
CERN School of Computing 2023

SW Design in the Many-Cores Era

151

Patterns for Parallel Software Development
Lecture IV

CERN School of Computing 2023

SW Design in the Many-Cores Era

152

Outline of This Lecture

The Goals:
1) Understand a few basic patterns of sequential algorithms
2) Know how to map these onto parallel concepts
3) Understand how these scale

CERN School of Computing 2023

SW Design in the Many-Cores Era

153

What is a Pattern?

Software design pattern
General, reusable solution to a commonly

occurring problem in a given context in
software design

Parallel pattern
Recurring combination of task distribution

and data access that solves a specific
problem in parallel algorithm design

CERN School of Computing 2023

SW Design in the Many-Cores Era

154

Serial Control Flow Patterns

§ Before starting with parallelism let’s look at what we know about the serial case

§ We will have a look at the following ones:
§ Sequence
§ Selection
§ Iteration

§ These are all simple concepts, but the vocabulary is important!

CERN School of Computing 2023

SW Design in the Many-Cores Era

155

Sequence

§ A sequence is an ordered list of tasks/commands to be carried out in a given order
§ The exact dependencies of the commands

do not matter
§ Side-effects do not matter

§ There is only one task executed at a time
§ The tasks are executed as defined

A

C

B

Input

Output

Note that

The compiler and the CPU may re-order instructions if they
think it optimises runtime

CERN School of Computing 2023

SW Design in the Many-Cores Era

156

Selection

§ In a selection
§ The commands a and b depend on

decision of c
§ Always only one of the two sides is

being executed
C

a

True False

b

The «if» statement

The CPU may apply speculative execution, but it always
takes care of sanity

CERN School of Computing 2023

SW Design in the Many-Cores Era

157

Iteration

§ In an iteration a certain function f is executed as long as a
certain condition c is true.
§ This is the famous while loop

while (c) {
f;

}
C

f

True False

CERN School of Computing 2023

SW Design in the Many-Cores Era

158

Iteration II

§ How do condition and function depend on each other?
§ There must be some dependency, otherwise it is an infinite loop

§ Sometimes the dependency is trivial and can be re-formulated as a
for loop (a.k.a. counted loop)

§ In serial code this is mainly just syntactic sugar

§ However, it gives some nice hints to the compiler

i = 0;
while (i < n) {

f;
++i;

}

for (i = 0; i < n; ++i) {
f;

}

CERN School of Computing 2023

SW Design in the Many-Cores Era

159

Iteration III

§ The serial iteration pattern might seem trivially parallelisable but…

§ Beware of dependencies!

§ Do multiple iterations depend on each other?
§ Loop-carried dependency

§ Different kinds of dependencies translate to different parallelisation possibilities

CERN School of Computing 2023

SW Design in the Many-Cores Era

160

Iteration IV

§ Any chance of parallelising this?

§ What are the obstacles?
§ i.e. what are the dependencies?

void doIt(int n, double x[], int a[], int b[], int c[]) {

for (int i = 0; i < n; ++i) {
x[a[i]] = x[a[i]] * x[b[i]] * x[c[i]];

}

}

CERN School of Computing 2023

SW Design in the Many-Cores Era

161

Modern Syntax: An Interlude

§ C++ is ever improving with new standards (C++11, C++14, C++17, C++20, C++23)

§ Two (not so) recent additions are:
§ auto var = retrieveSomeObject();

§ for (auto & element : myCollection)

§ auto : do not specify the type, the compiler finds it out at compile time. Useful to avoid tedious
typing also detrimental for readability of the code!

§ Range-based loops: build a loop with a concise syntax!

?!

Take advantage of this! J

CERN School of Computing 2023

SW Design in the Many-Cores Era

162

Parallel Patterns

§ After reminding ourselves about serial control patterns, let’s have a look at a few parallel
patterns
§ Can help you structure your parallel program

§ The serial iteration pattern has many parallel offsprings

§ Map
§ Partition
§ Reduce
§ Scan

§ Other useful patterns

§ Pipeline
§ Superscalar Sequences

CERN School of Computing 2023

SW Design in the Many-Cores Era

163

Map

§ The map is the most trivial parallel extension of the serial
iteration

§ Apply the same function f on multiple elements of a
collection in parallel

§ We hide the loop!

§ Requirements:
§ No loop-carried dependency

§ Function f is pure, i.e. without side-effects

§ Scaling: n (linear w.r.t. the number of elements in the
collection)

A' B' C' D'

A B C D

CERN School of Computing 2023

SW Design in the Many-Cores Era

164

Partition

§ The map pattern helps when parallelising on collections

§ However, sometimes it is useful to treat multiple items together
§ E.g. for the combination of multithreading and vectorisation
§ Multi-level parallelism!

§ Partitioning allows for a custom split of the collection into subcollections or chunks

§ A variant of partitioning is called geometric decomposition
§ Update of a partition needs data from other partitions
§ Might require synchronisation

CERN School of Computing 2023

SW Design in the Many-Cores Era

165

Granularity
TimeCore

0

1

0

1

0

1

Too coarse-grain

Too fine-grain

Tradeoff

Task Overhead

Im
ba

lan
ce

CERN School of Computing 2023

SW Design in the Many-Cores Era

166

Reduce

§ A reduction combines the elements of a collection into a single result using a combiner
function

§ Requirements:
§ No loop-carried dependency apart from the combined result

§ Combiner function is associative
§ Be careful with floating-point operations!

§ Having a commutative function is beneficial

CERN School of Computing 2023

SW Design in the Many-Cores Era

167

Reduce II

§ Speedup: n / log n

§ Counters are a typical example for reduction input

§ Before coming to a real example, let’s have a look at modern C++ again…

A B C D E F

Result

CERN School of Computing 2023

SW Design in the Many-Cores Era

168

Interlude – Lambdas

§ Lambda expressions are anonymous functions and can be assigned to the std::function type

§ They can be passed as parameters as if they were regular variables

§ When defined, they can capture a specific set of variables (or all)

§ Once they have been defined, they can be passed to functions like std::for_each or TBB's parallel_for

std::function< double (double, double) >
f = [] (double a, double b) { return a + b; };

std::cout << f (23.0, 24.0);

CERN School of Computing 2023

SW Design in the Many-Cores Era

169

Interlude – Lambdas II

§ Using the C++ auto keyword simplifies the syntax, but does not change the behavior
auto f = [] (double a, double b) { return a + b; };

§ Capture the variable globalOffset as a reference and use it in the computation
auto f = [&globalOffset] (double a, double b)

{ return a + b + globalOffset; };

§ Capture all variables defined in the current scope by value
auto f = [=] (double a, double b)

{ return a + b + globalOffset; };

§ Can you think of the difference in behavior when using capture-by-value instead of capture-by-
reference?

CERN School of Computing 2023

SW Design in the Many-Cores Era

170

Reduce III

int sum = tbb::parallel_reduce(
// The input array, which will be partitioned automatically
tbb::blocked_range<int*>(array, array + size),
// Identity value for the sum reduction
0,
// Lambda that returns the sum of all elements in a partition
[](const tbb::blocked_range<int*>& r, int v) {
for (auto i = r.begin(); i != r.end(); ++i) v += *i;
return v;

},
// Reduction operation that combines the per-partition sums
[](int x, int y) { return x+y; }

);

§ Libraries like Intel’s Threading Building Blocks (TBB) provide already all ingredients for
standard patterns like reduce:

CERN School of Computing 2023

SW Design in the Many-Cores Era

171

Map and Reduce Combined

§ Usually map and reduce go hand in hand:

§ A function being applied to single elements
§ The results are then passed to a combiner function

§ A concrete example:

§ Count the number of times a certain word appears in a text

§ Solution:

§ Partition: Split the text in equally-sized chunks
§ Map: Do the word count
§ Reduce: Add the counts

§ Various map/reduce frameworks at your disposal!

CERN School of Computing 2023

SW Design in the Many-Cores Era

172

The Power of Map-Reduce

§ The combination of the Map and Reduce patterns has been extremely successful in massive
distributed data processing

§ A little bit of history…
§ 2004: Google publishes the MapReduce paper

§ 2006: Hadoop is released, inspired by MR

§ Nowadays, MR is behind every click on popular web sites or services
§ Facebook, Twitter, Yahoo, …
§ Analytics to predict user interests, target ads, show recommendations, … and many more
§ Robust, fault tolerant

§ Scale to crunch large datasets

CERN School of Computing 2023

SW Design in the Many-Cores Era

173

Map-Reduce and Functional Chains

§ Map and reduce were born in functional programming
§ Declare what you want to do, not how
§ No side-effects

§ High-level view, based on two main concepts:

§ Data is organised in collections of elements
§ We apply functions to those elements, possibly in a chain

§ Implemented by frameworks like Spark and ROOT’s RDataFrame

§ No need to manage parallelisation, just think about opportunities for parallelism!

histo = events.map(fillHist).reduce(mergeHist)

CERN School of Computing 2023

SW Design in the Many-Cores Era

174

Map-Reduce and Functional Chains II

Part
1

Events Events
(partitions)

Part
2

Histogram
(partitions)

Part
1

Part
2

map

map
Hreduce

Final
Histogram

§ Implementation responsible for producing a parallel execution plan
§ Where are the data?
§ What resources are available?
§ What optimisations can be applied?

CERN School of Computing 2023

SW Design in the Many-Cores Era

175

Scan

§ Scan is another offspring of the iteration pattern with more relaxed boundary conditions

§ Requirements:
§ Result of element n depends on n-1
§ Successor function is associative

CERN School of Computing 2023

SW Design in the Many-Cores Era

176

A B C D E F G H

A' B' C' D' E' F' G' H'

Scan II

Serial
version

Parallel
version

CERN School of Computing 2023

SW Design in the Many-Cores Era

177

Scan III

§ Scan is another offspring of the iteration pattern with more relaxed boundary conditions

§ Requirements:
§ Result of element n depends on n-1
§ Successor function is associative

§ Already a non-trivial implementation necessary

§ Speedup: very limited

§ At most n / log n
§ Number of instructions required is worse (up to x2)

CERN School of Computing 2023

SW Design in the Many-Cores Era

178

Pipeline

§ The pipeline pattern is the good old assembly line

§ Work split into a sequence of operations with a producer-
consumer relationship

§ Work items go from one stage to the next

§ The order of steps is important
§ Different operations on different items are independent
§ Stages can be serial or parallel (accept one or more items

simultaneously)

§ More complex cases can have a directed acyclic graph instead of
a purely linear setup

§ The speedup of a pipeline is given by Amdahl’s Law

a

c

b

CERN School of Computing 2023

SW Design in the Many-Cores Era

179

Pipeline II

§ Intel’s TBB offers a feature for implementing a pipeline too:

parallel_pipeline(max_number_of_live_tokens,
make_filter<void,I1> (mode0, a) &
make_filter<I1,I2> (mode1, b) &
make_filter<I2,void> (mode2, c)

);

parallel
serial_in_order
serial_out_of_order

a

c

b

CERN School of Computing 2023

SW Design in the Many-Cores Era

180

Pipeline III
float RootMeanSquare(float* first, float* last, int n) {
float sum = 0;
parallel_pipeline(16,
make_filter<void,float*>(
filter::serial_in_order,
[&](flow_control& fc) -> float* {
if (first < last) {
return first++;

} else {
fc.stop();
return nullptr;

}
}

) &
make_filter<float*,float>(
filter::parallel,
[](float* p) { return (*p)*(*p); }

) &
make_filter<float,void>(
filter::serial_in_order,
[&](float x) { sum += x; }

)
);
return sqrt(sum / n);

}

Step 2 can run
in parallel with
itself

Step 3 is not
thread-safe

Step 1 handles
the data stream

CERN School of Computing 2023

SW Design in the Many-Cores Era

181

Superscalar Sequences

§ Split work into several tasks and define their data
dependencies

§ Let a task scheduler do the rest

§ Pattern followed by concurrent HEP data processing
frameworks

§ Assumption of this model is that there are no hidden data dependencies and no
side-effects unknown to the scheduler
§ Let’s have a look at these assumptions…

CERN School of Computing 2023

SW Design in the Many-Cores Era

182

Hidden Data Dependencies

§ Content of the event store depends on the execution order

§ Thread-safe objects don’t help at all

§ It is a pure logic flaw

std::atomic_bool doit(false);

void task1() {
…
if (doit)) {
eventstore.put(fancystuff);

}
}
void task2() {
doit = true;

}

Thread-safe
boolean variable

CERN School of Computing 2023

SW Design in the Many-Cores Era

183

Side Effects

§ Triggered when a computation modifies some shared state outside of its local environment

§ e.g. a global variable

§ They are a major obstacle for parallelism
§ Watch out for them when applying your parallel patterns!

§ In general, every non thread-safe resource is an issue

§ Remember from previous lectures:

§ Side-effect free resources are the ideal solution
§ If not possible, tell the scheduler about what you need and “reserve” what is unsafe

CERN School of Computing 2023

SW Design in the Many-Cores Era

184

Take-Away Messages

§ There exist design patterns to help you parallelising your programs

§ Check if you can reuse them!

§ They all have their origin in serial patterns, but add constraints to the operations
allowed

§ Map-Reduce is a very successful pattern, used every day for distributed
processing of large amounts of data

§ High-level features like C++ lambdas, the TBB library or the Spark framework
make it easier for you to get started with these patterns

