ntro to ML **CERN School of Computing 2023**

Lukas Heinrich, TUM

Why ML for Fundamental Physics

In a way, this is what we do:

 $p(\text{theory} | \text{data}) = \frac{p(\text{data} | \text{theory})p(\text{theory})}{p(\text{theory})}$

p(data)

- On the face of it: no ML to be seen
 - **Turns out, this is not so easy** and ML can help a lot!

Complex Data It's often impossible to get closed-form predictions

z : intermediate unobserved physics

 $p(\text{data}|\text{theory}) = \int p(\text{data}|z)p(z|\text{theory})$ often completely intractable

 $\begin{aligned} \mathcal{I} &= -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} \\ &+ i \overline{\psi} \overline{\psi} \psi + h.c. \\ &+ \overline{\psi} i \overline{\psi} i \overline{\psi} \overline{\psi} + h.c. \end{aligned}$ + $D_{\mu}\phi l^2 - V(\phi)$

Particle Physics in a Nutshell $z = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu}$ $+ i \overline{\psi} \overline{\psi} \psi + h.c.$ + \u00ed ij 4; \$\$ + h. c. **High-Level** Concept + $(D_{\mu}\phi)^2 - V(\phi)$ 200

generate low-level, high-dim data from high-level concepts

Low-Level Data

reconstruct high level concepts from low-level, high-dim data

Pattern Recognition

Not obvious what the most important patterns are to extract the most knowledge from the data.

It's an optimization problem (ML excels at this)

ML Systems are Good at Both

street style photo of a woman selling pho at a Vietnamese street market, sunset, shot on fujifilm

generate low-level, high-dim data from high-level concepts

This is a picture of Barack Obama. His foot is positioned on the right side of the scale. The scale will show a higher weight.

High-Level Concept

Low-Level Data

reconstruct high level concepts from low-level, high-dim data

What does it mean to learn?

Defining the Terms Colloquially the terms "Artificial Intelligence", "Machine Learning" and "Deep Learning" are often used interchangably

Mat Velloso 💳

Difference between machine learning and AI:

If it is written in Python, it's probably machine learning

 \bigcirc

 \uparrow

If it is written in PowerPoint, it's probably Al

 \frown

3:25 AM · Nov 23, 2018 · Twitter Web Client

 \bigcirc

8,264 Retweets 911 Quote Tweets 23.8K Likes

Is there a difference?

Artificial Intelligence

- AI: make computers act in an "intelligent" way (e.g. via rules, reasoning, symbol manipulation ...)
- ML: approach to AI that uses data to generate the "intelligent" algorithms
- **DL:** subset of ML that aims at complex pipelines, work on low-level data (e.g. pixels)

Machine Learning

learned algorithm

What kind of Algorithms ?

Two broad classes of algorithms we would like

learn to infer/predict (unobserved data)

"Supervised Learning"

learn to describe (the seen data)

"Unsupervised Learning"

Example: Predicting Basketball Ability

 $f: (x_{age}, x_{height}) \rightarrow [0,1]$

height

1.72m 1.59m 2.09m

• • •

age

True but unknown function

height

 $f^*(x \mid \mathscr{D})$

age

height

Estimated Function

About the data... Your connection to the algorithm is the data

the most important thing in the ML lifecycle

Need to know:

- where does the existing data come from?
- where will the new data come from?

We assume the data is drawn i.i.d.

data = {
$$s_1, s_2, ..., s_n$$
} $s \sim p(s)$

- from the same distribution.

We assume all existing data and all future data come

Danger: "Out-of-Distribution" samples / Distribution Shift

Possible Data Sources

Huge advantage for ML in Science: We can actually often come close to this with our high-fidelity simulators.

randomness

simulated cosmology

simulated fluid dynamics

simulated particle physics

How do we learn?

let the data guide you to the best one

- Once we have data we need to turn it into an algorithm?
- Idea: "Learning as Search" through a Space of Programs

Linear Separators

Piecewise Linear Separators

Examples

Complex Curved Areas

In order to start to learn, we need to be able to assess the performance of an algorithm: "risk" or "loss" (lower is better)

Algorithm mispredicts twice: "risk" 2/8: 25%

Assessing Performance

Learning Algorithm

to have a learning algorithm, that leads us there.

Various possibilities

- exhaustive search (discrete \mathscr{H})
- closed form solutions (rare)
- iterative optimization (mostly used)

Usually we have no idea, which hypothesis is the best, we need

Summary: Learning Framework

- gather and prepare data to be consumed by the machine
- propose search space of possible algorithms
- Define what a "good" even means, i.e.
 a performance measure
- provide a "learning algorithm" to select the best one

Example: Polynomial Regression Hypothesis Set: Polynomials

$(w_0, w_1, \dots, w_n) \rightarrow y = f(x) = \sum w_k x^k$

Risk: Mean Squared Error

$\frac{1}{N}\sum_{x}(y-f_w(x))^2$

Learning "Algorithm": exact

 $w_{\text{best}} = (X^T X)^{-1} X^T y \qquad X_{ik} = x_i^k$

(i-th data point, k-th power)

Neural Nets

Hypothesis Sets

Neural Nets are a a particularly interesting class to build hypothesis spaces with.

Build complexity by composing many very simple building blocks: the "artificial neuron"

Inputs

The Perceptron

A single neuron, binary output & linear decision boundaries

weight $\theta\left(\sum_{i} w_{i} x_{i} + b\right)$

bias

The Perceptron

It may be preferable to get more of a probabilistic interpretation of the decision (q(z = 1 | x), instead of a hard decision.

abrizio Gilardi 💬 @fgilardi · Oct 29, 2018 guys pretend they're doing **machine learning** but they're just running 1↓ 4 ♡ 29

0.5 0.75 0.25

Beyond the Perceptron

A bit boring, can we do something more complicated?

inputs

output

Instead of a single neuron we can combine the results of many!

Going Complex

E.g. maybe combine these two decision boundaries?

E.g. maybe combine these two decision boundaries?

Success!

Linear Combination of non-Linear decisions yield complex decision boundaries

What do we gain?

By combining non-linearly activating neurons, things don't get only a little better. We gain a lot!

Neural Networks with a single hidden layer are universal function approximators!

Activation Functions

a sigmoid like in the classic perceptron.

In practice, many use the simplest one you could think of:

The rectifying linear unit (ReLU)

- UFA is achieved with any non-linear activation function, not only

How big should we go?

With increasing size you get a better chance that the actual algorithm you are looking for lives within the hypothesis set.

Bias: the loss $L(h_{\min})$ of the overall best function $\bar{h} \in \mathcal{H}$

$$h_{\min} = \bar{h} = \mathbb{E}_D h^*$$

An argument to make the hypothesis set as big as possible

But should we really?

"With four parameters I can fit an elephant, and with five I can make him wiggle his trunk." - John von Neumann

Risk Functions

The Risk we want

In statistical learning we are interested in the expected performance of the algorithm on <u>future</u> data.

With assumption of i.i.d. distribution of data:

Distribution of possible inputs

Performance of the hypothesis for a specific input $L(h) = \mathbb{E}_{p(s)}L(s,h)$

The Risk we can get

While we don't have p(s), we do have samples $s \sim p(s) \rightarrow we$ can only estimate the risk **empirically as a proxy!**

$\bar{L} = \int_{S} p(s)L(s,h) \to \hat{L} = \frac{1}{N} \sum_{i} L(s_{i},h)$

This switch between what we want and what we can get has tricky consequences

But, we have to keep in mind that it's just a proxy that depends **training dataset** we have!

But, we have to keep in mind that it's just a proxy that depends **training dataset** we have!

But, we have to keep in mind that it's just a proxy that depends **training dataset** we have!

But, we have to keep in mind that it's just a proxy that depends training dataset we have!

In empirical risk minimization, the selected final hypothesis is **distributed** around the actual best hypothesis in the set

Variance: spread of the distribution of h^* in \mathcal{H}

True Loss of h^* will be worse than the best possible one in \mathcal{H} (Bias)

 $L_{h^*} = L_{\text{bias}} + \Delta L_{\text{var}}$

Hypothesis Size Complexity

With more data it starts pointing in the same direction

An argument to make the hypothesis set as small as possible

Bias Variance Tradeoff

We have now two competing forces

- make the model space as big as possible: reduce bias
- constrain the model space: reduce variance

"Size" of the Hypothesis Space

Big Networks require big data!

If you don't have enough of it, you simply cannot afford to train a billion parameter model!

Small Data

Big Data

Both Bias and Variance talk about the true risk. But we found the final hypothesis through minimizing the empirical risk

What is the true risk of our hypothesis?

True Risk

Empirical Risk

The value of we measure as empirical risk isn't reliable

Why? The Data would be used for two things at once: selecting the hypothesis (based on risk)

- estimating the performance of the hypothesis

Once a metric becomes a target it ceases to be a good measure

Goodhart's Law

Charles Goodhart

Upshot

We should thus adapt our learning framework to include a procedure to reliably estimate the generalization performance

Data Split

The data should we split into three categories for a proper ML workflow

Use to pick a $h^* \in \mathcal{H}$, i.e. ERM

Use to produce a performance estimate

Data Split

The validation data is (for now) independent of the selection procedure of h^* , so it's a valid performance estimate again

Note the x-axis, these are different (but related) plots

- We can monitor it during training and across Hypothesis Sets

A Temptation

When monitoring the validation loss, we're tempted to use it to flip-flop. Instead of taking the final model from ERM, we could:

- take any other model from this run ("early stopping")
- switch to a better hypothesis set ("hyperparameter tuning")

Choosing the right Hypothesis Set

hypothesis set & hypothesis selection

> final (once!) model performance estimate

If we want to use the validation risk to select the model, we need to split the data in three ways to avoid double dipping

The ML Workflow

Training ML systems is a highly iterative process. Many small adjustments in e.g. training parameters, experiments with different models, ...

Overall it looks like this:

Optimization

Iterative Optimization Closed form solutions are rare, most often we use iterative optimization: improve

learn by revisiting the data often & adjusting

An Iterative Training Loop h = initial_guess() for n in range(steps): examples $\sim p(data)$ risk = evaluate(h, examples) adjustment = react(risk, h) h = new_hypo(h, adjustment)

If we can improve a little bit each time eventually we find a good solution

Gradient Descent

A natural idea is to minimizing the loss by walking downhill

 $\leftarrow \theta - \lambda V_{\theta}L$

Too (s)Low

Tuning the Learning Rate

Optimal

Too Large

Stochastic Gradient Descent

Evaluating the loss on a small "mini-batch" instead of the full data: useful noise to jump over e.g. local minima.

Remember: actual goal is generalization not training loss

Optimizing a simple Neural Net

Optimizers

Many additional tricks & nuances in practical optimization algorithms to improve convergence for non-convex problems

- Momentum: keep historical
- Adaptive Learning Rate:
 accelerate in flat areas

Adam Optimizer is a good default

