Quantum Gravity Bounds on 4d Effective Theories with Minimal Supersymmetry

- 2210.10797 with Luca Martucci and Nicolo Risso
- Earlier works with Seung-Joo Lee, Wolfgang Lerche and with Antonella Grassi

Timo Weigand
Cluster of Excellence Quantum Universe
Universität Hamburg

The Swampland Program

Which EFTs can arise from a consistent theory of QG in $d>2$?

Swampland [Vafa'05]
EFT consistent as
QFT but not as QG

Landscape
EFT fully consistent
as QG

This question is at the very center of many developments.

General principles
of QG (black holes, deSitter,...)

Physics of
String Compactifications

SWAMPLAND PROGRAM

Model Building in
particle physics and
cosmology

String geometry and mathematics

A Web of Conjectures

Review articles:
[Brennon,Carta,Vafa'17] [Palti'19] [Beest,Calderon,Mirfendereski,Valenzuela'21] [Grana,Herraez'21]
[Agmon,Bedroya, Kang,Vafa'22]

Swampland Arguments

Two representative arguments:

1. QG imposes cutoff for EFT parametrically below naive cutoff M_{Pl} :

due to light towers of states

2. Consistency of additional probe objects enforced by QG constrains the original theory: Can we

- argue for finiteness of degrees of freedom in QG?
- bound the rank of the gauge group via gravitational couplings?

Probe argument

- Many EFTs contain higher p-form gauge fields

Example: 6d $\mathrm{N}=1$ supergravity theories: \quad 2-forms B_{2}

$$
S=\frac{M_{\mathrm{P}}^{4}}{2} \int_{\mathbb{R}^{1}, 5} \sqrt{-g} R+f_{\alpha \beta} d B_{2}^{\alpha} \wedge * d B_{2}^{\beta}+\ldots
$$

- Can consider p-dimensional electrically charged objects Example: strings charged under 2-forms

$$
S_{\text {string }}=e_{\alpha} \int_{\mathbb{R}^{1,1}} B_{2}^{\alpha}
$$

- QFT: These may or may not exist as physical states/objects.

QG: They must exist as dynamical objects if we accept the
Completeness Conjecture of QG: [Polchinski'03][Banks,Seiberg'10] The full charge lattice of a $Q G$ in $d>2$ dimensions is populated by physical states.

Probe argument

Completeness Conjecture of QG: [Polchinski'03] [Banks,Seiberg'10]
The full charge lattice of a $Q G$ in $d>2$ dimensions is populated by physical states.

- Consistency of the p-dim probe \Longrightarrow extra constraints

Example: Anomaly cancellation on string worldvolume in addition to anomaly cancellation in original bulk theory.
\Longrightarrow An EFT not satisfying these is in the Swampland.

Probe argument

Successfully applied in higher-dimensional and/or higher-SUSY theories:

- 6d $N=1$ supergravities
[Kim,Shiu,Vafa'19] [Lee,TW'19] [Tarazi,Vafa'20] [Angelantonj,Bonnefoy, Condeescu,Dudas'20]
- $5 \mathrm{~d} \mathrm{~N}=1$ supergravities
[Katz,Kim,Tarazi,Vafa'20] [Cheng,Minasian,Theisen'21]
- 4d $\mathrm{N}=4$ supergravities
[Kim,Tarazi,Vafa'19]

Example:

6d $N=1$ theories admit infinite families of theories consistent with anomaly cancellation [Kumar,Taylor'00] [Kumar,Morrison,Taylor'10] [Kumar,Park,Taylor'11],

Inconsistency of probe strings in field theory places (some of) them in the Swampland!

This talk

4d $N=1$ Supergravities: [Martucci,Risso,TW'22]
We will propose new constraints on otherwise consistent $N=1$ SUGRAs including non-chiral theories in 4d!

General bounds on rank of gauge algebra in 4d $N=1$ supergravity theories from EFT strings:
"rank of gauge group \leq gravitational couplings"

Part I:

Motivation in effective field theory, without use of string theory
\Longrightarrow general, modulo certain assumptions

Part II:

Explicit checks in string theory realisations:
New bounds on ranks of gauge groups \Longrightarrow Predictions for geometry

Part I: EFT Bounds from EFT Strings

4d $N=1$ data

4d $N=1$ SUGRA with gauge couplings determined by chiral multiplets bosonic content: $\quad t^{i}=a^{i}+\mathrm{i} s^{i}, \quad a^{i} \simeq a^{i}+1$

Gauge algebra: $G=\prod_{A} U(1)_{A} \times \prod_{I} G_{I}$

Only consider theories where to leading order in perturbative regime:

$$
S_{\text {gauge }}=-\frac{1}{4 \pi} C_{i} \int\left(s^{i} F \wedge * F+a^{i} F \wedge F\right) \quad+\quad \text { corrections }
$$

- From N=1 SUSY:

$$
S_{\text {gauge }}=-\frac{1}{4 \pi} \int(\operatorname{Im} f F \wedge * F+\operatorname{Re} f F \wedge F)
$$

- Assume

$$
f(t, \phi)=\langle\mathbf{C}, \mathbf{a}+\mathrm{i} \mathbf{s}\rangle+\Delta f(\phi)+\underbrace{\mathcal{O}\left(e^{2 \pi \mathrm{i}\langle\mathbf{m}, \mathbf{a}+\mathrm{i}\rangle}\right\rangle}_{\text {BPS instanton }}, \quad\langle\mathbf{C}, \mathbf{a}+\mathrm{i}\rangle \equiv C_{i}\left(a^{i}+\mathrm{i} s^{i}\right)
$$

4d $N=1$ data

$$
f(t, \phi)=\langle\mathbf{C}, \mathbf{a}+\mathbf{i} \mathbf{s}\rangle+\Delta f(\phi)+\underbrace{\mathcal{O}\left(e^{2 \pi \mathrm{i}\langle\mathbf{m}, \mathbf{a}+\mathrm{i} \mathbf{s}\rangle}\right)}, \quad\langle\mathbf{C}, \mathbf{a}+\mathrm{i} \mathbf{s}\rangle=C_{i}\left(a^{i}+\mathrm{i} s^{i}\right)
$$

- Non-pert. corrections suppressed by

$$
\left|e^{-2 \pi m_{i} s^{i}}\right| \quad m_{i}: \text { BPS instanton charges }
$$

- Perturbative regime:

$$
\left|e^{-2 \pi m_{i} s^{i}}\right| \ll 1
$$

Expectation:

$$
\{\langle\mathbf{C}, \mathbf{s}\rangle\} \geq 0, \quad \forall \mathbf{s} \in \text { saxionic cone }
$$

4d $N=1$ data

Higher curvature couplings (to leading order in pert. regime):

$$
-\frac{1}{96 \pi} \tilde{C}_{i} \int\left[s^{i} \operatorname{tr}(R \wedge * R)+a^{i} \operatorname{tr}(R \wedge R)\right]
$$

No definite expectation if or why

$$
\langle\tilde{\mathbf{C}}, \mathbf{s}\rangle>0
$$

but various suggestions in the literature
[Kallosh,Linde,Linde,Susskind'94] [Cheung,Remmen'16] [Etxebarria,Montero,Sousa,Valenzuela'20]
[Aalsma,Shiu'22] [Ong'22]

EFT strings

Dualise axions a^{i} to 2-forms $B_{2, i}$: $\quad B_{2, i} \sim * d a^{i}$
\Longrightarrow consider string charged under the 2-form fields:

$$
S=\int_{\text {string }} e^{i} B_{2, i}+\ldots \quad e^{i}: \text { string charge } \quad \frac{T_{\mathbf{e}}}{M_{\mathrm{Pl}}^{2}}=-\frac{1}{2} e^{i} \frac{\partial K}{\partial s^{i}}
$$

Completeness Conjecture of Quantum Gravity:
The full charge lattice is populated by such strings.

Backreaction of 4d string

 (real codimension-two):[Lanza,Marchesano,Martucci, Valenzuela'20-21]

$$
\mathbf{s}=\mathbf{s}_{0}+\mathbf{e}\left(\frac{1}{2 \pi} \log \frac{r_{0}}{r}\right)
$$

r : radial distance from string

EFT strings

Backreaction of 4d string

(real codimension-two):

$$
\mathbf{s}=\mathbf{s}_{0}+\mathbf{e}\left(\frac{1}{2 \pi} \log \frac{r_{0}}{r}\right)
$$

r : radial distance away from string

Instanton suppression: $\left|e^{-2 \pi\langle\mathbf{m}, \mathbf{s}\rangle}\right| \ll 1$ near string \quad if $\langle\mathbf{m}, \mathbf{e}\rangle \geq 0$
\Longrightarrow Field theory becomes weakly coupled in region close to string

Defining property of EFT string: [Lanza,Marchesano,Martucci,Valenzuela'20-21]

$$
\mathcal{C}_{\mathrm{S}}^{\mathrm{EFT}}=\left\{\mathbf{e} \in \mathbb{Z}^{\# \text { axions }} \mid\langle\mathbf{m}, \mathbf{e}\rangle \geq 0, \forall \mathbf{m} \in \mathrm{BPS} \text { instanton cone }\right\}
$$

Anomaly inflow

- Rewrite the $4 \mathrm{~d} N=1$ axionic couplings as

$$
\begin{gathered}
S_{\text {bulk }} \supset 2 \pi \int a^{i} I_{4, i}=-2 \pi \int h_{1}^{i} \wedge I_{3, i}^{(0)}, \quad h_{1}^{i}=\mathrm{d} a^{i} \\
I_{4, i} \equiv \mathrm{~d} I_{3, i}^{(0)} \equiv-\frac{1}{8 \pi^{2}} C_{i} F \wedge F-\frac{1}{192 \pi^{2}} \tilde{C}_{i} \operatorname{tr}(R \wedge R)
\end{gathered}
$$

- String modifies Bianchi identity:

$$
\mathrm{d} h_{1}^{i}=e^{i} \delta_{2}(W) \quad W: \text { string worldsheet }
$$

- Gauge variance (descent relations) $\delta I_{3, i}^{(0)}=\mathrm{d} I_{2, i}^{(1)} \quad$ cf [Callan,Harvey' 85]

$$
\delta S_{\mathrm{bulk}}=-2 \pi e^{i} \int_{W} I_{2, i}^{(1)}
$$

$=$ localised anomaly on the string from inflow from bulk

Anomaly inflow

$$
\delta S_{\mathrm{bulk}}=-2 \pi e^{i} \int_{W} I_{2, i}^{(1)}
$$

localised anomaly on the string from inflow from bulk must be cancelled by contribution to anomaly on worldsheet:

$$
\delta S_{W} \stackrel{!}{=}+2 \pi e^{i} \int_{W} I_{2, i}^{(1)}
$$

with

$$
\begin{aligned}
I_{4 \mathbf{e}}^{\mathrm{ws}}= & e^{i} I_{4 i} \\
= & \underbrace{-\frac{\left\langle\mathbf{C}^{A B}, \mathbf{e}\right\rangle}{8 \pi^{2}} F_{A} \wedge F_{B}}_{\text {abelian gauge }}-\underbrace{\frac{\left\langle\mathbf{C}^{I}, \mathbf{e}\right\rangle}{16 \pi^{2}} \operatorname{tr}(F \wedge F)_{I}}_{\text {non-abelian gauge }} \\
& \underbrace{-\frac{\langle\tilde{\mathbf{C}}, \mathbf{e}\rangle}{192 \pi^{2}} \operatorname{tr}\left(R_{W} \wedge R_{W}\right)}_{\text {along worldsheet }}+\underbrace{\frac{\langle\tilde{\mathbf{C}}, \mathbf{e}\rangle}{96 \pi^{2}} F_{\mathrm{N}} \wedge F_{\mathrm{N}}}_{\text {rotations normal to WS }}
\end{aligned}
$$

Strategy

Task:
Derive constraints on the bulk by demanding that this anomaly arises at 1-loop level on string worldsheet!

1. Parametrise massless fields on worldsheet: 'general' modulo certain assumptions
2. Compute resulting 1-loop anomaly
3. Demand:

1-loop anomaly matches δS_{W}

Worldsheet theory

Generically, string preserves 2d $N=(0,2)$ supersymmetry (follows from κ symmetry) (enhancement to $\mathrm{N}=(2,2)$ possible)

Fermion	$\#$	$U(1)_{\mathrm{N}}$ charge	$U(1)_{A}$ charge	G_{I} repr.	$(0,2)$ multiplet
ρ_{+}	1	$\frac{1}{2}$	0	$\mathbf{1}$	chiral U
χ_{+}	n_{C}	$-\frac{1}{2}$	$*$	$*$	chiral Φ
ψ_{-}	n_{F}	0	q_{A}	\mathbf{r}_{I}	Fermi Ψ_{-}
λ_{-}	n_{N}	$\frac{1}{2}$	0	$\mathbf{1}$	Fermi Λ_{-}

- Universal multiplet $U=u+\sqrt{2} \theta^{+} \rho_{+}-2 \mathrm{i} \theta^{+} \bar{\theta}^{+} \partial_{++} u$ motion in transverse space to string in 4d
- Chiral multiplets Φ : moduli of weakly coupled NLSM target space

$$
\Phi=\varphi+\sqrt{2} \theta^{+} \chi_{+}-2 \mathrm{i} \theta^{+} \bar{\theta}^{+} \partial_{++} \varphi,
$$

Mordasery theory

Fermion	$\#$	$U(1)_{\mathrm{N}}$ charge	$U(1)_{A}$ charge	G_{I} repr.	$(0,2)$ multiplet
ρ_{+}	1	$\frac{1}{2}$	0	$\mathbf{1}$	chiral U
χ_{+}	n_{C}	$-\frac{1}{2}$	$*$	$*$	chiral Φ
ψ_{-}	n_{F}	0	q_{A}	\mathbf{r}_{I}	Fermi Ψ_{-}
λ_{-}	n_{N}	$\frac{1}{2}$	0	$\mathbf{1}$	Fermi Λ_{-}

- Chiral multiplets Φ : moduli of weakly coupled NLSM target space Generally can be obstructed via superpotential terms:

$$
\int \mathrm{d} \theta^{+} \Lambda_{-}^{a} J_{a}(\Phi)+\text { c.c. }, \quad \Lambda_{-}^{a} \text { : Fermi multiplets }
$$

n_{N} will appear in combination $n_{C}^{\text {eff }}:=n_{\mathrm{C}}-n_{\mathrm{N}}$

Grav. anomaly matching

$$
\begin{aligned}
&\left.I_{4 \mathbf{e}}^{\mathrm{ws}}\right|_{\mathrm{grav}+U(1)_{\mathrm{N}}}=\underbrace{-\frac{n_{\mathrm{F}}-n_{\mathrm{C}}^{\mathrm{eff}}-1}{192 \pi^{2}} \operatorname{tr}\left(R_{W} \wedge R_{W}\right)+\frac{n_{\mathrm{C}}^{\mathrm{eff}}+1}{32 \pi^{2}} F_{\mathrm{N}} \wedge F_{\mathrm{N}}}_{\text {1-loop from WS spectrum }} \\
& \stackrel{!}{=}-\frac{\langle\tilde{\mathbf{C}}, \mathbf{e}\rangle}{192 \pi^{2}} \operatorname{tr}\left(R_{W} \wedge R_{W}\right) \quad+\frac{\langle\tilde{\mathbf{C}}, \mathbf{e}\rangle}{96 \pi^{2}} F_{\mathrm{N}} \wedge F_{\mathrm{N}} \\
& \Longrightarrow \quad\langle\tilde{\mathbf{C}}, \mathbf{e}\rangle=n_{\mathrm{F}}-n_{\mathrm{C}}^{\mathrm{eff}}-1, \quad\langle\tilde{\mathbf{C}}, \mathbf{e}\rangle=3\left(n_{\mathrm{C}}^{\mathrm{eff}}+1\right)
\end{aligned}
$$

Conclusions:

- Relations

$$
\frac{4}{3}\langle\tilde{\mathbf{C}}, \mathbf{e}\rangle=n_{\mathrm{F}} \geq 0, \quad n_{\mathrm{C}}^{\mathrm{eff}}=\frac{1}{3}\langle\tilde{\mathbf{C}}, \mathbf{e}\rangle-1 \geq-1
$$

- Quantisation condition and bound:

$$
\langle\tilde{\mathbf{C}}, \mathbf{e}\rangle \equiv \tilde{C}_{i} e^{i}
$$

$$
\langle\tilde{\mathbf{C}}, \mathbf{e}\rangle \in 3 \mathbb{Z}_{\geq 0} \quad \forall \mathbf{e} \in \mathcal{C}_{\mathrm{S}}^{\mathrm{EFT}}
$$

Gauge anonaty notanino

$$
\left.I_{4 \mathbf{e}}^{\mathrm{ws}}\right|_{\text {gauge }} \stackrel{!}{=}-\frac{\left\langle\mathbf{C}^{A B}, \mathbf{e}\right\rangle}{8 \pi^{2}} F_{A} \wedge F_{B}-\frac{\left\langle\mathbf{C}^{I}, \mathbf{e}\right\rangle}{16 \pi^{2}} \operatorname{tr}(F \wedge F)_{I} \equiv-\frac{\left\langle\mathbf{C}^{\mathcal{A B}}, \mathbf{e}\right\rangle}{8 \pi^{2}} F_{\mathcal{A}} \wedge F_{\mathcal{B}}
$$

1) Anomaly from charged Fermi multiplets

- Anomaly contribution:

$$
I_{4 \mathbf{e}}^{\mathrm{ws}} \supset-\frac{1}{8 \pi^{2}} k_{\mathrm{F}}^{\mathcal{A} \mathcal{B}}(\mathbf{e}) F_{\mathcal{A}} \wedge F_{\mathcal{B}}, \quad k_{\mathrm{F}}^{\mathcal{A} \mathcal{B}}=\sum_{\mathbf{q} \in \mathrm{Fermi}} q^{\mathcal{A}} q^{\mathcal{B}}, \quad \operatorname{rk}\left(k_{\mathrm{F}}^{\mathcal{A} \mathcal{B}}\right) \leq n_{\mathrm{F}}=\frac{4}{3}\langle\tilde{\mathbf{C}}, \mathbf{e}\rangle
$$

2) Anomaly from unobstructed chiral multiplets

Assumption: $n_{\text {unobstr. }}=n_{\mathrm{C}}^{\text {eff }}:=n_{\mathrm{C}}-n_{\mathrm{N}}$

- Origin: gauging of shift symmetries of unobstructed scalars
[Blaszczyk,Groot Nibbelink,Ruehle'11][Quigley,Sethi'11][Adams,Dyer,Lee'12]
- Anomaly contribution

$$
I_{4 \mathbf{e}}^{\mathrm{ws}} \supset-\frac{1}{8 \pi^{2}} k_{\mathrm{C}}^{\mathcal{A} \mathcal{B}}(\mathbf{e}) F_{\mathcal{A}} \wedge F_{\mathcal{B}}, \quad \operatorname{rk}\left(k_{\mathrm{C}}^{\mathcal{A} \mathcal{B}}\right) \leq 2 n_{\mathrm{C}}^{\mathrm{eff}}=\frac{2}{3}\langle\tilde{\mathbf{C}}, \mathbf{e}\rangle-2
$$

Gauge anomaly matching

$$
\left.I_{4 \mathbf{e}}^{\mathrm{ws}}\right|_{\text {gauge }}=-\frac{k_{\mathrm{F}}^{\mathcal{A B}}+k_{\mathrm{C}}^{\mathcal{A} \mathcal{B}}}{8 \pi^{2}} F_{\mathcal{A}} \wedge F_{\mathcal{B}} \stackrel{!}{=}-\frac{\left\langle\mathbf{C}^{\mathcal{A} \mathcal{B}}, \mathbf{e}\right\rangle}{8 \pi^{2}} F_{\mathcal{A}} \wedge F_{\mathcal{B}}
$$

Goal:
Constrain the rank of gauge sector coupling to string of charge e:

$$
r(\mathbf{e}):=\operatorname{rank}\left\{\left\langle\mathbf{C}^{\mathcal{A B}}, \mathbf{e}\right\rangle\right\}
$$

$$
r(\mathbf{e}) \leq r(\mathbf{e})_{\max }=\operatorname{rk}\left(k_{\mathrm{F}}^{\mathcal{A} \mathcal{B}}\right)+\operatorname{rk}\left(k_{\mathrm{C}}^{\mathcal{A B}}\right) \equiv 2\langle\tilde{\mathbf{C}}, \mathbf{e}\rangle-2 \quad \forall \mathbf{e} \in \mathcal{C}_{\mathrm{S}}^{\mathrm{EFT}}
$$

Gauge anonaty notcoino

Contribution from unobstructed chiral multiplets $n_{\mathrm{C}}^{\text {eff }}=n_{\mathrm{C}}-n_{\mathrm{N}}$

- Shift symmetry gauged under $A_{\mathcal{A}} \rightarrow A_{\mathcal{A}}+\mathrm{d} \lambda_{\mathcal{A}}$

$$
\tau_{r} \rightarrow \tau_{r}+\frac{1}{2 \pi} N_{r} \mathcal{A}^{\lambda_{\mathcal{A}}} \quad r=1, \ldots, n_{\mathrm{A}} \leq n_{\mathrm{C}}^{\mathrm{eff}}
$$

- Green-Schwarz like terms on worldsheet (fixed by $N=(0,2)$ SUSY) [Blaszczyk,Groot Nibbelink,Ruehle'11][Quigley,Sethi'11][Adams,Dyer,Lee'12]

$$
S_{W} \supset-M^{\mathcal{A} r} \int_{W} \operatorname{Re} \tau_{r} F_{\mathcal{A}}-\frac{1}{8 \pi} Q^{A B} \int_{W} A_{\mathcal{A}} \wedge A_{\mathcal{B}}
$$

with

$$
Q^{\mathcal{A B}}=-Q^{\mathcal{B A}} \equiv(M N)^{\mathcal{A B}}-(M N)^{\mathcal{B A}}
$$

- Anomalous contribution

$$
\begin{gathered}
I \supset-\frac{1}{8 \pi^{2}} k_{\mathrm{C}}^{\mathcal{A} \mathcal{B}}(\mathbf{e}) F_{\mathcal{A}} \wedge F_{\mathcal{B}} \quad k_{\mathrm{C}}^{\mathcal{A} \mathcal{B}}(\mathbf{e}) \equiv(M N)^{\mathcal{A B}}+(M N)^{\mathcal{B} \mathcal{A}} . \\
\Longrightarrow r_{\mathrm{C}}(\mathbf{e}) \leq 2 n_{\mathrm{C}}^{\mathrm{eff}}=\frac{2}{3}\langle\tilde{\mathbf{C}}, \mathbf{e}\rangle-2
\end{gathered}
$$

Rank bounds

$$
r(\mathbf{e}) \leq r(\mathbf{e})_{\max }=\operatorname{rk}\left(k_{\mathrm{F}}^{\mathcal{A} \mathcal{B}}\right)+\operatorname{rk}\left(k_{\mathrm{C}}^{\mathcal{A} \mathcal{B}}\right) \equiv 2\langle\tilde{\mathbf{C}}, \mathbf{e}\rangle-2 \quad \forall \mathbf{e} \in \mathcal{C}_{\mathrm{S}}^{\mathrm{ETT}}
$$

in a strictly 4 d theory with axionic couplings $S \supset-\frac{1}{96 \pi} \tilde{C}_{i} \int_{\mathbb{R}^{1,3}} a^{i} \operatorname{tr} R \wedge R$

- $r(\mathbf{e})=$ rank of bulk gauge sector that couples to string of charge \mathbf{e} i.e. becomes weakly coupled by backreaction near string
- Applies only to theories whose gauge sector enjoys axionic coupling
- Technical assumption: $n_{\mathrm{C}}-n_{\mathrm{N}} \geq 0$ is number of unobstructed moduli

Caveat:

In [Martucci,Risso,TW'22] we discuss another potential contribution on RHS:

- only present if theory has a 5 d origin
- ignored in this talk for simplicity

Caveat: 5d contributions

Bianchi identity: $\left.\quad \mathrm{d} h_{1}^{i}\right|_{W}=\left.\delta_{2}(W)\right|_{W}=\chi\left(N_{W}\right)=\frac{1}{2 \pi} F_{\mathrm{N}} \quad \Longrightarrow F_{\mathrm{N}}=\mathrm{d} A_{\mathrm{N}}$
Can consider additional coupling on string:

$$
S_{\mathrm{N}}=-\frac{1}{24} \hat{C}_{i}(\mathbf{e}) \int_{W} h_{1}^{i} \wedge A_{\mathrm{N}} \Longrightarrow \delta S_{\mathrm{N}}=-\frac{1}{48 \pi} \hat{C}_{i}(\mathbf{e}) e^{i} \int_{W} \lambda_{\mathrm{N}} F_{\mathrm{N}}
$$

Changes $U(1)_{N}$ anomaly : $\left.I_{4}^{\mathrm{ws}}\right|_{U(1)_{N}}=\frac{\langle\tilde{\mathbf{C}}, \mathbf{e}\rangle+\langle\hat{\mathbf{C}}(\mathbf{e}), \mathbf{e}\rangle}{96 \pi^{2}} F_{\mathrm{N}} \wedge F_{\mathrm{N}}$

$$
\langle\tilde{\mathbf{C}}, \mathbf{e}\rangle+\langle\hat{\mathbf{C}}(\mathbf{e}), \mathbf{e}\rangle \in 3 \mathbb{Z}_{\geq 0}, \quad r(\mathbf{e}) \leq 2\langle\tilde{\mathbf{C}}, \mathbf{e}\rangle+\langle\hat{\mathbf{C}}(\mathbf{e}), \mathbf{e}\rangle-2 \quad \forall \mathbf{e} \in \mathcal{C}_{\mathrm{S}}^{\text {ETT }}
$$

$\hat{\mathbf{C}}(\mathbf{e}) \neq 0$ naturally for 5d origin of 4d theory (from 5d CS terms) confirmed in stringy examples, but generally only plausible

Rank bounds - Example

$$
r(\mathbf{e}) \leq r(\mathbf{e})_{\max }=\operatorname{rk}\left(k_{\mathrm{F}}^{\mathcal{A} \mathcal{B}}\right)+\operatorname{rk}\left(k_{\mathrm{C}}^{\mathcal{A} \mathcal{B}}\right) \equiv 2\langle\tilde{\mathbf{C}}, \mathbf{e}\rangle-2 \quad \forall \mathbf{e} \in \mathcal{C}_{\mathrm{S}}^{\mathrm{EFT}}
$$

Example:
4d $N=1$ SUGRA with single axionic field controlling gauge group G

$$
S=-\frac{1}{8 \pi} \int(C s+\ldots) \operatorname{tr}(F \wedge * F)-\frac{1}{192 \pi} \int(\tilde{C} s+\ldots) E_{\mathrm{GB}} * 1
$$

Constraints:

$$
\begin{aligned}
\tilde{C} & \stackrel{!}{=} 3 k \geq 0 \quad \text { with } \quad k \in \mathbb{Z}_{\geq 0}, \\
\operatorname{rk}(\mathfrak{g}) & \stackrel{!}{\leq} 2 \tilde{C}-2=6 k-2, \quad k \in \mathbb{Z}_{\geq 0}
\end{aligned}
$$

\Longrightarrow A strictly 4 d theory with gauge algebra must have $\tilde{C}>0!$ a

[^0]
Part II: Test in String Theory

F-theory in 4d

F-theory in 4d $\mathrm{N}=1 \quad \Longleftrightarrow \quad$ Type IIB on $\mathbb{R}^{1,3} \times B_{3}$ with 7-branes

- $B_{3}=$ compact Kähler 3-fold \Longrightarrow dynamical gravity
- 7-branes on complex surface $\mathrm{S} \subset B_{3}$ \Longrightarrow gauge symmetry

Couplings: (IIB Einstein frame)

$$
\frac{\mathrm{M}_{\mathrm{Pl}}^{2}}{\mathrm{M}_{\mathrm{IIB}}^{2}}=4 \pi \mathcal{V}_{\mathrm{B}_{3}} \quad \frac{1}{\mathrm{~g}_{\mathrm{YM}}^{2}}=\frac{1}{2 \pi} \mathcal{V}_{\mathrm{S}}
$$

$\Longrightarrow \mathrm{N}=1$ Kähler moduli space in F-theory

EFT strings from $\operatorname{Mov}_{1}\left(B_{3}\right)$

$\mathrm{N}=1$ Kähler moduli space in F-theory: [Lanza,Marchesano,Martucci,Valenzuela'20-21]

- Instantons:

Euclidean D3 on effective divisors
$D \in \operatorname{Eff}^{1}\left(B_{3}\right)$

- EFT Strings:

D3 on curves Σ_{e} in dual cone of movable curves $\operatorname{Mov}_{1}\left(B_{3}\right)$

- Movable curves can probe entire base (live in a family that covers dense open subset of B_{3})
- EFT strings sensitive to gravity

Characterisation of movable curves on B_{3} and associated EFT string limits in [Cota,Mininno,TW,Wiesner'22]

EFT strings from $\operatorname{Mov}_{1}\left(B_{3}\right)$

F-theory on elliptic CY_{4} with base B_{3}
D3-brane on $\mathbb{R}^{1,1} \times \Sigma_{\mathbf{e}}$
$\Sigma_{\mathbf{e}}$ a curve in base $\Sigma_{\mathbf{e}} \in \operatorname{Mov}_{1}\left(B_{3}\right)$
2 important properties of movable curves $\Sigma_{\mathbf{e}}$:

1. Can assume movable C is not contained in discriminant locus

$$
\Delta=12 \bar{K}_{B_{3}}=\text { totality of 7-branes }
$$

- $\Sigma_{\mathbf{e}}$ is transverse to 7-branes on B_{3}
- $\Sigma_{\mathbf{e}}$ intersects 7-branes in isolated points on B_{3} \Longrightarrow charged fermionic modes from 3-7 strings

2. Anti-canonical class $\bar{K}_{B_{3}} \in \operatorname{Eff}^{1}\left(B_{3}\right) \longrightarrow \bar{K}_{B_{3}} \cdot \Sigma_{\mathbf{e}} \geq 0$

Worldsheet Theory

Describe EFT worldsheet theory in F-Theory [Lawrie,Schafer-Nameki,TW'16] via topological duality twist [Martucci'14]

Reduce $N=4$ SYM on single D3-brane with worldvolume

$$
\mathbb{R}^{1,1} \times \Sigma_{\mathbf{e}}
$$

$\Longrightarrow 2 \mathrm{~d} N=(0,2)$ theory on worldsheet
In particular:

- $n_{\mathrm{C}}^{(1)}-n_{\mathrm{N}}^{(1)}=\bar{K}_{B_{3}} \cdot \Sigma_{\mathbf{e}}$
$=$ number of unobstructed complex geometric deformations of curve $\Sigma_{\mathbf{e}}$ inside B_{3}
- $n_{\mathrm{C}}^{(2)}-n_{\mathrm{N}}^{(2)}=\bar{K}_{B_{3}} \cdot \Sigma_{\mathbf{e}}-1$
conjectured to agree with number of unobstructed twisted Wilson line moduli
- $n_{\mathrm{F}}=8 \bar{K}_{B_{3}} \cdot \Sigma_{\mathbf{e}}$
intersection of 3 and 7-brane

Sharpened Bound

$$
\begin{array}{cl}
r(\mathbf{e}) \leq n_{\mathrm{F}}(\mathbf{e})+2 n_{\mathrm{C}}^{\mathrm{eff}} & \bullet n_{\mathrm{C}}^{(1)}-n_{\mathrm{N}}^{(1)}=\Sigma_{\mathbf{e}} \cdot \bar{K} \\
n_{\mathrm{C}}^{\mathrm{eff}}=\left(n_{\mathrm{C}}^{(1)}-n_{\mathrm{N}}^{(1)}\right)+\left(n_{\mathrm{C}}^{(2)}-n_{\mathrm{N}}^{(2)}\right) & \bullet n_{\mathrm{C}}^{(2)}-n_{\mathrm{N}}^{(2)}=\Sigma_{\mathbf{e}} \cdot \bar{K}-1
\end{array}
$$

Stronger bound for minimally SUSY F-theory over smooth base B_{3}
[Martucci,Risso,TW'22]

- $\Phi^{(1)}$: geometric moduli of curve $\Sigma_{\mathbf{e}}$ in B_{3} Under above assumptions, $\Phi^{(1)}$ cannot enjoy gauged shift symmetries
- $\Phi^{(2)}$: Of same origin as charged Fermis in dual M-theory picture \Longrightarrow candidates for gauged shift symmetries

$$
r(\mathbf{e}) \leq n_{\mathrm{F}}(\mathbf{e})+2 n_{\mathrm{C}}^{\mathrm{eff},(2)}=10 \Sigma_{\mathbf{e}} \cdot \bar{K}-2=\frac{5}{6} \Sigma_{\mathbf{e}} \cdot \Delta-2
$$

$$
\Delta=12 \bar{K}: \quad \text { discriminant }=\text { totality of all } 7 \text {-branes }
$$

EFT vs Kodaira bounds

Compare:

- Known Geometric Kodaira bound:

$$
\operatorname{rk}\left(G_{\text {non }-\mathrm{ab}}\right) \leq C \cdot \Delta \quad \forall C \text { inside } \operatorname{Mov}_{1}\left(B_{3}\right)
$$

- For EFT curve $C=\Sigma_{\mathbf{e}}$:

$$
\operatorname{rk}(\mathbf{e}) \leq \frac{5}{6} \Sigma_{\mathbf{e}} \cdot \Delta-2
$$

What use are the EFT string bounds?

1. Kodaira bound: not sensitive to abelian subgroup

EFT string bound: includes non-abelian and abelian rank
2. Stronger EFT string bound

$$
\operatorname{rk}(\mathbf{e}) \leq \frac{5}{6} \Sigma_{\mathbf{e}} \cdot \Delta-2
$$

\Longrightarrow Physics predictions for geometry!
not obvious from geometry

Universal bounds in 6d

Bounds constrain rank of gauge algebra to which give EFT string couples Absolute bounds on (7-brane) group require minimal Σ_{e} in interior of Mov_{1} :

$$
\Sigma_{\mathbf{e}} \cdot D_{\text {eff }} \geq 1 \quad \forall D_{\text {eff }} \text { effective }
$$

Simplification for abelian (non-Cartan) $\mathrm{U}(1) \mathrm{s}$: [Lee,TW'19]
Suffices to find curve $\Sigma_{\mathbf{e}}$ such that $\Sigma_{\mathbf{e}} \cdot \bar{K}_{B} \geq 1$
Can be achieved for F-theory on elliptic 3-folds (6d):
Bases of elliptic 3-folds very constrained
$B_{2}: \mathbb{P}^{2}$ or (blowup of) Hirzebruch: $B_{2}=\mathrm{Bl}^{k}\left(\mathbb{F}_{n}\right)$ (or Enriques)
Explicit analysis of spectrum \Longrightarrow bound detected by string from curve $\Sigma_{\mathbf{e}}$:

$$
r(\mathbf{e})_{\max }^{\text {strict }}=10 \Sigma_{\mathbf{e}} \cdot \bar{K}_{B_{2}}-2
$$

Universal bounds in 6d

Bases of elliptic 3-folds very constrained:
$B_{2}: \mathbb{P}^{2}$ or (blowup of) Hirzebruch: $B_{2}=\mathrm{Bl}^{k}\left(\mathbb{F}_{n}\right) \quad$ (or Enriques)
Explicit analysis of spectrum \Longrightarrow bound detected by string from curve $\Sigma_{\mathbf{e}}$:

$$
r(\mathbf{e})_{\max }^{\text {strict }}=10 \Sigma_{\mathbf{e}} \cdot \bar{K}_{B_{2}}-2
$$

For (non-Cartan) $\mathrm{U}(1)$ groups in 6d this gives a universal bound [Lee,TW'19]:

- $\mathbb{P}^{2}: n_{U(1)} \leq 28$
bound on rank of Mordell-Weil
- $\mathrm{Bl}^{k}\left(\mathbb{F}_{n}\right): n_{U(1)} \leq 18 \quad \Longrightarrow \quad{ }_{\mathrm{CY}}^{3} \mathrm{ap}$

Current Record: Schoen manifold of Namikawa type [Grassi,TW'21]

$$
n_{U(1)} \leq 10
$$

Generic Schoen: $n_{U(1)}=8$ [Schoen'88]
Special Schoen: $n_{U(1)}=9$ [Morrison, Park,Taylor'18] (12 I_{2} fibers in codim-two)
Namikawa type: $n_{U(1)}=10$ [Namikawa'02] [Grassi,TW'21]
(6 Type IV fibers in codim-two: terminal, non- \mathbb{Q}-factorial)

Conclusions

General bounds on rank of gauge algebra in strictly $4 \mathrm{~d} N=1$ supergravity theories from EFT strings

$$
r(\mathbf{e}) \leq 2\langle\tilde{C}, \mathbf{e}\rangle-2
$$

in a theory with axionic couplings $S \supset-\frac{1}{96 \pi} \tilde{C}_{i} \int_{\mathbb{R}^{1,3}} a^{i} \operatorname{tr} R \wedge R$

Applied to F-theory on CY_{4}

$$
\text { Novel sharpened bound: } r(\mathbf{e}) \leq \frac{5}{6} \Delta \cdot \Sigma_{\mathbf{e}}-2
$$

\checkmark Stronger than geometric Kodaira bound
\checkmark Applies to abelian and non-abelian gauge group (from 7-branes)
\Longrightarrow Predictions for arithmetic geometry!
\checkmark Matches expectations from dual heterotic strings, but more general

Conclusions

Many open questions:

- Prove assumptions on role of uncharged Fermi multiplets - at least for generators of movable cone
- Goal: Translate this into universal bound for rank of gauge group in all $4 d N=1$ theories comparable to bound to bound on abelian rank in 6d
- What about matter? 6d: cf. [Tazari,Vafa'21]

Appendix

Example: \mathbb{P}^{3}

$$
\begin{aligned}
& H^{1,1}\left(B_{3}\right)=\langle H\rangle \quad \Delta=12 \bar{K}=48 H \\
& \Sigma_{\mathrm{e}}=H \cdot H: \quad r_{\mathrm{tot}} \leq \begin{cases}r(\mathbf{e})_{\max } & =12 \Sigma_{\mathbf{e}} \cdot \bar{K}_{X}-2=46, \\
r(\mathbf{e})_{\max }^{\text {strict }} & =10 \Sigma_{\mathbf{e}} \cdot \bar{K}_{X}-2=38, \\
r(\mathbf{e})_{\max }^{\mathrm{F}} & =8 \Sigma_{\mathbf{e}} \cdot \bar{K}_{X}, n_{C}^{(1)}, n_{C}^{(2)}, \\
=32, & n_{F}, n_{C}^{(2)}\end{cases}
\end{aligned}
$$

Maximal rank of $S U(N)$ group in Weierstrass model [Morrison,Taylor '11]

$$
S U\left(N_{\max }\right)=S U(32) \quad \text { geometrically }
$$

Incidentally, allowed even by bound $r(\mathbf{e})_{\text {max }}^{\mathrm{F}}$, but more generally, at best $r(\mathbf{e})_{\max }^{\text {strict }}$ can be correct:

Examples:
$G=E_{6} \times E_{7}^{4}$
$\operatorname{rank}(G)=34$
$G=E_{6}^{2} \times E_{7}^{3}$
$\operatorname{rank}(G)=33$

Caveats:
Non-minimal fibers \rightarrow blowups
Flux quantisation \rightarrow non-trivial flux

Massless Spectrum

Multiplets	$(0,2)$ Type	Origin	Interpretation	Zero-mode Cohomology
U	Chiral	$\left(\phi_{i}, \Psi\right)$	Universal	$h^{0}(C)=1$
$\Phi^{(1)}$	Chiral	$\left(\phi_{i}, \Psi\right)$	Deformations	$n_{\mathrm{C}}^{(1)}=h^{0}\left(C, N_{\left.C / B_{3}\right)}\right.$
$\Phi^{(2)}$	Chiral	(A, Ψ)	Twisted Wilson lines	$n_{\mathrm{C}}^{(2)}=h^{0}\left(C, K_{C} \otimes \bar{K}_{B_{3}}\right)$ $=g-1+\bar{K}_{B_{3}} \cdot C$
$\Psi^{(1)}$	Fermi	Ψ	Obstructions	$n_{\mathrm{N}}^{(1)}=h^{1}\left(C, N_{\left.C / B_{3}\right)} h^{0}\left(C, N_{C / B}\right)-\bar{K}_{B_{3}} \cdot C\right.$
$\Psi^{(2)}$	Fermi	Ψ	Obstructions (?)	$n_{\mathrm{N}}^{(2)}=h^{1}(C)=g$
Λ	Fermi	$3-7$ strings	Charged	$n_{\mathrm{F}}=8 \bar{K}_{B_{3}} \cdot C$

- $n_{\mathrm{C}}^{(1)}-n_{\mathrm{N}}^{(1)}=h^{0}\left(C, N_{C / B_{3}}\right)-h^{1}\left(C, N_{C / B_{3}}\right)=\bar{K}_{B_{3}} \cdot C$
topological index that agrees with number of unobstructed complex geometric deformations of curve C inside B_{3}
- $n_{\mathrm{C}}^{(2)}-n_{\mathrm{N}}^{(2)}=\bar{K}_{B_{3}} \cdot C-1$ topological index - conjectured to agree with number of unobstructed twisted Wilson line moduli

General Bound

General bound on rank of gauge group detected by EFT string of charge e

$$
r(\mathbf{e}) \leq n_{\mathrm{F}}(\mathbf{e})+2 n_{\mathrm{C}}^{\mathrm{eff}}=2\langle\tilde{C}(\mathbf{e}), \mathbf{e}\rangle-2
$$

- $n_{\mathrm{F}}(e)$ number of Fermi multiplets charged under 7-brane gauge group
- $n_{\mathrm{C}}^{\text {eff }}=n_{\mathrm{C}}-n_{\mathrm{N}}$ number of unobstructed chiral multiplets which can experience gauged shift symmetry
- \tilde{C} : gravitational higher derivative coupling

Specialisation: [Martucci,Risso,TW'22]
Rank of 7-brane group detected by string from D3 brane on curve Σ_{e} :

- $n_{\mathrm{C}}^{\text {eff }}=\left(n_{\mathrm{C}}^{(1)}-n_{\mathrm{N}}^{(1)}\right)+\left(n_{\mathrm{C}}^{(2)}-n_{\mathrm{N}}^{(2)}\right)$

$$
r(\mathbf{e}) \leq 12 \Sigma_{\mathbf{e}} \cdot \bar{K}-2=\Sigma_{\mathbf{e}} \cdot \Delta-2
$$

- $n_{\mathrm{C}}^{(1)}-n_{\mathrm{N}}^{(1)}=\Sigma_{\mathbf{e}} \cdot \bar{K}$
- $n_{\mathrm{C}}^{(2)}-n_{\mathrm{N}}^{(2)}=\Sigma_{\mathbf{e}} \cdot \bar{K}-1$
- $n_{\mathrm{F}}(e)=8 \Sigma_{\mathbf{e}} \cdot \bar{K}$

Consistently:
$\tilde{C}=6 \bar{K}$ from effective action
[Grimm,Taylor'12]

EFT vs Kodaira bounds

$$
\{\Delta=0\}=n_{I} \mathcal{D}^{I}+\mathcal{D}^{\prime} \simeq 12 \bar{K} \quad \text { with }\left.\quad n_{I} \equiv \operatorname{ord}(\Delta)\right|_{\mathcal{D}^{I}}
$$

Non-abelian gauge group G_{I} on divisor \mathcal{D}^{I} constrained by Kodaira bound cf. [Morrison, Taylor '11]:

$$
\operatorname{rk}\left(G_{I}\right)<\left.n_{I} \equiv \operatorname{ord}(\Delta)\right|_{\mathcal{D}^{I}} .
$$

	$\operatorname{ord}_{\mathcal{D}}(f)$	$\operatorname{ord}_{\mathcal{D}}(g)$	$\operatorname{ord}_{\mathcal{D}}(\Delta)$	singularity
I_{0}	≥ 0	≥ 0	0	none
$\mathrm{I}_{n}, n \geq 1$	0	0	n	A_{n-1}
II	1	1	≥ 2	none
III	1	≥ 2	3	A_{1}
IV	≥ 2	2	4	A_{2}
I_{0}^{*}	≥ 2	≥ 3	6	D_{4}
$\mathrm{I}_{n}^{*}, n \geq 1$	2	3	$6+n$	D_{4+n}
IV^{*}	≥ 3	4	8	E_{6}
III^{*}	3	≥ 5	9	E_{7}
II^{*}	≥ 4	5	10	E_{8}

For every curve C in interior of movable cone ($C \cdot D_{\text {eff }} \geq 1 \forall D_{\text {eff }}$)

$$
\operatorname{rk}\left(G_{\mathrm{non}-\mathrm{ab}}\right) \leq \sum_{I} \operatorname{rk}\left(G_{I}\right)\left(C \cdot D_{I}\right) \leq \sum_{I} n_{I}\left(C \cdot D_{I}\right)+C \cdot D^{\prime}=C \cdot \Delta
$$

Compare: For EFT curve $C=\Sigma_{\mathbf{e}}$

$$
\mathrm{rk}(\mathbf{e}) \leq \Sigma_{\mathbf{e}} \cdot \Delta-2
$$

\checkmark Conservative EFT bound slightly stronger than geometric upper bound

[^0]: ${ }^{a}$ With 5d limit, not all higher derivative grav couplings zero [Martucci,Risso,TW'22]

