Intro to ML Il

CERN School of Computing 2023

Lukas Heinrich, TUM

Supervised Learning

What we need

We have the general ingredients for learning

way!
< W this way is
I “up”

We need to now formulate the actual objectives for
the tasks we’re interested In

Let’s start with supervised learning

Latent Concepts

We interpret the real world data we perceive / measure to
be a realization of an “underlying concept”

We observe the data but the concept is “latent”

latent |'lert(a)nt |

adjective

(of a quality or state) existing but not yet developed or manifest; hidden or
concealed: they have a huge reserve of latent talent.

Latent Concepts

We interpret the real world data we perceive / measure to
be a realization of an “underlying concept”

concept: “cat”

realization: pixel values in Image

Latent Concepts

We interpret the real world data we perceive / measure to
be a realization of an “underlying concept” (or “label’)

concept: “true weight”

realization: reading on the scale

Latent Concepts

In statistical learning, we assume that concept z and
realization x are linked through a a conditional probability:

x~px[z) z=cat

many realizations true value

Latent Concepts

In statistical learning, we assume that concept z and
realization x are linked through a a conditional probability:

x~px[z) z=2.50kg

many realizations true value

Inference

Classic Goal in Statistics: try to find out (“infer”) the latent
values given the observed values, I.e. the data x

likelihood prior

pln = B2 by
B

evidence

Bayes’ Theorem

Inference by another name

We name inference based on the type of the latent variable

cat”

ZE {ZO,Zl-..Zn} ZE !

finite set = “Classification” real values: “Regression”

10

Statistics vs Machine Learning

To do standard statistics, we’d need to know what the
true data-generating process is p(x | z), p(z), but we don’t!

We want:

p(animal | 1mage)

But we don’t even have:

p(image | animal) = ?

p(animal) = ?

11

Solution

Apply “learning as search”. If we don’t know p(z|x) maybe
we can approximate it?

Look for the best candidate family of candidate
distributions ¢,(z | x)

“Variational Inference”

From Functions to Densities

To define a family of distributions, we can use

* well-known densities (e.g. Gaussian, ...)
. compute parameters as functions of data: f¢(x)

- qyzl0) = qz|0=£,(0) aclo T

Examples

Distribution Type Parameters as function of data U
Gaussian Mean Variance
N (z|p., 0) p=Jy(x) logo = g,(x)
Bernou"i Probability of z=1
Bern(z | 6) 0 = f,(x)
Categorical Wwits S-t. Z p; =1
Cat(Z‘ {plpn}) i

14

Soft Perceptron was our first example

4,521 x) = Ber(z| o(wx + b))

> Iso-contours
— age
0 1 w-x+ b = const.

Defining an Objective

Our goal is to approximate p(z | x). Intuitively, we some
notion of distance between distributions d(p, q,)

4 e

Learning as
minimization of that
distance

¢* = argmin,d(p, q,)

Distances between Distributions
Distributions are extended objects, not single point

same distance in means but which pair is “closer”?

A common choice: - p(x)
“KL Distance” Dr(pllq) = J dx p(x) log q(x)

Kullback-Leibler Divergence

A natural objective

So a Natural Objective: get good inference performance
across all the possible data we might encounter.

l.e. minimize:

L(g) =Lk (X)DKL(P(Z [X) | |Q¢(Z [X))

S) ™~

Average over True Inference Our Approximation
all (likely) data Solution

A natural objective

Ok, but it seems like to compute the objective we already
need to know the answer?

L(¢) = &, \Dxr(p(z]| %) || g4z] X))
p(z|x)

= E_ +Esiig log
p(x)—p(z|x) Q¢(Z|X)

A natural objective

Amazingly it all drops out! In the end, we get something we
can estimate purely from data pairs (x;, z;) - which we have

L) = E.E i log 22

q5(z|x) = — Epp l0g gp(z] X)

This is called the “Cross-Entropy” Loss and is most
used for supervised learning

Alternative Names

CE sometimes hides under another name / formula:

Gaussians: “Mean Squared Error” (MSE)
2
[Ep(x,z)(z IR lu¢(x))
Binary Classification: “Binary Cross Entropy” (BCE)

E,plzlog6y(x) + (1 — 2)log(l — 6,(x))]

Output Activations

For UFA the type of non-linearity was irrelevant, now we
need to at least be careful with the output activation

Regression Binary Classification Multi-class Classification
=
lllllllllllll . 1 . Xi
No activation! 0(X) = softmax(x) =

e T

Deep Learning
Inductive Bias & Friends

Two i1ssues with shallow networks

Shallow Networks are great (universal, even!),
but there are two issues:

* to actually model complex functions you need a lot of
neurons, and I.e. parameters

* sometimes we know quite a bit about our target
function, should we really search in a universal space?

Deep Learning

A lot of classic machine learning was done on highly
preprocessed data (“engineered features”)

Samples
(instances, observations)

Petal

Sepal Petal €]
width length width

- 5.1 Setosa
2 4.9 3.0 1.4 0.2 Setosa
50 |64 |35 45 1.2 Versicolor JE\S
f J 3‘ e g
i" § 1>
£ i 150 | 5.9 3.0 5.0 1.8 Virginica
[] [] [] (] (L] []
Iris Versicolor Iris Setosa Iris Virginica

didn’t require (and couldn’t afford)
very complex hypothesis spaces

25

/

Features
(attributes, measurements, dimensions)

6
Sepal length

Deep Learning
More ambitious: Can we learn the features as well?

sepal width

petal width

sepal length
—

petal length

Humans ML

—

ML
26

Deep Learning Considerations

To pull this off you will need

 much more complex functions for e.g. pixels — cat|
—bigger hypothesis sets

e sufficient amount of data to be able to afford them
— remember bias variance tradeoft

* ... Or an affective way too constrain the search space
— Inductive bias

Growing Neural Networks

How should we grow our neural networks? Wide of Deep?

m wide layer

\ wide layer
wide layer

N _

| (]

A E—
| []

Both add parameters, but what about the
actual functions they can approximate®

28

Benefits of Depth

Deep Networks are much more effective
at approximating complex functions.

@oﬁo oo B

o@o

-20 -15 -10 -05

- deep 1341

shallow 1201
- shallow 2001
- shallow 6001
- shallow 28001

0

1000

2000

3000

4000
29

5000

Complexity

Deep ‘

Networks //

Networks

—»

Parameters

Deep Learning

The assumption is that similar to us, effective machine-
learned reasoning should go through layers of abstraction

* Our inner

, Color Detector wo rkin as 9

Contrast
Detector l Leaf ' l Overall l |
I Foreground l Locator Classification
Background Setosa
Edge Detector '
| Curve
Classification

sepal width

sepal length
—’ —’

petal width

—

petal length

Feature Extractor ML “Head” ML
30

Deep Learning
We do see this, but care Is needed to not overinterpret this

Line 17%

Show all 33 neurons.

These units are beginnil
Some look for different
“combing” (small perpe
very common but not pi
line-like features across
lines and later lines (m1:

Show all 12 neurons.

Color Center-Sur This is broad, catch-all cateaorv for units that seem to look
for repeating local patter

I textures.

ML system has 99% confidence that
this is a magpie

... an actual magpie

Show all 13 neurons.

SIrc

These units look for one Show all 12 neurons.

(typically opposite) on t
sensitive to the center t
Center-Surround (mixe
(mixed3b).

The tiny eye detectors, along with texture detectors for fur,
hair and skin developed at the previous layer enable these 31
early head detectors, which will continue to be refined in the

https://blog.keras.io/how-convolutional-neural-networks-see-the-world.html

Gradients of Deep Programs

Gradient Descent needs... Gradients!

As neural networks become bigger & deeper, need to find a
way to compute them efficiently

flx) = (to heg)(x) = th(g(x))) : R* —» R

Gradient Descent needs... Gradients!

We want to compute the Jacobian of the deep composition
of functions. But a naive approach scales badly

of ot dg oh
0x 0g oh ox
ot ot 0g oh

0g g oh ox

Matrix-Free Computation

Instead of Matrix-Matrix products, we can compute more
cheap vector-Matrix products and compute a row at a time

Matrix-Free Computation

Instead of Matrix-Matrix products, we can compute more
cheap vector-Matrix products and compute a row at a time

oh 0X

Matrix-Free Computation

Instead of Matrix-Matrix products, we can compute more
cheap vector-Matrix products and compute a row at a time

oh

0g
BEEE - BEEEEE ——
oh OX

Matrix-Free Computation

Instead of Matrix-Matrix products, we can compute more
cheap vector-Matrix products and compute a row at a time

oh
ox

Matrix-Free Computation

Instead of Matrix-Matrix products, we can compute more
cheap vector-Matrix products and compute a row at a time

Matrix-Free Computation

Instead of Matrix-Matrix products, we can compute more
cheap vector-Matrix products and compute a row at a time

CLIL]

Automatic Differentiation

The approach can be generalized to arbitrary computational
graphs: The Backpropagation Algorithm

7 J — % Y — 5_L
i - .ayj T o g, =2
. | ._ Y ox;
uS gias "EEE
y—z ayj
0
g =(g); = ;g,ffki §=6Ni=), & OZ

cechildren(y,)

Putting it all Together

ML Frameworks

ML Frameworks like PyTorch, Tensorflow, JAX put a lot of the
pieces together to provide a performance setup

def create_model(input_dim, output_dim):
return torch.nn.Sequential(
torch.nn.Linear(input_dim, 9),
torch.nn.RelLU(),

) hidden layer 1 hidden layer 2 hidden layer 3
input layer

torch.nn.Linear(9, 9),

= 7 NN 4
NS ST T 20 R Ve WISNT N AR R
‘;é};:gﬁ:f 0%‘{321.%“;,&':\2"@ .;:f S K ‘g\xzié};é%‘\é’}::ia () torch.nn.RelLU(),
S e B e SR S torch.nn.Linear(9, 9)
;?‘ .'. : 02;' .hﬂ‘i N &05’ ; "(:.3 S oﬂ Z, ‘32 “ % ""“g}\\ / j’;’:\% o o | ’
J :'Ej’ef”’?'*":@{"‘*‘:‘ég NG torch.nn.ReLU()
.;4 Ko 3‘\\\@\’- Zi ;-Qi\‘s@‘%a?&fﬁ&@%‘ %/’/) i i '
Y, \“‘" -, ‘v

. ,’-oé‘%‘:‘ ;E.q AN oA .." 27 / . .
.@}.@‘\\%‘%ﬁg%&%%i&\:.%//’ torch.nn. L}neal.’(9, output_dim),
‘&‘V%N\ﬂ/@‘\\\%\/ torch.nn.Sigmoid()

43

Hypothesis
Set
. .- Learnin
_’ algorithrsr’I

v

Final
Hypothsis

A full training Loop

l - Datas ~ p(s)

def learn(samples): |
features, labels = samples . Hypothesis Set /(%)
model = MyModel() \ Objective L(s) = L(f¢(x),z)
loss func = torch.nn.BCELoss()
opt = torch.optim.Adam(Learning argmin Ly

|
model.parameters(), lr = 1le-3 / Algorithm
)

A

i in range(steps):
predictions = model(samples)
loss = loss_func(predictions, labels) < Gradient V s Lyic(@)

loss.backward() Computation
opt.step()

opt.zero_grad() Trained
I ~
return model < Model f¢(x)

44

Inductive Bias & Architectures

Beyond Depth

Can we push this further, should we move away from
universal function approximators?

e bias variance tradeoff: reduce # as much as you can

General |dea: #Z should match data modality & task

Inductive Bias

If we can throw out irrelevant functions, which we know
can’t be the solution, we bias our inductive process
towards good solution (here: bias is good)

= .8 no structure
unstructured i
models E
S
LL]

biased
models

physics-biased
models

47

Convolutional Neural Nets

Convolutional Neural Networks are (approximately)
translationally invariant

Is there a cat in the picture? How about now?

One of the early successes of deep learning in the 80s

49

Convolutions
Two key ideas lead to convolutions as a building block

* |ocal connectivity and weight sharing

Standard Linear Layer Convolution

=

50

Convolutions

Equivalent to a filter that slides across the input

O 0 O O
O

]

O O O

O Q<i§‘
4#;00 O
oo O O

O 0 O ©O

a

00000
O0000QO

0]00]0)0]0,
00000

0]0]0]0]0]0,

2D Convolutions
We can extend this idea to higher dimensions:

2D Convolutions
We can extend this idea to higher dimensions:

2D Convolutions
We can extend this idea to higher dimensions:

2D Convolutions
We can extend this idea to higher dimensions:

Local Pattern Detectors

The filters are like mini-neural nets extracting features for a
local patch: e.g. edges, curves, texture,

Vertical Edges Blurring
0 0
II::II 3) 3
II::II 10 10 .-.5"";;'|
II!:II' 15 1 15
20 20 lllIFl
25 25
0 10 20 0 10 20

Inversion

0

5 5 -

T
[N
10 10 1 5 -
15 15 1 ‘
20 20 -
25 25 - |
0 10 20 0 10 20

Horizontal Edges

0 0

5 5
- e

10 10

15 15

| -!I
20 20
I

25 25

0 10 20 0 10 20

56

Convolutional Layers

To build up networks, we can extract many
features with multiple kernels:

Input Output

0
5
—
10
15
20
25
0 10 20

iInput channels: 1
output channels: 4 0
kernel size = 3 >

stride = 1 width

Pooling

Role of convolutions is to extract local features. Pooling
summarizes a local patch in terms of those features

_ 1
Average Pooling y = N 2 X,

veview(y)

Maximum Pooling y = argmax, c ey)X,

58

Building CNNs

The full CNN then implements the Deep Learning idea:
learned feature extraction, followed by simple MLP head

feature extraction

y 7 - E' T Y
! Z 1 | |
SRR - |
N !A ! ,‘{f;‘-, :’/
S | /.’/.(-.. .’; - '-'ff) - —— - g
AN S "
\; . 5 g ¥ . 4 ‘) ‘
W7 el S e s |
N A e
} z :f{ ‘ . ‘ n“"' ,/ _."
;{4’7:)!”)' \i‘/” . ’ /]) 3
.. J |
MLP Head task specific
- head
Raw Input *

e

59

Graph Neural Nets

CNNs excel at data that “lives” on a regular grid. Feature
extraction by combining information from neighborhood.

HCALS

But a lot of data is more irregular. e e

O“ o v i
-~ ¢ HCAL1

A local neighborhood defined '
more by relationships than a grid

o
gy~
- —#4idie - ECAL2
-Q’%d, = ¥ - ¢
oo . o, ECALT
E. A ’ B L z »_—"'? y #a N

a’,‘g > truth particles
X

X ® photon
X ® neutral hadron
60 X ® charged hadron
track, extrapolation

Graph Data

Graphs can still be represented by Matrices, but the
processing of graphs must not rely on (arbitrary) order

X € R™

Permutation Invariance

Graph Data

Graphs can still be represented by Matrices, but the
processing of graphs must not rely on (arbitrary) order

O

Q
(=
.1\ %

X e R |

Permutation Invariance

Graph Convolutions

Graph Convolutions generalize CNN convolutions to pass
messages from neighbors as defined in the graph

0 - O (O +)
o

GNNs

As In CNNs, we can stack Graph processing into a stack of
feature extraction, and then follow up high-level “head”

g

64

Dynamic Networks

Neural Nets are functions of the input & network parameters

fx, @)

In their most basic form, both inputs are static, but some of
the most powerful architectures allow them to be dynamic

Recurrent Neural Networks

Often data is variable in size. Recurrent neural networks deal
with It like a computer:

Consume data step-by-step and keeping the information
within a memory component

Central Processing Unit /BN .
Control Unit “
put =1 I | Arithmetic/Logic Unit | [|— | Output 1. BN 5
Device Device . * A‘ l o |
i ‘ "(1
Memory Unit)

von Neuman

66

Recurrent Neural Networks

RNNs learn an update function for a memory vector, which
can be applied many times until the inputs are exhausted

output

- — AM —

|nput

Active Neurons and Gates

RNNs interact with memory like a “soft” computer reading
and writing to memory via “gates”, I.e. multiplicative masks

=

Hard Read ” Soft Read

Recurrent Neural Networks
Can be applied to arbitrary length sequences

I | T
o-go-go-ge eo-g-o

I T

RNN In a time before ChatGPT

CeII sensmve to position in line:
1 S e importance of the crossing
;ﬂmgmm? and 1ndub1tab1y prov
RE: e enemy's retreat and

Bt heBerezina lies in the TaeE

Bl lacy of all the plans ok
the soundness of the only possible
th
the

act --the one Kutuzov and general mass of the army
_~-nanely, simply to follow enemy up. The French crowd fled
tinually increasing speed and all its energy was directed to
its goal. It fled like a wounded animal and it was impossible
Its ath. This was shown not so much by the arrangements it

as by what took place at the bridges. When the bri
ed soldiers, people from Moscow and women with children
BRSSO RE Al l = -carried on by vis inertiae--

t

r
o boats and into the ice-covered water and

Andrej Karpathy blog About

Cell that turns on inside quotes:

The Unreasonable Effectiveness of Recurrent Neural
Networks

May 21, 2015

There's something magical about Recurrent Neural Networks (RNNSs). | still remember when | trained my first
recurrent network for Image Captioning. Within a few dozen minutes of training my first baby model (with rather
arbitrarily-chosen hyperparameters) started to generate very nice looking descriptions of images that were on
the edge of making sense. Sometimes the ratio of how simple your model is to the quality of the results you get
out of it blows past your expectations, and this was one of those times. What made this result so shocking at the
time was that the common wisdom was that RNNs were supposed to be difficult to train (with more experience
I've in fact reached the opposite conclusion). Fast forward about a year: I'm training RNNs all the time and I've
witnessed their power and robustness many times, and yet their magical outputs still find ways of amusing me.
This post is about sharing some of that magic with you.

TIF_SIGPENDING);
We'll train RNINs to generate text character by character and ponder the question “how is that even possible?”

By the way, together W|th this post | am also releasmg code on Github that allows you to train character-level

il L.OTA A A4 b 1 1 1 Lol o L ol . & -

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

70

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Attention Mechanism

The notion of gating / dynamically controlling the flow of
iInformation is also key to one of the most impactful ideas
INn Deep Learning: Attention

Figure 3. Examples of attending to the correct object (white indicates the attended re El()n\ underlines indicated the corresponding word)

-

A woman is throwing a frisbee in a park. A dog is standing on a hardwood floor. A stop sign is on a road with a
— mountain in the background.

"

A little girl sitting on a bed with A group of people sitting on a boat A giraffe standing in a forest with
a teddy bear. in the water. trees in the background.

/1

Attention Mechanism

Standard Neural Nets, have globally fixed data processing
Attention Mechanisms add a data-dependent processing

y=Wx — y=AKX)x

Standard Neural Net Network with attention

b data . b data ‘ input data influences

) the weights at
weights are fixed | the time of processing
by the training data weights weights

input is just passed through

Attention in Language

Example: when representing words with added context,
decide dynamically which other words are relevant

Layer: 5 § Attention: Input - Input v

= *) *
The_ The_ WOFdS
‘> Self Attention

animal_ animal_
dldn.— fjldn— l Attention weights computed from
t_ t_ _ — —— , words themselves
Cross_ Cross_ Words with . . T
the_ the_ context info
street_ street_
because_ because l
it_ - it_ 7
was_ = was_
too_ T too_ Final Prediction ’
tire tire

d d_

/3

Transformers

Attention is the key idea in transformer networks that have
e.g. largely replaced RNN-based models for text

Output
Probafbilities
Softmax
. |
Attention Is All You Need e
(| Add &lNorm]
Feed
Forward
r \ t <
é) Add & Norm
Add & Norm -
I Multi-Head
. .x Feed Attention
Ashish Vaswani Noam Shazeer Niki Parmar Jakob Uszkoreit Forward |\ 7 7 7 N
Google Brain Google Brain Google Research Google Research 1 - ~
avaswani@google.com noam@google.com nikip@google.com usz@google.com Nx Ad & Nor 20C < Norm
I Masked
Multi-Head Multi-Head
. . . Attention Attenti
Llion Jones™ Aidan N. Gomez* | F.ukasz Kaiser™ 17 T
Google Research University of Toronto Google Brain «) L /)
11lion@google.com aidan@cs.toronto.edu lukaszkaiser@google.com Positional Positional
. T
Encoding ®_<}> é{)@ Encoding
o o Input Output
Illia Polosukhin* * Embedding Embedding
illia.polosukhin@gmail. com T T
Inputs Outputs
(shifted right)

74

Phyics Inspired Architectures

Physicists were quick to add their own symmetries to inject
physics inductive bias to neural networks

@
¢ ,. At Architecture Accuracy AUC 1/eB #Param
o ParticleNet ~ 0.938 0985 1298 +46 498k
'Y X P-CNN 0.930 0.980 732 + 24 348k
. ResNeXt 0.936 0.984 1122 + 47 1.46M
it by EFP 0.932 0.980 384 1k
@) EFN 0.927 0.979 633 £+ 31 82k
® . PFN 0.932 0.982 891 + 18 82k
«th TopoDNN 0.916 0972 29545 59k _ , e
o Ideal mass-spring system Baseline NN Prediction
, LGN 0.929 0.964 435 4+ 95 4.5k
O + .001 4+ 0.018
L] ;
o
o d‘b
q
s EFN C D
P EFP
. 10%; -~ P-CNN m | p=ma EEEE
O
PFN
: a5 ParticleNet
a 8 ResNeXt50
o g 1031 TopoDNN Noisy observations Prediction
o) LGN e i
" = 1At I TN o amae
c 05{/f 7 o . . o0 N\ 051/ N N
o 3 Rl Y Nel) r \
o S - o po,o-xo:‘ \ ‘le | P o0y |
! 2 102; Yy — z
8] FRSORY \ ; A o \
2 © OSANA L 05N\ N\ /
' m DRSS N “ s /Y . L/
e R i e o g
= it
-1 0 1 -1 0 1
101 7] q q
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Signal efficiency &5
Nets with Jet Structure Lorentz-Invariance Hamiltonian Neural Nets

arXiv:1702.00748 arXiv:2006.04780 arXiv:1906.01563
75

Summary
Benefits of Depth

. Inductive bias

‘ Deep
Networks
Q

biased
models

Shallow
Networks

v

A

unstructured
models

Error Rate

>

Parameters physics-biased

models

Cross Entropy Loss

q(z|0) f5(x)

Gradients via
Backprop Iy =

07

C

aZi

g =(8Y); = Z 8¢
L(¢) - — —p (X,Z) 1() g q ¢(Z | X) cechildren(y;)

/6

