
Lukas Heinrich, TUM

Intro to ML II
CERN School of Computing 2023

1

Supervised Learning

2

What we need

… Train Risk

Test Risk

Valid Risk

We need to now formulate the actual objectives for 
the tasks we’re interested in

Let’s start with supervised learning

We have the general ingredients for learning

3

Latent Concepts
We interpret the real world data we perceive / measure to
be a realization of an “underlying concept”

 
We observe the data but the concept is “latent”

4

Latent Concepts
We interpret the real world data we perceive / measure to
be a realization of an “underlying concept”

concept: “cat”

realization: pixel values in image

5

We interpret the real world data we perceive / measure to
be a realization of an “underlying concept” (or “label”)

concept: “true weight”

realization: reading on the scale

Latent Concepts

6

 
In statistical learning, we assume that concept and
realization are linked through a a conditional probability:

z
x

x ∼ p(x |z) catz =

Latent Concepts

many realizations true value
7

 
In statistical learning, we assume that concept and
realization are linked through a a conditional probability:

z
x

x ∼ p(x |z)

true value

2.50 kgz =
2.51kg

2.47kg2.56kg

2.53kg

Latent Concepts

many realizations
8

Classic Goal in Statistics: try to find out (“infer”) the latent
values given the observed values, i.e. the data x

Inference

p(z |x) =
p(x |z)
p(x)

p(z)

Bayes’ Theorem

likelihood prior

evidence

posterior

9

 
We name inference based on the type of the latent variable

Inference by another name

“cat”
z ∈ {z0, z1…zn}

finite set = “Classification”

2.50
z ∈ ℝ

real values: “Regression”
10

 
To do standard statistics, we’d need to know what the
true data-generating process is , but we don’t!p(x |z), p(z)

Statistics vs Machine Learning

“cat”

“dog”

x z

p(image |animal) = ?
p(animal) = ?

p(animal | image)
But we don’t even have:

We want:

11

Apply “learning as search”. If we don’t know maybe
we can approximate it?  
 
Look for the best candidate family of candidate
distributions

p(z |x)

qϕ(z |x)

Solution

p(z |x)qϕ*(z |x)qϕ(z |x)

“Variational Inference”

12

 
To define a family of distributions, we can use

• well-known densities (e.g. Gaussian, …)

• compute parameters as functions of data:

 
→

fϕ(x)

qϕ(z |x) = q(z |θ = fϕ(x))

From Functions to Densities

θ

x

z

q(z |θ) fϕ(x)

13

Examples
Distribution Type

Gaussian 
𝒩(z |μ, σ)

Parameters as function of data

μ = fϕ(x) log σ = gϕ(x)

Bernoulli 
Bern(z |θ) θ = fϕ(x)

10

θ

σ

μ

Classification

Regression

Mean Variance

Probability of z=1

Categorical 
Cat(z |{p1…pn})

{pi}, s . t . ∑
i

pi = 1

10 2
14

Soft Perceptron was our first example

age

height

iso-contours 
w ⋅ x + b = const .

10

10

10

qw,b(z |x) = Ber(z |σ(wx + b))

15

 
Our goal is to approximate . Intuitively, we some
notion of distance between distributions  
 
 
 
Learning as  
minimization of that 
distance

p(z |x)
d(p, qϕ)

Defining an Objective

qϕ(z |x) p(z |x)qϕ*(z |x)

ϕ* = argminϕd(p, qϕ)
16

Distributions are extended objects, not single point
Distances between Distributions

DKL(p | |q) = ∫ dx p(x) log
p(x)
q(x)

A common choice: 
“KL Distance”

Kullback-Leibler Divergence

same distance in means but which pair is “closer”?

17

 
So a Natural Objective: get good inference performance
across all the possible data we might encounter. 
 
I.e. minimize:

A natural objective

L(ϕ) = 𝔼p(x)DKL(p(z |x) | |qϕ(z |x))

True Inference 
Solution

Our ApproximationAverage over 
all (likely) data

18

 
Ok, but it seems like to compute the objective we already
need to know the answer?

A natural objective

L(ϕ) = 𝔼p(x)DKL(p(z |x) | |qϕ(z |x))

= 𝔼p(x)𝔼p(z|x) log
p(z |x)
qϕ(z |x)

19

 
Amazingly it all drops out! In the end, we get something we
can estimate purely from data pairs - which we have(xi, zi)

A natural objective

L(ϕ) = 𝔼x𝔼p(z|x) log
p(z |x)
qϕ(z |x)

= − 𝔼p(x,z) log qϕ(z |x)

This is called the “Cross-Entropy” Loss and is most 
used for supervised learning

20

 
CE sometimes hides under another name / formula:

Gaussians: “Mean Squared Error” (MSE)

 
Binary Classification: “Binary Cross Entropy” (BCE)

Alternative Names

𝔼p(x,z)(z − μϕ(x))2

𝔼p(x,z)[z log θϕ(x) + (1 − z)log(1 − θϕ(x))]

21

For UFA the type of non-linearity was irrelevant, now we
need to at least be careful with the output activation

Output Activations

Regression
μϕ(x) ∈ ℝ

No activation!

Binary Classification Multi-class Classification
θ(x) ∈ [0,1] pi(x) ≥ 0 s . t . ∑ pi = 1

σ(x) =
1

1 + e−x softmax(x) =
exi

∑i exi

input

N/A sigmoid “softmax”

Linear

Linear

ReLU

input

Linear

Linear

ReLU

input

Linear

Linear

ReLU

22

Deep Learning  
Inductive Bias & Friends

23

Two issues with shallow networks

Shallow Networks are great (universal, even!), 
but there are two issues:

• to actually model complex functions you need a lot of 
neurons, and i.e. parameters

• sometimes we know quite a bit about our target
function, should we really search in a universal space?

24

Deep Learning
A lot of classic machine learning was done on highly
preprocessed data (“engineered features”) 
 
 
 
 
 
 
didn’t require (and couldn’t afford) 
very complex hypothesis spaces

25

Deep Learning
More ambitious: Can we learn the features as well?

sepal width

sepal length

petal width

petal length

prediction

Humans ML

prediction

ML
26

Deep Learning Considerations
 
To pull this off you will need

• much more complex functions for e.g. pixels cat| 
→bigger hypothesis sets

• sufficient amount of data to be able to afford them 
→ remember bias variance tradeoff

• … or an affective way too constrain the search space 
→ inductive bias

→

27

 
How should we grow our neural networks? Wide of Deep?

Growing Neural Networks

input

wide layer

output

Both add parameters, but what about the 
actual functions they can approximate?

input

wide layer

output

wide layer

wide layer

28

Benefits of Depth

Deep Networks are much more effective 
at approximating complex functions.

Complexity

Parameters

Deep 
Networks

Shallow 
Networks

29

Deep Learning
The assumption is that similar to us, effective machine-
learned reasoning should go through layers of abstraction

Setosa

Color Detector

Edge Detector

Contrast
Detector

Curve
Classification

Leaf
LocatorForeground

Background

Overall
Classification

Our inner
workings?

sepal width

sepal length

petal width

petal length

prediction

“Head” MLFeature Extractor ML
30

Deep Learning
We do see this, but care is needed to not overinterpret this

99.9% confidence that it’s a magpie
[src]

ML system has 99% confidence that 
this is a magpie … an actual magpie

31

https://blog.keras.io/how-convolutional-neural-networks-see-the-world.html

Gradients of Deep Programs

32

Gradient Descent needs… Gradients!
As neural networks become bigger & deeper, need to find a
way to compute them efficiently

f(x) = (t ∘ h ∘ g)(x) = t(h(g(x))) : ℝ4 → ℝ3

xg = g(x)h = h(g)t = t(h)

ℝ4ℝ2ℝ6ℝ3

33

Gradient Descent needs… Gradients!
We want to compute the Jacobian of the deep composition
of functions. But a naive approach scales badly

∂f
∂x

=
∂t
∂g

∂g
∂h

∂h
∂x

∂t
∂g

∂g
∂h

∂h
∂x

=
∂t
∂g

34

Instead of Matrix-Matrix products, we can compute more
cheap vector-Matrix products and compute a row at a time

Matrix-Free Computation

00= 1

00

1=
∂t
∂g

∂g
∂h

∂h
∂x

35

Matrix-Free Computation

= 00

1

=
∂g
∂h

∂h
∂x

Instead of Matrix-Matrix products, we can compute more
cheap vector-Matrix products and compute a row at a time

36

Matrix-Free Computation

= 00

1

=
∂g
∂h

∂h
∂x

Instead of Matrix-Matrix products, we can compute more
cheap vector-Matrix products and compute a row at a time

37

Matrix-Free Computation

= 00

1

=
∂h
∂x

Instead of Matrix-Matrix products, we can compute more
cheap vector-Matrix products and compute a row at a time

38

Matrix-Free Computation

= 00

1

=
∂h
∂x

Instead of Matrix-Matrix products, we can compute more
cheap vector-Matrix products and compute a row at a time

39

Matrix-Free Computation

= 00

1

=

Instead of Matrix-Matrix products, we can compute more
cheap vector-Matrix products and compute a row at a time

40

Automatic Differentiation
The approach can be generalized to arbitrary computational
graphs: The Backpropagation Algorithm

y1 y2 y3 y3

x1 x2 x3

z1 z2

Jy→z =
∂zi

∂yj

gy = (gzJ)i = ∑
k

gz
kJki gy

i = (gzJ)i = ∑
c∈children(yi)

gz
c

∂zc

∂zi

=

Jx→y =
∂yi

∂xj

Jy→z =
∂zi

∂yj
gz gy =

∂L
∂y

41

Putting it all Together

42

ML Frameworks

ML Frameworks like PyTorch, Tensorflow, JAX put a lot of the
pieces together to provide a performance setup

43

A full training Loop

Objective

Hypothesis Set fϕ(x)

L(s) = L(fϕ(x), z)

Learning 
Algorithm

argminϕLMC

Trained 
Model

f ̂ϕ(x)

Gradient 
Computation

∇ϕLMC(ϕ)

Data s ∼ p(s)

44

Inductive Bias & Architectures

45

Beyond Depth

Can we push this further, should we move away from
universal function approximators?

• bias variance tradeoff: reduce as much as you can

 
General Idea: should match data modality & task

ℋ

ℋ

46

Inductive Bias

Start

End

Target

x

no structure

biased 
models

Er
ro

r R
at

e

physics-biased 
models

unstructured 
models

If we can throw out irrelevant functions, which we know
can’t be the solution, we bias our inductive process
towards good solution (here: bias is good)

47

The Architecture Zoo

48

Convolutional Neural Nets
Convolutional Neural Networks are (approximately)
translationally invariant

 
 

One of the early successes of deep learning in the 80s

Is there a cat in the picture? How about now?

49

Convolutions
Two key ideas lead to convolutions as a building block

• local connectivity and weight sharing

i-1

i

i+1

i =
i-1

i

i+1

i =

yi = ∑
j=0…N

wijxj

Standard Linear Layer Convolution

yi = ∑
o=−1,0,1

woxi+o

50

Convolutions

=

Equivalent to a filter that slides across the input

51

We can extend this idea to higher dimensions:

2D Convolutions

52

2D Convolutions
We can extend this idea to higher dimensions:

53

2D Convolutions
We can extend this idea to higher dimensions:

54

2D Convolutions
We can extend this idea to higher dimensions:

55

Local Pattern Detectors
 
The filters are like mini-neural nets extracting features for a
local patch: e.g. edges, curves, texture, …

-1 0 1
-1 0 1
-1 0 1

-1 -1 -1
0 0 0
1 1 1

Horizontal Edges

Vertical Edges

0 1 0
1 1 1
0 1 0

Blurring

0 0 0
0 -1 0
0 0 0

Inversion

56

Convolutional Layers
 
To build up networks, we can extract many 
features with multiple kernels:

-1 0 1
-1 0 1
-1 0 1

-1 -1 -1
0 0 0
1 1 1

0 1 0
1 1 1
0 1 0

0 0 0
0 -1 0
0 0 0

height

width

channel

OutputInput

input channels: 1

output channels: 4

kernel size = 3

stride = 1

padding = 157

Pooling
Role of convolutions is to extract local features. Pooling
summarizes a local patch in terms of those features

 1 15 4 3  
 5 10 12 13  
11 6 16 7  
 8 14 9 2

15 13  
14 16

Average Pooling y =
1
N ∑

v∈view(y)

xv

Maximum Pooling y = argmaxv∈view(y)xv

58

Building CNNs
The full CNN then implements the Deep Learning idea:
learned feature extraction, followed by simple MLP head 

MLP Head

feature extraction

task specific 
head

Raw Input

59

Graph Neural Nets
 
CNNs excel at data that “lives” on a regular grid. Feature
extraction by combining information from neighborhood.

 
But a lot of data is more irregular. 
 
A local neighborhood defined 
more by relationships than a grid

60

Graph Data
Graphs can still be represented by Matrices, but the
processing of graphs must not rely on (arbitrary) order

Permutation Invariance

1

2

3

4

5

6

X ∈ ℝn×f

61

Graph Data
Graphs can still be represented by Matrices, but the
processing of graphs must not rely on (arbitrary) order

5

6

4

3

1

2

X ∈ ℝn×f

Permutation Invariance62

Graph Convolutions
 
Graph Convolutions generalize CNN convolutions to pass 
messages from neighbors as defined in the graph 

(+ +)
w

1
2

3

45

S X W

w

………
…

=

1
2

45

3

63

GNNs
 
As in CNNs, we can stack Graph processing into a stack of
feature extraction, and then follow up high-level “head”

CNN GNN
64

Neural Nets are functions of the input & network parameters

In their most basic form, both inputs are static, but some of
the most powerful architectures allow them to be dynamic

Dynamic Networks

f(x, ϕ)

65

Often data is variable in size. Recurrent neural networks deal
with it like a computer: 
 
Consume data step-by-step and keeping the information
within a memory component

Recurrent Neural Networks

von Neuman66

 
RNNs learn an update function for a memory vector, which
can be applied many times until the inputs are exhausted

Recurrent Neural Networks

old memory new memoryRNN Cell

input

output

67

Active Neurons and Gates
RNNs interact with memory like a “soft” computer reading
and writing to memory via “gates”, i.e. multiplicative masks

x

=

∑

x

=

∑

Hard Read Soft Read68

Can be applied to arbitrary length sequences
Recurrent Neural Networks

ϕ ϕ…

x1 xn

y1 yn

h1 ϕ

x2

y2

h2 ϕ

x3

y3

h3 hn−1 hnh0

69

RNN in a time before ChatGPT

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

70

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

 
The notion of gating / dynamically controlling the flow of
information is also key to one of the most impactful ideas 
in Deep Learning: Attention

Attention Mechanism

71

Standard Neural Nets, have globally fixed data processing 
Attention Mechanisms add a data-dependent processing

Attention Mechanism

y = Wx y = A(x) x
Standard Neural Net Network with attention

weights weights

data data input data influences 
the weights at 

the time of processingweights are fixed 
by the training data 

input is just passed through

72

Example: when representing words with added context,
decide dynamically which other words are relevant

Attention in Language

Attention weights
Self Attention 

computed from 
words themselves

Words

Words with 
context info

Final Prediction

73

Attention is the key idea in transformer networks that have 
e.g. largely replaced RNN-based models for text

Transformers

74

Physicists were quick to add their own symmetries to inject
physics inductive bias to neural networks

Phyics Inspired Architectures

Hamiltonian Neural NetsLorentz-InvarianceNets with Jet Structure

arXiv:1906.01563arXiv:2006.04780arXiv:1702.00748
75

Summary

Inductive bias
Benefits of Depth

Cross Entropy Loss

L(ϕ) = − 𝔼p(x,z) log qϕ(z |x)

Gradients via 
Backprop

76

