of reconstructed tracks

 Kinematic fitting
 Refine estimates by e. g. imposing physical constrain
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Simulation

 Why do we need simulation?
 Optimization of detector in design phase
 Testing, validation and optimization of trigger and 

reconstruction algorithms
 Computation of trigger and reconstruction efficiency
 Computation of geometrical acceptance corrections
 Background studies
 Systematic error studies
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Simulation steps

 Physics generation
 Generate particles according to physics of the collision
 General-purpose and specialized generators

 Event simulation
 Track particles through the detector, using detector 

geometry and magnetic field
 Simulate interaction of particles with matter
 Generate signals in sensitive volumes
 Simulate digitization process (ADC or TDC)
 Simulate trigger response
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Simulation steps (ctd)

 Reconstruction
 Treat simulated events exactly as real events
 Keep (some) truth information: association of hits to tracks, 

association of tracks to vertices, true track parameters, 
true vertex parameters, …

 Store everything
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Event simulation

 Was frequently (and still sometimes is) experiment-
specific

 Now there is a widely used standard:

 GEANT4
 Object oriented, C++
 Extremely general and versatile

 Needs detailed description of the apparatus (sensitive 
and insensitive parts)
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Detector description

 Geometry
 Partition the detector into a hierarchy of volumes
 Describe their shape and their position relative to a mother 

volume
 Use possible symmetries

 Material
 Chemical composition, density
 Physical properties: radiation length, interaction length, …
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An example detector model
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Physics analysis

 Event selection
 Multidimensional criteria
 Statistics, neural networks, genetic algorithms, …

 Signal extraction
 Study background
 Determine significance of signal

 Corrections
 Detector acceptance, reconstruction efficiency, …
 From simulated and from real data
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Physics analysis (ctd)

 Computation of physical quantities …
 Cross sections, branching ratios, masses, lifetimes, …

 … and of their errors
 Statistical errors: uncertainty because of limited number of 

observations
 Systematic errors: uncertainty because of limited 

knowledge of key assumptions (beam energy, calibration, 
alignment, magnetic field, theoretical values, background 
channels, …)
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Analysis tools

 Need versatile tools for
 Multidimensional selection, event display and interactive 

reprocessing
 Histogramming, plotting, fitting of curves and models
 Point estimation, confidence intervals, limits

 Main tool currently used: ROOT
 Data analysis and storage, but also detector description, 

simulation, data acquisition, …
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And finally …
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Distributed analysis

 Physics analysis takes place in many labs all over the 
world

 Physicists need fast access to event data and 
corresponding calibration, alignment and bookkeeping 
data … and to simulated data

 We need the grid!
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The LHC Computing Grid

 Global collaboration of more than 170 computing 
centers in 36 countries

 Four-tiered model

 Data storage and analysis infrastructure

 O(105) CPUs

 O(100) PByte disk storage (tiers 0 and 1)
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Data management

 Dataset bookkeeping
 Which data exist?

 Dataset locations service
 Where are the data?

 Data placement and transfer system
 Tier-0 → Tier-1 → Tier-2

 Data access and storage
 Long-term storage, direct access
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Data flow in ATLAS
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Additional resources

 CAF (CERN Analysis Facility)
 O(100) worker nodes, O(1000) cores (CMS)
 Ready access to calibration and express streams
 Fast turnaround
 Operation critical tasks

 trigger and detector diagnostics
 alignment and calibration
 monitoring and performance analysis

 Physics data quality monitoring
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Data flow in CMS-CAF
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Summary

 Physics computing involves:
 Event filtering with multi-level trigger
 Storage of raw data
 Calibration and alignment
 Storage of calibration and alignment data
 Event reconstruction
 Storage of reconstruction objects and metadata
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Summary (ctd)

 Physics computing involves:
 Simulation of many million events
 Storage of simulated raw data and truth information
 Reconstruction of simulated events
 Storage of reconstruction objects and truth information
 Distributed physics analysis and event viewing
 Storage of high-level physics objects
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Summary (ctd)

 Physics computing involves:
 Simulation of many million events
 Storage of simulated raw data and truth information
 Reconstruction of simulated events
 Storage of reconstruction objects and truth information
 Distributed physics analysis and event viewing
 Storage of high-level physics objects
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