
Lukas Heinrich, TUM

Intro to ML I
CERN School of Computing 2023

Why ML?

 

On the face of it: no ML to be seen

Turns out, this is not so easy 
and ML can help a lot!

Why ML for Fundamental Physics

p(theory |data) =
p(data | theory)p(theory)

p(data)

In a way, this is what we do:

It’s often impossible to get closed-form predictions
Complex Data

<latexit sha1_base64="YYXKvsfgvfJcM7DJ08GIPGA1e5U=">AAACOXicbVDLSgMxFM3UV62vqks3wSK0mzIjvjZC0Y3LCvaBnVIyadqGZjJDckdox/ktN/6FO8GNC0Xc+gOmD0FbDwROzj2Xe+/xQsE12PazlVpYXFpeSa9m1tY3Nrey2ztVHUSKsgoNRKDqHtFMcMkqwEGweqgY8T3Bal7/clSv3TGleSBvYBCypk+6knc4JWCkVrYc5l2fQE/5cZsASe5/ftBjgRokBXyOXS6hdYtnncNCmB/O+VvZnF20x8DzxJmSHJqi3Mo+ue2ARj6TQAXRuuHYITRjooBTwZKMG2kWEtonXdYwVBKf6WY8vjzBB0Zp406gzJOAx+rvjpj4Wg98zzhHe+rZ2kj8r9aIoHPWjLkMI2CSTgZ1IoEhwKMYcZsrRkEMDCFUcbMrpj2iCAUTdsaE4MyePE+qh0XnpHh8fZQrXUzjSKM9tI/yyEGnqISuUBlVEEUP6AW9oXfr0Xq1PqzPiTVlTXt20R9YX9/Q7q9b</latexit>

p(data|theory) =
Z

Z
p(data|z)p(z|theory)

 : intermediate unobserved physics z

often completely intractable

Goal: bring the data into a form that 
is easier to understand and interpret

Pattern Recognition

5

Hits

Tracks

Energy Cells

Energy Clusters

E Clusters & Tracks

Particles

E Clusters

Jets (~ parton)

Particles

Resonances

Particle Physics in a Nutshell

6
Low-Level 

Data

High-Level 
Concept

reconstruct high level concepts 
from low-level, high-dim data

generate low-level, high-dim data 
from high-level concepts

 
Not obvious what the most important patterns are to extract

the most knowledge from the data.

Pattern Recognition

It’s an optimization problem 
(ML excels at this)

2201.08187

better

ML Systems are Good at Both

8

street style photo of a woman selling pho 
at a Vietnamese street market, 

sunset, shot on fujifilm

Low-Level 
Data

High-Level 
Concept

This is a picture of Barack Obama. 
His foot is positioned on the right side of the scale. 

The scale will show a higher weight.

reconstruct high level concepts 
from low-level, high-dim data

generate low-level, high-dim data 
from high-level concepts

What does it mean to learn?

Colloquially the terms “Artificial Intelligence”, “Machine
Learning” and “Deep Learning” are often used interchangably

 

Defining the Terms

Is there a difference?

Artificial Intelligence

Deep 
Learning

Machine 
Learning

Artificial 
Intelligence

AI: make computers act in an “intelligent” way 
 (e.g. via rules, reasoning, symbol manipulation …)

ML: approach to AI that uses data to generate 
 the “intelligent” algorithms

DL: subset of ML that aims at complex pipelines, 
 work on low-level data (e.g. pixels)

Machine Learning

data learned algorithmLearning 
System

What kind of Algorithms ?

Two broad classes of algorithms we would like

learn to describe 
(the seen data)

learn to infer/predict 
(unobserved data)

“Supervised Learning” “Unsupervised Learning”

Example: Predicting Basketball Ability

age

height

f : (xage, xheight) → [0,1]
Good 🏀height age

1.72m 26y
1.59m 37y
2.09m 17y

… … …

True but unknown function

f*(x |𝒟)

Empirical Data Estimated Function

age

height

age

height

About the data…
Your connection to the algorithm is the data

• the most important thing in the ML lifecycle 

Need to know:

• where does the existing data 
come from?

• where will the new data 
come from?

[src]

https://www.industry-analytics.de/wp-content/uploads/2017/10/Data-is-the-new-oil.jpg

The dominant Paradigm: Statistical Learning
We assume the data is drawn i.i.d.

We assume all existing data and all future data come
from the same distribution.

• Danger: “Out-of-Distribution” samples / Distribution Shift

identical
independent distributed

 data = {s1, s2, …, sn} s ∼ p(s)

 
Huge advantage for ML in Science: We can actually
often come close to this with our high-fidelity simulators.

Possible Data Sources

simulatorrandomness

simulated cosmology simulated fluid dynamics simulated particle physics

data

How do we learn?
Once we have data we need to turn it into an algorithm?

Idea: “Learning as Search” through a Space of Programs

• let the data guide you to the best one

Start

End

data

data

data

Examples

Linear Separators Piecewise Linear
Separators

Complex Curved 
Areas

In order to start to learn, we need to be able to assess the
performance of an algorithm: “risk” or “loss” (lower is better)

Assessing Performance

Algorithm mispredicts twice: 
“risk” 2/8: 25%

age

height

Learning Goal 
“Minimize the Risk”

h* = argminℋL(h)

Learning Algorithm
Usually we have no idea, which hypothesis is the best, we need
to have a learning algorithm, that leads us there.  
 
Various possibilities

• exhaustive search (discrete)

• closed form solutions (rare)

• iterative optimization (mostly used)

ℋ

Start

End

Summary: Learning Framework

• gather and prepare data 
to be consumed by the machine

• propose search space of 
possible algorithms

• Define what a “good” even means, i.e. 
a performance measure

• provide a “learning algorithm” 
to select the best one

Data Hypothesis 
Set

Learning 
algorithm

Final 
Hypothsis

Objective

Example: Polynomial Regression

(w0, w1, …, wn) → y = f(x) = ∑
k

wkxk

1
N ∑

i

(y − fw(x))2

wbest = (XTX)−1XTy Xik = xk
i

(i-th data point, k-th power)

Learning “Algorithm”: exact

Risk: Mean Squared Error

Hypothesis Set: Polynomials

Neural Nets

Hypothesis Sets
Neural Nets are a a particularly interesting class to build
hypothesis spaces with. 
 
Build complexity by composing many very simple building
blocks: the “artificial neuron”

The Perceptron
 
A single neuron, binary output & linear decision boundaries

θ (∑i wixi + b)
age

height

weight

bias

The Perceptron
It may be preferable to get more of a probabilistic interpretation
of the decision (, instead of a hard decision.
q(z = 1 |x)

σ (∑i wixi + b)

σ(a) =
1

1 + e−a

0.5

age

height

0.25 0.75

Beyond the Perceptron
A bit boring, can we do something more complicated?

Instead of a single neuron we can combine the results of many!

inputs

output

Going Complex

E.g. maybe combine these two decision boundaries?

Going Complex

E.g. maybe combine these two decision boundaries?

Going Complex

E.g. maybe combine these two decision boundaries?

Success!

Linear Combination of non-Linear decisions 
yield complex decision boundaries

What do we gain?
By combining non-linearly activating neurons, things don’t get
only a little better. We gain a lot!

…
hidden layer

Neural Networks with a single hidden layer are
universal function approximators!

input

Linear

Linear

Activation

Activation

Activation Functions
 
UFA is achieved with any non-linear activation function, not only
a sigmoid like in the classic perceptron.

 
In practice, many use the simplest one you could think of:

The rectifying linear unit (ReLU)

With increasing size you get a better chance that the actual
algorithm you are looking for lives within the hypothesis set.

How big should we go?

2
4

16
32

64

f(x)

hmin = h̄ = 𝔼Dh*

Bias: the loss of the 
overall best function

L(hmin)
h̄ ∈ ℋ

An argument to make the hypothesis set as big as possible

But should we really?
"With four parameters I can fit an elephant, and

with five I can make him wiggle his trunk."  
- John von Neumann

Risk Functions

The Risk we want
In statistical learning we are interested in the expected
performance of the algorithm on future data. 
 
With assumption of i.i.d. distribution of data:

L(h) = 𝔼p(s)L(s, h)
Performance of the hypothesis 

for a specific input

Distribution of 
possible inputs

The Risk we can get

While we don’t have , we do have samples  
→ we can only estimate the risk empirically as a proxy!

p(s) s ∼ p(s)

L̄ = ∫S
p(s)L(s, h) → L̂ =

1
N ∑

i

L(si, h)
L(D1)

L(D2)
L(D3)

L(D4)

L̄

This switch between what we want and 
what we can get has tricky consequences

Empirical Risk Minimization
 
But, we have to keep in mind that it’s just a proxy that depends
training dataset we have!

ϕ

L = 𝔼sL(s)
Best true 

performance

Empirical Risk Minimization

ϕ

L = 𝔼sL(s)
Best true 

performance

 
But, we have to keep in mind that it’s just a proxy that depends
training dataset we have!

Empirical Risk Minimization

ϕ

L = 𝔼sL(s)
LMC(D2)

Best empirical 
performance of 

Dataset D2

Best true 
performance

 
But, we have to keep in mind that it’s just a proxy that depends
training dataset we have!

Empirical Risk Minimization

ϕ

L = 𝔼sL(s)
LMC(D1)

LMC(D2)
Best empirical 
performance of 

Dataset D1

Best empirical 
performance of 

Dataset D2

Best true 
performance

 
But, we have to keep in mind that it’s just a proxy that depends
training dataset we have!

Empirical Risk Minimization
In empirical risk minimization, the selected final hypothesis is
distributed around the actual best hypothesis in the set

True Loss of will be worse than 
the best possible one in (Bias)

h*
ℋ h̄

L̄h* = L̄bias + ΔLvar

Variance: spread of the 
distribution of in h* ℋ

Increases with , decreases with ℋ N

Variance is low 
if you have

nowhere to go

With more data it 
starts pointing in 
the same directionDataset 

Size

Hypothesis 
Size Complexity

ftarget(x)

ftarget(x)ftarget(x)

An argument to make the hypothesis set as small as possible

Bias Variance Tradeoff
We have now two competing forces

• make the model space as big as possible: reduce bias

• constrain the model space: reduce variance

“Size” of the 
Hypothesis Space

Bias

Variance

True Loss of the 
selected hypothesis

optimal  
hypothesis size

Big Networks require big data!
If you don’t have enough of it, you simply cannot 

afford to train a billion parameter model!

Bias

Variance

Bias

Variance

True Loss of the 
selected hypothesis

Small Data

Big Data

more data → bigger models possible

Empirical Risk Minimization
Both Bias and Variance talk about the true risk. But we found
the final hypothesis through minimizing the empirical risk

Bias

(due to) 
Variance

Empirical 
Risk

Loss True Risk

h*

What is the true risk of our hypothesis?

ℋ
The value of we measure 
as empirical risk isn’t reliable

Generalization 
Gap

Why?
The Data would be used for two things at once:

• selecting the hypothesis (based on risk)

• estimating the performance of the hypothesis

Charles Goodhart

Goodhart’s Law

Once a metric becomes a target 
it ceases to be a good measure

Upshot
We should thus adapt our learning framework to include a
procedure to reliably estimate the generalization performance

Data Hypothesis 
Set

Learning 
algorithm

Final 
Hypothsis

Objective

Performance 
Estimate

Data Split

The data should we split into three categories 
for a proper ML workflow

Data

Train Validation

Use to pick a 
, i.e. ERMh* ∈ ℋ

Use to produce a  
performance estimate

Data Split
The validation data is (for now) independent of the selection
procedure of , so it’s a valid performance estimate again

We can monitor it during training and across Hypothesis Sets

h*

Training  
Loss

Validation
Loss

Training  
Loss

Validation
Loss

Time Hypothesis Sets
Note the x-axis, these are different (but related) plots

A Temptation
 
When monitoring the validation loss, we’re tempted to use it to
flip-flop. Instead of taking the final model from ERM, we could:

• take any other model from 
this run (“early stopping”)

• switch to a better hypothesis set 
(“hyperparameter tuning”)

Iteration Steps

Training  
Loss

Validation
Loss

Iteration Steps

why this…

… if we can have THIS!

 
If we want to use the validation risk to select the model, we
need to split the data in three ways to avoid double dipping

Choosing the right Hypothesis Set

Train Risk

Test RiskTraining 
Data

Testing 
Data

All Data

Valid. 
Data

Valid Risk

hypothesis set & 
hypothesis selection

final (once!) model 
performance estimate

Training ML systems is a highly iterative process. Many small adjustments in
e.g. training parameters, experiments with different models, .. 

Overall it looks like this:

 

The ML Workflow

Write Code Train Validation Test Deploy

adjust training parameters

adjust models / switch architecture

final independent 
performance estimate

f ̂ϕ(x) f ̂ϕ(x)

L test
MC

Optimization

Iterative Optimization
Closed form solutions are rare, most often we use 
iterative optimization: improve 
 
learn by revisiting the data often & adjusting

h = initial_guess()
for n in range(steps):

examples ~ p(data)
risk = evaluate(h, examples)
adjustment = react(risk, h)
h = new_hypo(h, adjustment)

An Iterative 
Training Loop

If we can improve a little bit each time
eventually we find a good solution

Gradient Descent
 
A natural idea is to minimizing the loss by walking downhill

θnew ← θ − λ∇θL
our small adjustment

this way is 
“up”

go this 
way!

gradient

hypotheses

risk minimizer 
h*

Tuning the Learning Rate

Too (s)Low Too LargeOptimal

Evaluating the loss on a small “mini-batch” instead of the
full data: useful noise to jump over e.g. local minima.  
 
Remember: actual goal is generalization not training loss

Stochastic Gradient Descent

N/2

N/4

N/8

Optimizing a simple Neural Net

Optimizers
 
Many additional tricks & nuances in practical optimization
algorithms to improve convergence for non-convex problems 

• Momentum: 
keep historical

• Adaptive Learning Rate: 
accelerate in flat areas

Adam Optimizer is a good default

Summary

Data Hypothesis 
Set

Learning 
algorithm

Final 
Hypothsis

Objective

Performance 
Estimate

Empirical Risk Minimization

…

Neural Networks

Bias-Variance & Generalization

Train Risk

Test Risk

Valid Risk

